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Abstract. Specification and verification in continuous problem domains
are key topics for the practical application of formal methods and mech-
anized reasoning. I discuss one approach to linear continuous control
systems and consider the challenges and opportunities raised for mech-
anized reasoning. These include practical implementation and integra-
tion issues, algorithms in computational real algebraic geometry and
hard open questions such as the Schanuel conjecture. I conclude with
an overview of some recent new results on decidability and undecidabil-
ity for vector spaces and related theories.

1 Introduction

For some years, I have been involved with tools used for formally specifying and
verifying digital subsystems of avionics control systems [2]. The models used
in this work typically have discrete time and continuous data. These discrete
models emerge only at the end of a chain of refinements starting from a purely
continuous top-level model of the overall system. To apply formal verification
techniques earlier in the chain could offer significant benefits in the shape of
increased dependability, early detection of defects, and reduction in validation
costs. Practical techniques for mechanized reasoning about continuous problem
will be a key factor in obtaining these benefits.

To understand the challenges that formal verification of continuous systems
offers for mechanized reasoning, it is helpful to do some methodological thinking.
In the first part of the talk, I give an overview of an approach to linear continuous
systems that builds on the well-known ideas of Hoare logic that have proved so
fruitful in program verification. It turns out that linearity makes this approach
very tractable given adequate support for reasoning about the mathematical
problem domains involved, namely vector spaces, typically with some additional
structure such as an inner product or a norm.

However, some significant problems arise from this. While the first order
theory of the real field is decidable, in practice, engineers will want to work with
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the kind of rich vocabulary supported by typical computer algebra systems;
so even to deal with the field of scalars in our vector spaces, we may need
to go well beyond the usual first order theory of the real numbers. Moreover,
even if we have some solution to this problem or have an application in which a
simple language for the scalars is adequate, we need methods for reasoning about
vector spaces. In the second part of the talk, I will describe some new results
on decidability and undecidability for various theories of inner product spaces
and normed vector spaces (including Hilbert spaces and Banach spaces). It turns
out that the very uniform geometric and algebraic properties of inner product
spaces lead to decidable theories, while, with only trivial exceptions, theories
of normed vector spaces are undecidable. Nonetheless, the universal fragment
admits a decision procedure. I believe there is plenty of scope for interesting and
useful further research in this area.

2 Reasoning about linear systems

Let us consider an approach to reasoning about linear systems proposed in [1].
By reusing some well-known ideas from software specification and verification,
this approach is designed to be modular and scalable. It deals with a type of
model supported by widely used tools such as Simulink. These tools allow a
system to be expressed as a signal flow graph formed by wiring together primitive
components.

As an example, Figure 1 represents a mechanical system in which a force f
acts on a cart of mass m attached to a wall by a spring with spring constant, k.
It is a graphical representation of the following differential equation:

mẍ(t) + kx(t)− f(t) = 0.
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Fig. 1. A Linear Signal Flow Graph

The arrows in the diagram suggest a distinction between inputs and outputs
that is missing from the differential equation. They let us view figure 1 as speci-
fying the function mapping the force function f to the position function x. With
this intensional viewpoint, the diagram might serve, for example. as a design for
an analogue computer that simulates the mechanical system.
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The lists of real-valued functions of time that appear as the lists of inputs
and outputs to the primitive components in our diagram form vector spaces
over the field R of real numbers. Moreover, the primitive components of the
diagram represent linear transformations on those vector spaces (integration,
scalar multiplication and addition). Such diagrams are called linear signal flow
graphs and are very common in engineering practice. From now on we restrict
our attention to linear signal flow graphs.

In the example of figure 1 the diagram happens to be a function, but, in
general, a differential equation may not have a unique solution for a given initial
condition. So in general a diagram denotes an input/output relation that is not
necessarily total or single-valued. Rather than trying to ban partial or multi-
valued relations, we will deal with them by borrowing some ideas from the world
of relational specification of programs. This turns out to work particularly nicely
given the algebraic structure we have to hand.

We write r : X ↔ Y to denote that r is a relation between the sets X and
Y , i.e., a subset of X × Y , and use x r y as a shorthand for (x, y) ∈ r. If r and
s are relations, (r; s) denotes the relational composition r followed by s, so that
x (r; s) y iff there is a z with x r z and z s y. If r : X ↔ Y , r−1 : Y ↔ X is the
relational inverse of r, defined by taking x r−1 y iff y r x. We write Ar for the
image of a set A under the relation r. So if r : X ↔ Y , then dom(r) = Y r−1 is
the domain of r, ran(r) = Xr is its range and r acts as a relation between any
sets A and B such that dom(r) ⊆ A and ran(r) ⊆ B.

If r : X ↔ Y , A ⊆ X and B ⊆ Y , a Hoare triple, {A} r {B}, is the logical
judgement which holds whenever A ⊆ dom(r) and Ar ⊆ B. A and B are re-
ferred to as the pre-condition and post-condition respectively. Hoare triples may
be characterised in terms of weakest pre-conditions: the weakest pre-condition,
wp(r, B), of B through r is the set of all points in the domain of r whose im-
age under r is contained entirely in B. As is easily verified, the Hoare triple
{A} r {B} holds, iff A ⊆ wp(r, B).

The weakest pre-condition wp(r, B) contrasts with the pre-image Br−1 of B
under r comprising all points whose image under r meets B. In general wp(r, B)
is a proper subset of Br−1. But if r is a function (not necessarily total), one has
that wp(r, B) = Br−1. It turns out that something quite similar holds for the
input/output relations defined by linear signal flow graphs.

In fact, the input/output relation between vector spaces V and W deter-
mined by a a linear signal flow graph is what is called an additive relation [8],
i.e., a non-empty relation r : V ↔ W that forms a subspace of V × W . Ad-
ditive relations generalise linear transformations. Like a linear transformation,
an additive relation has a kernel, ker(r) = {v : V | v r 0}, which one can view
as a uniform measure of the information lost by r. Dually, r has an indetermi-
nacy, ind(r) = {v : V | 0 r v}, which one can view as a uniform measure of
the non-determinism of r: if v r w, then the set of elements related to v by r
is w + ind(r). It turns out that to form the weakest pre-condition wp(r, B), one
simply discards from B any element w for which w + ind(r) is not contained
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in B, and then wp(r, B) is the the pre-image through r of what remains. I.e.,
putting B0 = {b : B | b + ind(r) ⊆ B} one has that wp(r, B) = B0r

−1.
In figure 2 we show a set of constructors for forming new signal flow graphs

from old. We call a signal flow graph a structured block diagram if it is formed
from primitive components using these constructors. In [1], we prove that struc-
tured block diagrams are complete in the sense that subject to reasonable as-
sumptions on the set of primitive components the input/output relation of an
arbitrary signal flow graph can be expressed as the input/output relation of a
structured block diagram (cf., the Turing completeness of while programs).
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Fig. 2. Structured Block Diagram Constructors

Using the characterisation of the weakest pre-condition given above, we can
then derive a Hoare logic for structured block diagrams. For example, we have
the linear combination rule

{A} r {B} {A} s {B1}
{A}βr + γs {βB + γB1}

Assuming we have a tractable characterisation of the primitive blocks, the
Hoare logic reduces the problem of verifying any structured block diagram
against given pre- and post-conditions reduces to a problem in the assertion
language we are using to express the pre- and post-conditions.

For example, assume that we are working with finite-dimensional vector
spaces Rm, m ∈ N and that our primitive blocks are given by matrices with con-
stant rational coefficients. Let us make assertions about vectors (v1, . . . , vm) ∈
Rm using first order formulae in the language of the real field with free variables
drawn from v1, . . . vm. Then our approach automatically reduces any verification
problem to a problem in the language of the real field. Thus, in contrast with
the situation for programming languages, a large and natural class of signal flow
graphs has a decidable verification problem, since, by a classic result of Tarski
[11], the first order theory of the reals is decidable.

However, there are practical concerns: the time complexity of the decision
procedure for the first order theory of the reals is provably doubly exponential
in the number of bound variables in the formula (this theoretical bound being
achieved by Collins’ method of cylindrical algebraic decomposition [5]). The best
known algorithms have the advantage of being at worst doubly exponential in
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the number of quantifier alternations [3], and that would be advantageous in the
present context, but these have not yet been implemented.

As suggested in [1], if one restricts to so-called linear formulae, i.e., ones in
which multiplication is restricted to have at least one operand constant, the more
efficient method of Fourier-Motzkin-Hodes applies [7]. However, the restriction
to linear formulae and rational coefficients would generally be too restrictive for
practical use, since even simple properties such as |v1| <

√
2 would not be ex-

pressible. Now Fourier-Motzkin elimination is effective over any subfield of the
reals in which one can effectively compute. So one might consider linear formu-
lae over arbitrary real algebraic numbers, but calculation with such numbers is
possible but complex to implement [10]. Of course, engineers are also likely to
want calculation with transcendental functions as well. Towards this, we have
Macintyre and Wilkie’s result that Schanuel’s conjecture implies the decidability
of the real exponential field [9]. So progress on a natural engineering problem
may be contingent on a hard unsolved problem in pure mathematics!

3 Decidability for theories of vector spaces

A few years ago, on being asked by John Harrison about decidability for vector
spaces, Robert M. Solovay promptly invented quantifier elimination procedures
for a range of theories. Some special cases of these have so far been implemented
and found very useful in practice [6]. Solovay also demonstrated that the theory
of Banach spaces is undecidable. Since then Solovay, Harrison and I have sim-
plified and extended these results and a full exposition is in preparation. Here I
sketch some of the main results and methods.

We work in a two-sorted first order language with sorts R for scalars and
V for vectors. The intended interpretation of the sort R is the set R of real
numbers. We have function symbols + , × : R×R → R and − : R → R
which in the intended interpretations are the usual field operations on R. We
have function symbols + : V × V → V, − : V → V and × : R × V → V
which in the intended interpretations make the set denoted by V into a real
vector space. We have scalar constants m/n : R for each rational number m/n
and we have the vector constant 0 : V to be interpreted as the zero vector. The
first order theory of real vector spaces is the set of sentences in our language
that are valid in all the intended interpretations.

The theory of normed spaces is obtained by adding to the language a function
symbol || || : V → R whose intended interpretation is a norm on the vector space.
A norm defines a metric on the set of vectors via d(v,w) = ||v − w||. Recall
that a normed space is called a Banach space if it is complete with respect to
this metric (i.e., if every Cauchy sequence converges).

The theory of inner product spaces is obtained by adding a function symbol
〈 , 〉 : V×V → R whose intended interpretation is an inner product. Recall that
an inner product space that is also a Banach space under the norm defined by
||v|| =

√
〈v,v〉 is called a Hilbert space.
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We consider the theories of vector spaces, normed spaces, Banach spaces etc.
with various restrictions on the dimension, e.g., the theory of all finite dimen-
sional inner product spaces. We write IP, resp., IPF, resp., IP∞ for the theories
of real inner product spaces where the dimension is unconstrained, resp., con-
strained to be finite, resp., constrained to be infinite, and HS, HSF and HS∞ for
the theories of Hilbert spaces with the corresponding constraints on the dimen-
sion. Completeness is guaranteed if the dimension is finite, so IPF = HSF.

A sentence in any of these languages that contains no vector-valued subex-
pressions is just a sentence in the first order language of the real field and its
truth is independent of the interpretation of the vector sort. If we can eliminate
all the vector quantifiers from a formula, then occurrences of the vector con-
stant 0 can readily be eliminated to give an equivalent formula in the first order
language of the real field.

If B is a basis for a vector space V , then we can define an inner product on
V by requiring 〈b,b〉 = 1 for b ∈ B and 〈b, c〉 = 0 for b, c ∈ B with b 6= c
and extending to V by bilinearity. Thus the theory of inner product spaces is a
conservative extension of the theory of vector spaces and a decision procedure
for the theory of inner product spaces is also a decision procedure for the theory
of vector spaces.

The key to decidability for inner product spaces is the fact that it takes at
most k degrees of freedom to decide a sentence containing k vector variables. I.e.,
a sentence P containing k vector variables is valid in all inner product spaces
iff it is valid in Rn for 0 ≤ n ≤ k. This is proved by considering a process that
replaces vector quantifiers by blocks of scalar quantifiers. The process transforms
a formula containing k vector variables into one which is equivalent in spaces of
dimension at least k and in which vector variables only appear within arithmetic
constraints on inner products (v,w), with v, w free. Applying the process to a
sentence P with k vector variables results in a sentence in the language of a real
field which is equivalent in dimensions k or higher. From P one can effectively
construct a sentence P |n containing no vector-valued subexpressions which is
valid iff P is valid in Rn. Writing Dn (resp. D≤n) for a sentence asserting that
the dimension of the space is n (resp. at most n), one finds that P is equivalent
to:

(D0 ∧ P |0) ∨ (D1 ∧ P |1) ∨ . . . ∨ (Dk−1 ∧ P |k−1) ∨ (¬D≤(k−1) ∧ P |k)

Applying the quantifier elimination algorithm for the first order theory of the
reals to the subformulae P |n, this leads to the following result:

Theorem 1 The theories IP, IPF, IP∞, HS, HSF and HS∞ are all decidable.

When we consider decidability for normed spaces we find that even the theory
of 2-dimensional spaces is undecidable and actually admits a primitive recursive
reduction of second order arithmetic. The proof uses the following fact that
is well-known to descriptive set theorists and others, but seems not to have
appeared in the literature in quite the form we need.
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Theorem 2 Let K be a (many-sorted) first-order language including a sort R,
constants 0 : R and 1 : R and function symbols + , × : R × R → R
whose intended interpretations form the field of the real numbers. Let M be
some class of structures for K in which R and these symbols have their intended
interpretations and let T be the theory of M, i.e., the set of all sentences valid
in every member of M. If there is a formula N(x) of K with one free variable
x of sort R such that in some structure in the class M, N(x) defines the set of
natural numbers (i.e., {x : R | N(x)} = N), then there is a primitive recursive
reduction of second order arithmetic to T .

Here is a sketch of the proof: one can write down a sentence Nat which
asserts that the subset of the reals defined by N(x) satisfies the Peano axioms,
and then, in any structure for the language in which the reals have their intended
interpretation, Nat holds iff N(x) does indeed define the natural numbers. Now
if P is any sentence in the language of Peano arithmetic, we may view P as
a sentence in the first order language of the reals and then construct a new
sentence P ∗ by relativizing all quantifiers to N(x) (i.e., ∀x· Q is replaced by
∀x· N(x) ⇒ Q and ∃x· Q is replaced by ∃x· N(x) ∧ Q). But then the sentence
Nat ⇒ P ∗ is in T iff it P is valid in arithmetic. This gives a reduction of first
order arithmetic to T . A reduction of second order arithmetic is obtained in a
similar way using real numbers to represent sets of natural numbers, e.g., using
n-ary expansions.

So, for example, this gives a very simple proof that the first order theory
of metric spaces is undecidable: in the metric space Z whose elements are the
integers with the distance defined by d(p,q) = |p − q|, we can clearly define
the natural numbers by the formula N(x) := ∃p q· x = d(p,q). By the above
theorem, the theory of metric spaces must therefore admit a primitive recursive
reduction of second order arithmetic and hence is undecidable.

Write NS, resp., NSn, resp., NSF, resp., NS∞ for the theories of normed
spaces where the dimension is unconstrained, resp., constrained to be n, resp.,
constrained to be finite, resp., constrained to be infinite, and write BS, BSn

etc. for the theories of Banach spaces with the corresponding constraints on the
dimension. We have the following theorem which implies that with the exception
of NS1 = BS1 (which is the same as the the theory of the real field) all of these
theories are undecidable.

Theorem 3 There is a primitive recursive reduction of second order arithmetic
to each of the theories BS, BS∞, NS, NSn = BSn, NSF = BSF, and NS∞ (n ≥ 2).

The proof is based on a construction of a 2-dimensional normed space X in
which a certain first order formula defines the natural numbers as a subset of the
field of scalars. By theorem 2, this immediately gives the result for NS2 = BS2

and NSF = BSF. The other parts of the result follow by considering the cartesian
product of X and a Hilbert space of appropriate dimension. X is constructed
by taking the norm whose unit disc is the “infinigon” D shown in figure 3. D
is the convex hull of the set comprising the two vectors ±e1 together with the
unit vectors ±vi on the lines through the origin and the points (i, 1), i ∈ Z.
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Fig. 3. The unit disc in the space X

Observing that the points ±vi are the isolated extreme points of the unit
disc, while the only non-isolated extreme points are the points ±e1, one finds
that the language of normed spaces is sufficiently expressive for us to characterise
the set of points (i, 1) for i ∈ Z and then it is easy to give a formula N(x) which
defines the natural numbers in X.

We say a formula is additive if the left operand of all multiplications in
the formula are rational constants. With a little care one can arrange for the
formula N(x) above to be additive and then with a little more geometric effort,
one can give an additive formula M(x, y, z) that in X defines the graph of the
multiplication function × : R × R → R. A variant of theorem 2 can then be
used to show that the that even the purely additive fragments of the various
theories of normed spaces and Banach spaces are undecidable.

On the positive side for normed spaces, we have the following result on the
existence of norms:

Theorem 4 Let x1, . . . ,xn be vectors in a real vector space V and b1, . . . , bn be
real numbers. Then there exists a norm || || on V such that ||xi|| = bi for all
1 ≤ i ≤ n iff:

– For all 1 ≤ i ≤ n, bi ≥ 0.
– For all 1 ≤ i ≤ n, if bi = 0 then xi = 0
– For each 1 ≤ k ≤ n there are no real numbers c1, . . . , cn such that some

xk =
∑n

i=1 c1xi with
∑n

i=1 |ci|bi < bk.

Now a quantifier-free formula P in the language of normed spaces containing
k free vector variables has a model iff it has a model of dimension k (since in
any model the subspace W spanned by the interpretations of the free vector
variables is again a model of dimension n ≤ k and then W × Rk−n gives a
model of dimension k). From this observation and theorem 4, one can effectively
transform P into a formula in the first order language of the real field that is
satisfiable iff P is. This gives a decision procedure for purely universal formulae
in the language of normed spaces. For purely additive formulae, there is a more
efficient procedure which uses a parametrised linear programming algorithm to
reduce the problem to linear real arithmetic. An implementation of the latter
procedure in HOL Light has proved to be a useful tool.
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4 Concluding Remarks

The approach to specification and verification of linear systems presented in
section 2 is simple and natural. But even in the simple case of finite-dimensional
inner product spaces, there are difficult issues to be addressed for mechanized
proof support. The decision procedures of section 3 give a starting point, but our
undecidability results show that there is much to be done in identifying useful
tractable fragments of theories and good heuristics. There are many fascinating
challenges ahead for mechanized reasoning in continuous problem domains.
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