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Abstract. The paper formalises the famous algorithm of first-order
unification by Robinson by means of the error-correction learning in
neural networks. The significant achievement of this formalisation
is that, for the first time, the first-order unification of two arbitrary
first-order atoms is performed by finite (two-neuron) network.

1 Introduction

The field of neuro-symbolic integration is stimulated by the fact that
logic theories are commonly recognised as deductive systems that
lack such properties of human reasoning, as adaptation, learning and
self-organisation. On the other hand, neural networks, introduced as
a mathematical model of neurons in human brain, possess all of the
mentioned abilities, and moreover, they provide parallel computa-
tions and hence can perform certain calculations faster than classical
algorithms.

As a step towards integration of the two paradigms, there were
built connectionist neural networks (also called neuro-symbolic net-
works), see [1, 8] for a very good survey. In particular, there were
built neural networks [16, 17] that can simulate the work of the se-
mantic operator TP for logic programs. These neural networks pro-
cessed classical truth values 0 and 1 assigned to clauses and clause
atoms. These values were presented to the neural networks as input
vectors and emitted by the neural networks as output vectors.

The connectionist neural networks of different architectures [8, 15,
7, 1] bore different advantages, but one similar feature: the unifica-
tion of first-order terms, atoms, or clauses was achieved by build-
ing a separate neuron for each of the ground instances of an atom.
Then all neurons were connected in a particular way that they re-
flected intended logical relations between the ground atoms. In many
cases, e.g., in the presence of function symbols in logic programs,
the number of the required ground instances can become infinite.
This makes building corresponding neural networks impractical. The
problem gave rise to a series of papers about possibility of approx-
imation of potentially infinite computations by (a family of) finite
neural networks; see [13, 3, 25, 2].

In this paper, I propose a different direction for the development
of the connectionist neural networks. In particular, I propose to use
two-neuron networks with error-correction learning to perform the
first-order unification over two arbitrary first-order atoms. A simple
form of error-correction learning is adapted to syntax of a first-order
language in such a way that unification of two atoms is seen as a
correction of one piece of data relative to the other piece of data.

The problem of establishing a way of how to perform first-order
unification in finite neural networks has been tackled by many re-
searchers over the last 30 years; [4, 21, 15, 14, 8, 26, 27, 1, 28].

1 INRIA Sophia Antipolis, France, email: ekate-
rina.komendantskaya@inria.fr

The way of performing unification that I propose here is novel,
fast and simple, and can be easily integrated into a number of various
existing neuro-symbolic networks. The paper develops ideas which
were first spelt out in [18, 19]. Here, I simplify the construction of
the networks, generalise the theorem about unification by error cor-
rection and give a more subtle analysis of the new functions intro-
duced into the neural networks. Notably, the statement and the proof
of the main theorem do not depend anymore on Gödel numbers, as
in [18, 19].

The structure of the paper is as follows. Section 2 outlines the clas-
sical algorithm of unification. Section 3 defines artificial Neurons and
Neural Networks following [12, 13]. Section 4 describes the error-
correction learning algorithm. In Section 5, I re-express several logic
notions in terms of recursive functions over terms. These functions
are then embedded into the network. In Section 6, I prove that the
algorithm of Unification for two arbitrary first-order atoms can be
simulated by a two-neuron network with error-correction function.
Finally Section 7 concludes the discussion.

2 Unification algorithm
The algorithm of unification for first-order atoms was introduced in
[24] and has been extensively used in Logic programming [22] and
theorem proving.

I fix a first-order language L consisting of constant symbols
a1, a2, . . ., variables x1, x2, . . ., function symbols of different ar-
ities f1, f2, . . ., predicate symbols of different arities Q1, Q2, . . .,
connectives ¬,∧,∨ and quantifiers ∀, ∃. This syntax is sufficient to
define first-order language or first-order Horn clause programs, [22].

I follow the conventional definition of a term and an atomic for-
mula. Namely, a constant symbol is a term, a variable is a term,
and if fn

i is a n-ary function symbol and t1, . . . , tn are terms, then
fn

i (t1, . . . tn) is a term. If Qn
i is an n-ary predicate symbol and

t1, . . . , tn are terms, then Qi(t1, . . . tn) is an atomic formula, also
called an atom.

Let S be a finite set of atoms. A substitution θ is called a unifier for
S if Sθ is a singleton. A unifier θ for S is called a most general unifier
(mgu) for S if, for each unifier σ of S, there exists a substitution γ
such that σ = θγ. To find the disagreement set DS of S locate the
leftmost symbol position at which not all atoms in S have the same
symbol and extract from each atom in S the term beginning at that
symbol position. The set of all such terms is the disagreement set.

The unification algorithm [24, 20, 22] is described as follows.
Unification algorithm:

1. Put k = 0 and σ0 = ε.
2. If Sσk is a singleton, then stop; σk is an mgu of S. Otherwise,

find the disagreement set Dk of Sσk.
3. If there exist a variable v and a term t in Dk such that v does not

occur in t, then put σk+1 = σk{v/t}, increment k and go to 2.
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Otherwise, stop; S is not unifiable.

The Unification Theorem establishes that, for any finite S, if S is
unifiable, then the unification algorithm terminates and gives an mgu
for S. If S is not unifiable, then the unification algorithm terminates
and reports this fact.

3 Connectionist Neural Networks

I follow the definitions of a connectionist neural network given in
[16, 17], see also [7, 13, 9].

A connectionist network is a directed graph. A unit k in this graph
is characterised, at time t, by its input vector (vi1(t), . . . vin(t)),
its potential pk(t), its threshold Θk, and its value vk(t). Note that
in general, all vi, pi and Θi, as well as all other parameters of a
neural network can be performed by different types of data, the most
common of which are real numbers, rational numbers [16, 17], fuzzy
(real) numbers [23], complex numbers, numbers with floating point,
Gödel numbers [19], and some others, see also [12].

Units are connected via a set of directed and weighted connec-
tions. If there is a connection from unit j to unit k, then wkj denotes
the weight associated with this connection, and ik(t) = wkjvj(t)
is the input received by k from j at time t. The units are up-
dated synchronously. In each update, the potential and value of a
unit are computed with respect to an activation and an output func-
tion respectively. Most units considered in this paper and [16] com-
pute their potential as the weighted sum of their inputs minus their
threshold: pk(t) =

“Pnk
j=1 wkjvj(t)

”
−Θk. The units are updated

synchronously, time becomes t + ∆t, and the output value for k,
vk(t + ∆t) is calculated using pk(t) by means of a given output
function F , that is, vk(t + ∆t) = F (pk(t)). For example, F can be
an identity function id, or the binary threshold function H , that is,
vk(t + ∆t) = H(pk(t)), where H(pk(t)) = 1 if pk(t) > 0 and
H(pk(t)) = 0 otherwise.

Example 3.1 Consider two units, j and k, having thresholds Θj ,
Θk, potentials pj , pk and values vj , vk. The weight of the connection
between units j and k is denoted by wkj . Then the following graph
shows a simple neural network consisting of j and k. The neural
network receives signals v′, v′′, v′′′ from external sources and sends
an output signal vk.

v′

((QQQQQQQ pj wkj pk

v′′ // ONMLHIJKΘj // ONMLHIJKΘk
//vk

v′′′

66mmmmmm
j k

4 Error-Correction Learning

Error-correction learning is one of the algorithms among the
paradigms that advocate supervised learning; see [12, 11] for further
details.

Let dk(t) denote some desired response for unit k at time t. Let the
corresponding value of the actual response be denoted by vk(t). The
input signal ik(t) and desired response dk(t) for unit k constitute a
particular example presented to the network at time t. It is assumed
that this example and all other examples presented to the network are
generated by an environment. It is common to define an error signal
as the difference between the desired response dk(t) and the actual
response vk(t) by ek(t) = dk(t)− vk(t).

The error-correction learning rule is the adjustment ∆wkj(t)
made to the weight wkj at time n and is given by

∆wkj(t) = ηek(t)vj(t),

where η is a positive constant that determines the rate of learning.
Finally, the formula wkj(t + 1) = wkj(t) + ∆wkj(t) is used

to compute the updated value wkj(t + 1) of the weight wkj . I use
formulae defining vk and pk as in Section 3.

Example 4.1 The neural network from Example 3.1 can be trans-
formed into an error-correction learning neural network as follows.
I introduce the desired response value dk into the unit k, and the
error signal ek computed using dk must be sent to the connection
between j and k to adjust wkj .

v′

''NNNNNNN pj wkj + ∆wkj

��

ek

v′′ // ONMLHIJKΘj // _^]\XYZ[Θk, dk
//ek, vk

ss

v′′′

77pppppp
j wkj k

This learning rule has been extensively used for “recognition”
tasks, such as image and speech recognition.

5 The data type of parameters of the neural
network

In order to perform the algorithm of unification in neural networks
and not to depend on truth values of formulae, I need to allow the
syntax of first-order formulae directly into the neural network.

Initially, Gödel numbers were used as parameters of the novel neu-
ral networks, [19]. It was inspired by the idea that some sort of nu-
merical representation is crucial because Neural networks are numer-
ical machines, and can process only numbers. However, from compu-
tational point of view the numerical encoding of the first-order syntax
plays no crucial role in the development of the neural networks, and
so I omit enumeration here. Instead, I give a more subtle analysis of
the new functions that I embed into neural networks.

The significant feature of the Gödel enumeration in [19] was that
the notions of the disagreement set, substitution, and application
of the computed substitutions were formally expressed as functions
over first-order atoms viewed as lists. These functions were embed-
ded into the neural network. The appearance of new functions in the
neural network architecture was natural because the neural networks
used the new data type - Gödel numbers of atoms.

The algorithm of Unification from Section 2 can be reformulated
functionally. Thus, we can define a function	 computing a disagree-
ment set of two given atoms, or a function � applying substitutions,
and some other functions, and then compose them into a more com-
plex function that is able to unify terms. There exist several func-
tional formalisations of the algorithm of unification in different func-
tional languages, [6, 10, 29]. It can be quite hard to formalise this
algorithm, as [6, 10, 29] indicate. In this paper, we will use only two
simple auxiliary functions � and 	, and will not go into further de-
tails.

In the rest of the section, we give an example of how the two func-
tions � and 	 can be formalised using the language of Coq. The
reader not familiar with functional languages can pass on to the next
Section, simply bearing in mind that	 will denote the function com-
puting a disagreement set, and � is a function that applies substitu-
tions. The complete Coq file containing more details and examples
can be found in [30].
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When formalised functionally, the definitions of the disagreement
set, substitution, and application of the computed substitutions de-
fined over first-order terms and atoms bear no serious computational
difference from formalisations of arithmetic functions +, −, ∗ de-
fined over integers. In fact, all of the above-mentioned operations,
both logical and arithmetic, are defined recursively by computing a
fixpoint.

Example 5.1 This is how conventional + over natural numbers is
defined in Coq:

Fixpoint plus (n m: nat){struct n}: nat :=
match n with
O => m | S p => S (plus p m) end.

We will see in this section that logical operations can be defined
analogously, by fixpoint. I will define functions that find a disagree-
ment set, a substitution, and apply the computed substitutions using
the Coq code, the same functions expressed in terms of Gödel num-
bers can be found in [19, 18].

We need to specify the inductive data type of first-order terms and
atoms. We will define recursive functions over this data type:

Inductive term : Set :=
App (t1 t2: term) | Const (c: cindex)

| Var (v: vindex).

Example 5.2 For example, Q( x , y ) will be denoted by (App
(App (Const 0) x) y).

I start with the function applying substitutions:

Fixpoint subst (v: vindex) (t1 t2: term)
{struct t2} : term := match t2 with

| App t3 t4 =>
App (subst v t1 t3) (subst v t1 t4)

| Const _ => t2
| Var v1 => if v_eq v v1 then t1 else t2
end.

To define the function computing the disagreement set, one needs
to inductively define the type of possible outputs of the function.
Unification algorithm of Section 2 could output either “failure”, or
a computed mgu, or an “empty” substitution ε:

Inductive dresult: Set :=
Dempty | Dfail | Dsubst (v: vindex) (t: term).

The function computing the disagreement set reformulated in
Gödel numbers was called 	 in [19].
Operation 	, written (t1 	 t2), or delta (t1 t2):

Fixpoint delta (t1 t2: term)
{struct t1} : dresult :=

match t1, t2 with
| Var v1, Var v2 =>

if v_eq v1 v2 then Dempty else Dsubst v1 t2
| Var v1, _ =>

if v_is_in v1 (free_vars t2) then
Dfail else Dsubst v1 t2

| _, Var v2 =>
if v_is_in v2 (free_vars t1) then

Dfail else Dsubst v2 t1

| Const c1, Const c2 =>
if c_eq c1 c2 then Dempty else Dfail

| App t11 t12, App t21 t22 =>
match delta t11 t21 with Dempty =>

delta t12 t22 | r => r end
| _, _ => Dfail

end.

The function above is built using another function, free vars,
that performs the occur check. The definition of this function can be
found in [30]; it is a simple recursive function defined by fixpoint.

The function that applies computed substitutions was formulated
in Gödel numbers and denoted � in [19]. We give its Coq code here:
Operation �, written (t� d) or apply delta t d:

Definition apply_delta t d :=
match d with Dsubst v t1 =>

subst v t1 t | _ => t end.

The functions 	,� will be taken as new parameters of a neural
network.

6 Unification in Neural Networks
Neural networks constructed in this section perform unification by
error-correction.

The next theorem and its proof present this novel construction. The
construction is effectively based upon the error-correction learning
algorithm defined in Section 4 and makes use of the operations �
and 	 defined in Section 5. I will also use ⊕ - the conventional list
concatenation that, given lists x and y, forms the list x ⊕ y. The
standard Coq formalisation of this function can be found in [5].

Remark 1. The next Theorem requires the last short remark. The
item 3 in the Unification algorithm of Section 2 requires compo-
sition of computed substitutions at each iteration of the algorithm.
That is, given a set S of atoms, the unification algorithm will com-
pute S(σ0σ1 . . . σn), which means that the composition of substi-
tutions σ0σ1 . . . σn is applied to S. However, one can show that
S(σ0σ1 . . . σn) = (...((Sσ0)σ1) . . . σn). That is, one can alterna-
tively concatenate substitutions and apply them one by one to atoms
in S. We will use this fact when constructing the neural networks.
The two functions - concatenation ⊕ and application � of substitu-
tions will be used to model S(σ0σ1 . . . σn).

Theorem 1 Let k be a neuron with the desired response value dk =
gB , where gB is (the encoding of) a first-order atom B, and let vj =
1 be the signal sent to k with weight wkj = gA, where gA is (the
encoding of) a first-order atom A. Let h be a unit connected with k.
Then there exists an error signal function ek and an error-correction
learning rule ∆wkj such that the unification algorithm for A and B
is performed by error-correction learning at unit k, and the unit h
outputs (the encoding of) an mgu of A and B if an mgu exists, and it
outputs 0 if no mgu of A and B exists.

Construction:
We construct the two neuron network as follows. The unit k is the
input unit, the signal from the unit k goes to the unit h, and the unit
h outputs the signal.

Parameters:
Set thresholds Θk = Θh = 0, and the initial weight whk(0) = 0
of the connection between k and h. The input signal ik(t) =
vj(t)wkj(t) = wkj(t). The initial input ik(0) = wkj(0) = gA.
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Because vj(t) = 1 for all t, the standard formula that computes po-
tential pk(t) = vj(t)wkj(t) − Θk transforms into pk(t) = wkj(t).
We put vk(t) = pk(t).

The error signal is defined as follows: ek(t) = dk(t)	vk(t). The
initial desired response dk(0) = gB .

The error-correction learning rule is as defined in Section 4:
∆wkj(t) = vj(t)ek(t). In our case vj(t) = 1, at every time t, and
so ∆wkj(t) = ek(t). The ∆wkj(t) is used to compute

wkj(t+1) = wkj(t)�∆wkj(t), and dk(t+1) = dk(t)�∆wkj(t).

Connection between k and h is “trained” as follows:

whk(t+1) =

8<:
whk(t)⊕∆wkj(t), if ∆wkj(t) = Dsubst v t
whk(t)⊕ 0, if ∆wkj(t) = Dempty
0, if ∆wkj(t) = Dfail.

Reading the resulting mgu.
Compute ph(t+∆t) = whk(t+∆t). Put vh(t+∆t) = ph(t+∆t).

If the signal vh(t + ∆t) 6= 0 and the first and the last symbol
constituting the list vh(t + ∆t) is 0, stop. The signal vh(t + ∆t) is
the mgu of A and B.
If vh(t + ∆t) = 0, then stop. Unification failed.

Sketch of a proof: Item 1 of Unification algorithm (Section 2).
The network works in discrete time, and the sequence of time steps,
starting with 0, corresponds to the parameter k in the Unification
algorithm, that changes from 0 to 1, from 1 to 2, etc. The initial empty
substitution σ0 = ε corresponds to the initial weight whk(0) = 0.

Item 2 of Unification algorithm. The application Sσ0 . . . σk of
substitution σ0 . . . σk to S is performed by the function � that, by
Remark 1, applies σk to (. . . (Sσ0) . . . σk−1). The check whether
the disagreement set Dk for Sσ1 . . . σk is empty is done by 	. If
it is empty, dk(t) 	 vk(t) = Dempty. If this happens at time t,
ek(t) = ∆wkj(t) = Dempty, and vh(t + 1) = whk(t + 1) =
whk(t) ⊕ ∆wkj(t) = 0 ⊕ ek(0) ⊕ . . . ⊕ ek(t − 1) ⊕ ek(t) =
0 ⊕ ek(0) ⊕ . . . ⊕ ek(t − 1) ⊕ 0 is sent as an output from the unit
h. This will be read as “Stop, the mgu is found”. In case Dk for
Sσ1 . . . σk is not empty, the function dk(t)	vk(t) computes the dis-
agreement set for gB(σ1 . . . σk) = dk(t) and gA(σ1 . . . σk) = vk(t)
in Sσ1 . . . σk; ∆wkj(t) is computed, and the new iteration starts.

Item 3 of Unification algorithm. The occur check is hidden inside
the function 	 used to define the error signal ek, thanks to the aux-
iliary function free vars used when defining 	. The step “put
σk+1 = σk{v/t}” is achieved by using concatenation of substitu-
tions by function ⊕: whk(t + 1) = whk(t)⊕∆wkj(t). By Remark
1, we concatenate the substitutions σ0 . . . σkσk+1, and apply them to
atoms in S stepwise, that is, at each iteration of the network we use�
to apply the new computed substitution σk+1 given by ∆wkj(t + 1)
to the two atoms in Sσ1 . . . σk given by wkj(t) and dk(t).

The step “increment k and go to 2” is achieved by starting a
new iteration. The condition “otherwise, stop; S is not unifiable” is
achieved as follows. When the substitution is not possible, or the “oc-
cur check” is not passed, ∆wkj(t) = dk(t)	 vk(t) = Dfail, and
this sets whk(t + 1) = 0. But then, ph(t + 1) = whk(t + 1) = 0.
But then, the output value vh(t+1) = ph(t+1) is set to 0. And this
will be read as “substitution failed”.

Note that in case when A = B and hence the mgu of A and B is
ε, the neural networks will give output vh(t + 2) = 0⊕ 0.

Unlike the Unification algorithm of Section 2, the neural network
outputs the concatenation of the substitutions computed at each iter-
ation, and not their composition. However, given an ordered list of
computed substitutions, composing them is trivial, and can be done

using the function � instead of ⊕ in the networks above. The func-
tion ⊕ bears an advantage that one can easily check whether the out-
put list of substitutions ends with 0, and thus it is easy to decide
whether Unification algorithm has come to an answer. In general,
there is no serious obstacles for using� instead of⊕ in the construc-
tion above, and thus to output composition of substitutions instead of
their concatenation.

The next example illustrates how the construction of Theorem 1
works.

Example 6.1 Let S = (Q1(f(x1, x2)), Q1(f(a1, a2))) be a set of
first-order atoms. Then θ = {x1/a1; x2/a2} is the mgu.

Next I show how this can be computed by neural networks.
Let g1 and g2 denote the chosen encoding for Q1(f(x1, x2)) and
Q1(f(a1, a2)).

The neural network I build will consist of two units, k and h. Exter-
nal signal vj(t0) = 1 is sent to the unit k. I use the numbers g1 and
g2 as parameters of the neural network, as follows: wkj(t0) = g2;
and hence ik(t0) = vjwkj = g2. The desired response dk(t0) is set
to g1. See the next diagram.

vj = 1

g2

��_^]\XYZ[dk(t0) = g1

whk(t0)=0

FFFFFF

##FF
FF

FF
FF

?>=<89:;h

��
vh(t0) = 0

At time t0, this neural network computes ek(t0) = dk(t0)	vk(t0)
- the disagreement set {x, a}:

1

g2

��_^]\XYZ[dk(t0) = g1

PPPP
P

ek(t0)

whk(t0)=0

CC
CC

C

!!CCC
CC

?>=<89:;h

��
vh(t0) = 0

The error signal ek(t0) will then be used to change the weight
of the outer connection wkj to k and some other parameters; and
∆w(t0) is computed for this purpose as follows: ∆w(t0) = ek(t0).
And this is shown on the next diagram.
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1

g2

��

∆w(t0)

_^]\XYZ[dk(t0) = g1

PPPP
P

ek(t0)

FF

whk(t0)=0

CC
CC

C

!!CCC
CC

?>=<89:;h

��
vh(t0) = 0

At time t1, the input weight wkj is amended using ek(t0), and
the desired response value dk(t1) is “trained”, too: wkj(t1) =
wkj(t0) � ∆wkj(t0) and dk(t1) = dk(t0) � ∆wkj(t0). At this
stage the computed substitution ek(t0) = ∆wkj(t0) is applied to
the numbers g1 and g2 of the atoms Q1(f(x1, x2)), Q1(f(a1, a2))
that we are unifying.

The weight between k and h is amended at this stage: whk(t1) =
whk(t0)⊕∆wkj(t0) = 0⊕ ek(t0).

As a result, at time t1 all the parameters are updated as follows:
input signal vj(t1)wkj(t1) = g2 is the encoding of Q1(f(a1, a2));
the desired response dk(t1) = g3 is Q1(f(a1, x2)). And this is
shown on the next diagram:

1

g2

��_^]\XYZ[dk(t1) = g3

whk(t1)=0⊕ek(t0)

FFFFFF

""FF
FF

FF
FF

?>=<89:;h

��
0⊕ ek(t0)

Note that on the diagram above, the unit h emits its first non-zero
output signal, that is, the number of substitution ek(t0).

Because the parameters wkj(t1) = g2 and dk(t1) = g3 are not
equal yet and the list vh does not end with 0, the same iteration as
above starts again. And at times t1 − t2, the number ek(t1) of a new
substitution {x2/a2} is computed and applied, as follows:
ek(t1) = g2 	 g3; the input signal vj(t2)wkj(t2) = wkj(t1) �
ek(t1) = g2 is the encoding of Q1(f(a1, a2));
dk(t2) = dk(t1)� ek(t1) = g2 is Q1(f(a1, a2)):

1

g2

��_^]\XYZ[dk(t2) = g2

whk(t2)=0⊕ek(t0)⊕ek(t1)
JJJ

JJJ
JJ

%%JJJJJJJJJ

?>=<89:;h

��
0⊕ ek(t0)⊕ ek(t1)

At time t2, new iteration will be initialised. But, because dk(t2) =
wkj(t2) = g2, the error signal ek(t2) = Dempty and the error-
correction learning rule will compute ∆wkj(t2) = Dempty. And
then, whk(t3) = 0⊕ ek(t0)⊕ ek(t1)⊕ 0.

Note that the neuron h finally emits the signal that contains both
substitutions computed by the network. The fact that the last symbol
of the list 0⊕ ek(t0)⊕ ek(t1)⊕ 0 is 0, tells the outer reader that the
unification algorithm finished its computations.

7 CONCLUSIONS
The main conclusions to be made from the construction of Theorem
1 are as follows:

• First-order atoms are embedded directly into a neural network.
That is, I allow not only binary threshold units (or binary truth
values 0 and 1) as in traditional neuro-symbolic networks [16, 17,
1], but also units that can receive and send a code of first-order
formulae.

• Numerical encoding of first-order atoms by means of neural net-
work signals and parameters forced us to introduce new functions,
	 and � that work over these encodings.

• Resulting neural network is finite and gives deterministic results.
• The error-correction learning recognised in Neurocomputing is

used to perform the algorithm of unification.
• Unification algorithm is performed as an adaptive process, which

corrects one piece of data relatively to the other piece of data.

Discussion
The main result of this paper can raise the following questions.
Does Theorem 1 really define a connectionist neural network?
The graph defined in Theorem 1 complies with the general defini-
tion of a neural network of Section 3. Indeed, it is a directed graph,
with usual parameters such as thresholds, weights, with potentials
and values computed using the same formulae as in Section 3. The
main new feature of these novel neural networks is the new data type
of inputs and outputs, that is the type of first-order terms.

Does the network really learn?
The network follows the same scheme of error-correction learning as
conventional error-correction learning neural networks, [12]. That is,
we introduce the desired response value dk in the neuron k, which
is repeatedly compared with the output value vk of the neuron k.
Through the series of computations, the network amends the weight
wkj in such a way that the difference between dk and vk diminishes.
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This agrees with the conventional error-correction learning rule that
“trains” the weight of the given connection, and minimises the dif-
ference between the desired response and the output value. The main
novelty is that the error signal is defined using	, - the function com-
puting the difference between terms, as opposed to using conven-
tional “−” in Section 4. The error-correction learning rule is defined
using �, - the function applying substitutions, as opposed to using
conventional “+” in Section 4.

Can we use these neural networks for massively parallel compu-
tations?
There is no obstacles for composing the networks of Theorem 1. One
can unify arbitrary many sets S1, S2, Sn, using composition of n net-
works from Theorem 1 working in parallel.

What is the significance of these networks?
As was shown in [18, 19], the networks of Theorem 1 can be con-
veniently used to formalise the algorithm of SLD-resolution for
first-order logic programs. This construction can be further devel-
oped and refined in order to obtain the first neuro-symbolic theorem
prover. The main advantages of the networks simulating SLD res-
olution [18, 19] as opposed to those simulating semantic operators
[17, 8, 15, 7, 1] are their finiteness, possibility to extend to higher-
order terms and the use of unification and variable substitutions, as
opposed to working with ground instances of atoms and their truth
values in case of semantic operators. This opens new horizons for
implementing a goal-oriented proof search in neural networks.

Further work
The construction we have given here can be extended to higher-order
terms and atoms. This should be relatively easy, because we do not
depend on ground instances anymore.

Another direction for research would be to embed the neurons per-
forming unification into the existing neuro-symbolic networks, such
as those described in [7, 9].

The networks we present here can be useful for further develop-
ment of neuro-symbolic networks formalising inductive logic and in-
ductive reasoning.

Finally, we envisage to complete in the near future the full Coq
formalisation of Theorem 1.
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I would like to thank Laurent Théry for Coq formalisations of func-
tions 	, � ([30]), and for stimulating discussions of the unification
algorithm in Coq.

I thank the anonymous referees for their useful comments and sug-
gestions.

REFERENCES
[1] S. Bader and P. Hitzler, ‘Dimensions of neural symbolic integration -

a structural survey’, in We will show them: Essays in honour of Dov
Gabbay, ed., S. Artemov, volume 1, 167–194, King’s College, London,
(2005).

[2] S. Bader, P. Hitzler, S. Hölldobler, and A. Witzel, ‘A fully connectionist
model generator for covered first-order logic programs’, in Proceedings
of the 20th International Conference On Artificial Intelligence IJCAI-
07, Hyderabad, India, (2007).

[3] S. Bader, P. Hitzler, and A. Witzel, ‘Integrating first-order logic pro-
grams and connectionist systems — a constructive approach’, in Pro-
ceedings of the IJCAI-05 Workshop on Neural-Symbolic Learning and
Reasoning, NeSy’05, eds., A. S. d’Avila Garcez, J. Elman, and P. Hit-
zler, Edinburgh, UK, (2005).

[4] J.A. Barnden, ‘On short term information processing in connectionist
theories’, Cognition and Brain Theory, 7, 25–59, (1984).
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