

Fact Oriented Business Service Modeling

Peter Bollen

Department of Organization and Strategy

Faculty of Economics and Business Administration

 University of Maastricht

6200 MD Maastricht, the Netherlands

p.bollen@os.unimaas.nl

Abstract. In this paper we will present the results of research into fact-

oriented business service modeling. The set of modeling constructs that are

defined in this paper are fully ‘compatible’ with the models in the data-

oriented perspective in the fact oriented school of conceptual modeling.

Keywords: Business Process Modeling and Improvement, modelling

 Languages, Business Rules, Process Models.

1 Introduction

Most enterprises today can be considered service providers in one way or other. Many

of these service providing enterprises deliver end-products or services to their

customers that are the result of some kind of informational activity, e.g. the booking of

a holiday at a travel-agency, the preparation of a company’s balance sheet by an

independent accountant or the development of a supply chain management system.

Two important schools in the conceptual modeling of informational activity

are the (extended) entity relationship (E)E-R approach [1,18] and the fact-oriented

approach: NIAM [19] and ORM [6]. Most research in the (E)E-R and fact-oriented

approaches has been directed towards the data-oriented perspective from the IFIP-

CRIS framework [12]. In the eighties a number of system development methodologies

were proposed that covered both the data-oriented, process-oriented and behaviour-

oriented perspectives [5,11,14]. In the nineties a research school on ‘workflow

management’ emerged within the information systems research community (see for a

good literature review [15]). Around that time the business process reengineering

‘paradigm’ [3,7] in combination with the increasing popularity of Enterprise Resource

Planning packages (e.g. SAP, see [2]), lead to the development of domain-oriented

analysis methods of which the ARIS-based Business Process Modeling [16] and BML

[8] are examples.

1.1 Related work

In figure 1 we have given the necessary documents for the three perspectives in the

IFIP-CRIS architecture (based on [9]). In this paper we will focus on the documents in

mailto:p.bollen@os.unimaas.nl

the middle column of figure 1 that represent the process-oriented perspective. The

documents in the left-hand column of figure 1 refer to the data-oriented perspective

(an example can be found in [10]). The documents in the right-hand column in figure

1 refer to the behaviour-oriented perspective. The definition of the modeling

constructs and methodology for the ‘behaviour-oriented’ perspective will be subject of

another paper. In [9] the union of the meta process model and meta behaviour model

is put into the architecure as ‘program grammar’.

Enterprise
data
model

Enterprise
Impulse
Base

Enterprise
Process
Base

Enterprise
data
base

 Meta
 model
fact oriented
 approach

 Meta
process
 model

 Meta
behaviour
 model

Fig. 1. Documents in the data-, process- and behaviour-oriented perspectives

In analogy to the Conceptual Schema Design Procedure (CSDP) in [10] for the data-

oriented perspective, we will give an outline of a ‘CSDP’ in this paper for the process-

oriented perspective, that specifies how a business analyst can create the enterprise

process base as a declarative representation for the processes in an enterprise subject

area. The possible ‘process-oriented’ models that can exist for the application area and

respecting the borders of the application that are imposed by the Universe of

Discourse (UoD) in the ‘data-oriented’ perspective.

 The remainder of this paper is organized as follows: in section 2 the focus will be on

the constructs in the process-oriented perspective, in section 3 the methodology for

instantiating these constructs in a specific application area will be given, in section 4

some conclusions will be given.

2 The constructs for the process-oriented perspective

The process perspective in an enterprise subject area is concerned with ‘how’ fact

instances can be composed from other fact instances. In enterprises we can consider

facts as either an outcome of an enterprise activity or an ingredient for an enterprise

activity. Enterprise activities are executed under the responsibility of a user from a

user group. We will call a user that creates facts, an active user. Users that ‘consume’

instances of fact types in their daily activities are called passive users. The border

concept in the process perspective will show what user groups can be held responsible

for the creation of fact instances in the UoD. We will call this border concept: the

Sphere of Influence (SoI)[13: 116].

2.1 Definition of conceptual process types

Consider two different examples of billing, for example, in a bistro and in a fast-food

restaurant. Although the spheres of influence are different in these examples, the

description of the informational activity that creates the order total on each order

receipt in terms of instances of fact types in the application data model is identical (i.e.

it is ‘organization independent’, see [4]). This indicates the need for a theoretical

construct that abstracts from the concrete way in which a fact-creating activity is

performed (e.g. performed manually by a bistro waiter or automatically under the

responsibility of a fast-food restaurant counter employee). This theoretical construct is

the conceptual process instance.

Definition 1. A conceptual process instance is the abstraction of an organizational

activity that is responsible for the creation of (a) fact instance(s) by an active user.

Definition 2. A conceptual process type is the intension of a subset of the conceptual

process instances that are responsible for the creation of fact instances of the same (set

of) fact type(s) by active users in one or more user groups.

2.1.1 Derivation process types

The fact type(s) of the fact instances created in (an) instance(s) of a conceptual

process type will be referred to as the resulting fact type(s) for the conceptual process

type. An (the) ingredient fact type(s) of a conceptual process type specifies what the

fact type(s) is (are) for the fact instances that serve as an input for the creation of a fact

in a process instance of a given conceptual process type.

Ft5

Ft4

Pt1 Dr2

Derivation
rule

Ingredient fact type(s)

Conceptual derivation
process type

Resulting fact type(s)

Prescriptive
document

Declarative
document

Legend

Fig. 2. Conceptual derivation process type

The ‘underlying mechanism’ that creates fact instance fact 1 is a function defined on

the ingredient fact instances fact 2, fact 3 and fact 4. In case the ‘underlying

mechanism’ is a procedure or a derivation rule that specifies for all instances of the

conceptual process type how the resulting fact instance(s) can be derived from the

ingredient fact instances we will call such a conceptual process type a derivation

process type (see figure 2).

Definition 3. A derivation process type is a conceptual process type whose process

instances create fact instances by applying the same derivation rule on instances of the

same ingredient fact type(s) (that are contained in the application’s data model).

The specification of a derivation rule for a given conceptual process type can be

considered another semantic bridge in the process-oriented perspective. In this

specification process the variables in the derivation rules are assigned specific

semantics in terms of roles of the application data model and the arguments in the

process type argument set (see section 2.2).

2.1.2 Determination process types

Ft5

Ft4

Pt2

Ingredient
 fact type(s)

Conceptual
mixed-determination

process type

Resulting
 fact type(s)

Ft5

Pt3

Conceptual
strict-determination

process type

Resulting fact type(s)

(a) (b)

Fig.3. Conceptual determination process types

Some facts will be created without a known (or existing) derivation rule. For example

the creation of the Christian name of a new-born. However, in many cases the creation

of such a fact is subject to constraints. In the example of the name assignment for a

newborn, the following constraint exists: a baby of the female sex must be assigned a

girl’s name and a baby of the male sex must be assigned a boy’s name (eventually

from a predefined list of names). We will call the process instances that create these

facts, determination process instances.

 The first group of determination process types is the group of mixed-determination

process types. The availability of ingredient fact instances is necessary here. However,

the derivation rule is not known (at least at this moment (see figure 3a)).

Definition 4. A mixed determination process type is a conceptual process type in

which the active user uses instances of the same ingredient fact types (that are

contained in the application’s data model) for all process instances.

The conceptual process that creates the names of a newborn baby: We have decided

to call you John. We have decided to call you Alice. These examples do not involve

any derivation rule or (formal) procedure, but it is assumed that ingredient fact

instances exist, for example: John is the name for a boy, Alice is the name for a girl,

The child that should be named is a girl must be known, before a name can be created

for a specific child. The way in which a name is assigned in a specific instance,

however, can not be determined in advance. Some people might select the name of

their own father or mother for their child. Others might choose the name of their

favourite rock star. On a ‘process type’ level, however, we can never know what

selection criterion (or derivation rule), will be applied in a specific process instance.

The same parent will probably use, if at all, different criteria for every newborn.

 In addition to derivation and mixed-determination process types we can distinguish

conceptual process types which have no known and fixed set of ingredient fact type(s)

and derivation rules: strict-determination process types (see figure 3b). This type of

proces is used in managerial decision making, for which, in some cases, decision

support systems are employed: “The user may only need 40-100 data variables, but

they must be the right ones; and what is right may change from day to day and week to

week.” [17: 21].

Definition 5. A strict-determination process type is a conceptual process type in which

the active user does not use a known derivation rule all the time and the active user

does not use instances of the same ingredient fact types (that are contained in the

application’s data model) in all process instances.

2.2 The instantiation of conceptual process types.

We now take the enterprise data base as a starting point and subsequently apply

definitions 4 and 5 that tells us that every fact instance is created in a conceptual

process instance. The collection of conceptual process types that are relevant for the

enterprise subject area are recorded in the enterprise process base (see figure 1).

 Now we must take the existence of a conceptual process type as a starting point

and ask ourselves how a conceptual process type instance is created. For this

instantiation we, generally, need parameters that tell us what fact instances will be the

'tangible' end results of the execution of a conceptual process and what other values

are needed for such a process execution. We will call such a set of parameters: the

conceptual process type argument (see figure 4a).

Definition 6. A conceptual process type argument specifies the types of values that

must be specified for instantiating a conceptual process.

If we consider the derivation process type create-order-total in figure 4, it will only

create (a) fact instance(s) of fact type FT5 when at least one fact instance of fact type

FT4 exists in the application data base (see figure 4a) in which the value for the role

‘order code’ is equal to the value for the process argument ‘arg1’. If we inspect the

derivation rule for this conceptual process type and the instantiation values for the

process type argument it should be clear whether the execution of the process will

lead to a result before the derivation rule is actually executed or fact instance(s) are

determined by a active user).

Ft5

Application
Data
Base

Ft4

Create Order
Total (arg1:order)

Pre-condition:

There exist at least one fact instance of fact type Ft4
in the information base for this specific order

Post-condition:

Specifies what specific fact instance(s) of
fact type Ft5 should be created

Dr2:
Ft5.<r5>:=

 SUM(FT4.<r3>)

(a)

(b)

Fig. 4. Conceptual process execution: (a) pre-condition, (b) post-condition

The pre-condition for a conceptual process type serves as checking mechanism for the

instantiation of a process type. If the pre-condition is violated by the actual content of

the enterprise data base, the process will not be executed and (a) resulting fact

instance(s) will not be created.

Definition 7. A precondition in a conceptual process type checks whether the required

input fact instances for the derivation process or the mixed determination process

exists in the enterprise data base.

The post-condition specifies what the fact argument is for the facts that will be created

in the conceptual process (see figure 4b). Furthermore, it is specified how the fact

values will be created in the conceptual process will be obtained. In case of a

derivation process a reference is given to a derivation rule. In case of a mixed- or

strict- determination process, it is stated that (a) fact(s) has (have) to be created (by a

active user). This post-condition specifies how the resulting fact type(s) of the process

type, must be instantiated as a function of the values for the process argument.

Definition 8. A post-condition of a conceptual process type specifies (parts of) the fact

argument for the instances of the resulting fact type for the conceptual process. A

post-condition in a conceptual process indicates that (a) fact value(s) ha(s)ve to be

determined. A post-condition in a derivation process type specifies what derivation

rule is used for the creation of the resulting fact instance(s).

Example 1:

P1 create order total<{(arg1,order)}>
IF there exist an instance of FT4
 SUCH THAT FT4.<r2>=arg1 {pre-condition}
THEN create an instance of fact type FT5
 SUCH THAT FT5.<r4>:= arg1 {post condition}
 FT5.<r5>:=DR2

 DR2:= Σ FT4.<r3> [where FT4.<r2>=’arg1’] {der.rule}
ENDIF

In example 1 we have given a complete specification of the pre-condition, post-

condition and derivation rule and how they are related. We will now simplify the

specification of a conceptual process type by dividing such a specification in (at most)

3 parts. In the case of a derivation process type we will specify a precondition, a

postcondition and a derivation rule. In case of a mixed-determination process type we

will specify the precondition and postcondition and, finally, in case of a strict-

determination process type we will only specify the postcondition.

3 The modelling methodology for the process-oriented perspective

In order to be able to model the process-oriented features for fact types that are

contained in the application’s data model but that are created in conceptual process

instances that are executed by active users outside the focal SoI we need to introduce a

fourth conceptual process configuration: the enter process type.

Definition 9. An enter process type models the process-oriented characteristics for

those fact instances of fact types that are contained in the enterprise data model but

that are ‘created’ in conceptual processes by active users outside the SoI of the

enterprise subject area.

We will illustrate the application of the process modelling constructs using the ABC

payroll case study

Example 2: The ABC payroll business service example:

The users in the user groups of the payroll department of branch X of the ABC

company, ‘decide’ how many hours an employee has worked in a given week by

inspecting work-order documents and taking additional information into account, e.g.

traveling time and information that was obtained in personal contact with the

employees. For some employees no work-order documents exist, and therefore the

determination of their work-hours is entirely based upon facts that are not contained in

the current UoD of the ABC example. The active users in this department furthermore

decide upon the gross salaries for the employees that are directly recruited. Although

the criteria that determine the salary for each employee are known, the facts that are

needed for applying these criteria are not available in the current UoD. The net salary

is calculated outside the payroll’s enterprise area by a payroll service provider. The

gross-to-net calculation rules are applied by this outside service-agency, and therefore

are not accessible by the active users payroll department of the ABC company. Under

some conditions it is possible that the working hours for contractors must be recorded

although these contractors are not on the company’s payroll. In addition it is possible

that employees are on the payroll who are hired under the responsibility of a temping-

agency. The users in the user groups of the payroll department of the branch X of the

ABC company, are also responsible for knowing the highest (gross) salary for an

employee at any time. The SoI consists of the users in the user group of the payroll

department of branch X. The content of the fact-oriented data model in figure 9 can be

summarized as follows. There exists fact types that declare the existence of a person

(Ft9), that declare that a person earns a gross salary (Ft7), that a person has worked a

specific number of hours in a week (Ft8), that there is a highest (gross) salary for an

employee (Ft10), and that a person earns a net salary (Ft11). The resulting fact-

oriented data model for this example is given in figure 5.

There is a

Person

(person ID)

Salary

(natural number)

earns

...worked...in a week

Number of hours

(natural number)

The highest salary for an employee is..

Person2

Person4

Salary1

Salary3

Salary2
Ft9

....

 gross

 Net

....

Ft7

Ft11

Ft10

Ft8

HoursPerson3

Person1

Fig.5. Fact oriented application data model for the payroll example

3.1 A procedure for deriving the process base

In figure 6 we have given a summary of the design procedure for creatuing an

application’s process base.

Facts of fact type in Application Data Model
 created in a known derivation rule ?

Derivation rule accessible
 by users within sphere
 of influence ?

Enter
Process
Type

Derivation
Process
Type

Strict
Determination
Process Type

Mixed
Determination
Process Type

yes

yes

yes

no

no
no no yes

 Input
fact types
 known ?

 Input
fact types
 known ?

Fig. 6. Procedure for the determination of process type signature for given UoD and SoI

It should be noted that the enter process types never have a process type argument,

because instances of such a conceptual process type do not have to be instantiated

within the SoI under consideration.We can now easily derive an application process

base for a given UoD and SoI by applying the decision tree from figure 6. The

interaction between the UoD (what fact types are relevant for the enterprise subject

area) and the SoI (what active users are contained in the enterprise subject area) if not

properly managed can be a risk resulting in project delays and project cost overruns in

the development life cycle of business information systems. In figure 7 we have given

the complete ‘as-is’process base for the payroll business service example.

Fig. 7.‘As-is’ application process base for the payroll business service example

We note that for each fact type from the models in the data-perspective at least one

process configuration must be contained in the application’s process base. To

determine to what process type a process instance belongs, that creates an instance of

a fact type (that can be created in 2 or more process types), we need an enterprise

impulse base, that specifies under what conditions a specific process type will be

instantiated to create an instance of such a fact type.

4 Conclusions

In this paper we have derived the modeling constructs and an accompanying

methodology for the creation of a process base for a given subject area. The constructs

that were introduced in section 2 of this paper allow us to describe the extent as to

which organizations have discretion with respect to the fact generating activities

within the SoI. The definition of three different conceptual process types in

combination with the process border-concept of Sphere of Influence (SoI) has resulted

in the existence of 4 conceptual process configurations for a given enterprise subject

area with a known UoD and a known SoI. The ability to model conceptual knowledge

processes that have a ‘tacit’ nature and the extent in which the ‘codifiable’ properties

of these tacit knowledge processes can be modeled makes the constructs in the meta

process model in this paper applicable in service enterprises .The modeling constructs

also allow us to model every type of decision process in terms of its equivocality and

uncertainty. In the context of creating conceptual models in the early stages of the

Systems Development Life Cycle (SDLC), the aforementioned constructs and

methodology can be used as well. The resulting process models can be easily mapped

onto application programs that work on an application data base, by mapping the

derivation process types in a straightforward manner.

References

1. Chen, P.: The Entity-Relationship model: Towards a unified view of data. ACM TODS 1

 (1) (1976) 9-36

2. Curran, T., Ladd, A.: SAP R/3 business blueprint. Prentice-Hall (2000)

3. Davenport,T., Short, J. :The new industrial engineering: Information Technology and

 Business Process Redesign. Sloan management Review. Summer (1990): 11- 27.

4. Gorry,G., Scott Morton, M.: A framework for management information systems. Sloan

 Management Review, Fall (1971)

5. Gustafsson,M., Karlsson, T., Bubenko J.: A declarative approach to conceptual information

 modeling, in: W.Olle, H.Sol and A. Verrijn-Stuart (eds.),Information System Design

 Methodologies- a comparative review, North-Holland, (1982) 93-142.

6. Halpin, T.: Information Modeling and Relational Databases, Morgan Kaufmann . (2001)

7. Hammer, M.: Reengineering work: Don't automate,obliterate. HBR.july(1990)104-112.

8. Johannesson, P., Perjons, E.: Design principles for process modelling in enterprise

 application integration. Information Systems 26 (2001): 165-184

9. Nijssen,G.: An Axiom and Architecture for Information Systems. In: Falkenberg, E.,

 Lindgreen, P. (eds.): Information System Concepts,North-Holland, (1989) 157- 175.

10.Nijssen, G., Halpin, T.: Conceptual schema and relational database design. Prentice-Hall,

 Englewood Cliffs (1989).

11.Olivé, A.:Dades- a methodology for specification and design of information systems design

 and management. in: Olle et. al. (eds.), Information System Design Methodologies- a

 comparative review, North-Holland, (1982) 285-334.

12.Olle, T.W., J.Hagelstein, I.G. Macdonald, C. Rolland, H.G. Sol, F.J.M. Van Asche and A.A.

 Verrijn-Stuart. Information Systems Methodologies- A Framework for Understanding,

 North-Holland (1988).

13.Parker, M.: Enterprise information-analysis: Cost-benefit analysis and the data-managed

 system. IBM systems journal, 21(1) (1982) 108-123.

14.Rolland, C., Richard, C.:The REMORA Methodology for Information System Design and

 Management. Information System Design Methodologies- a comparative review (1982)

15.Salimifard, K., Wright, M.: Theory and Methodology: Petri net-based modelling of

 workflow systems . European Journal of Operations Research 134 (2001) 664-676

16.Scheer, A.: ARIS-Business Process Modeling, 2nd edition, Springer, Berlin (1999)

17.Sprague Jr., R. : A Framework for the Development of Decision Support Systems. MIS

 Quarterly. December (1980)

18.Teory, T., Yang, D., Fry, J.:A logical design methodology for relational databases using the

 extended E-R model. ACM Computing Surveys, 18(2) (1986):197-222

19.Verheijen,G., van Bekkum J.: NIAM: An Information Analysis Method. In: Verrijn-

 Stuart,A., Olle T., Sol H., (eds.): proceedings CRIS- 1, North-Holland (1982) 537-590.

