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Abstract.
predictive models from non-deterministic spatio-tempdeata. Our
technique learns a set of sub-models that model differgpically
independent, aspects of the data. By using temporal ragtiand
implicit feature selection, based on the use of 1st orddclegpres-
sions, we make the sub-models general, and robust to ianei@ari-
ations in the data. We use Allen’s intervals [1], plus a sébof novel
temporal state relations, which relate temporal interi@tbe current
time. These are added to the system as background knowledge i
form of functions. To combine the sub-models into a singlelei@
context chooser is used. This probabilistically picks thestappro-
priate set of sub-models to predict in a certain context, aiavs
the system to predict in non-deterministic situations. fitoelels are
learnt using an evolutionary technique called Genetic Rrmogning.
The method has been applied to learning the rules of snaprzmd
by observation; and predicting a person’s course througétaark
of CCTV cameras.

1 Introduction

Learning predictive models from spatial-temporal dataigieneral,
a hard problem. Events and activities can have variatiottssin spa-
tial, and temporal scope; include multiple (variable nurshs) ob-
jects; can overlap temporally with other events, and aétsj and
happen in a non-deterministic manner. A model for predicsipatio-
temporal events must support this complexity. Our novehnégue
learns a set of sub-models that model different, typicailyepen-
dent, aspects of data. The sub-models can, in addition &zbpjop-
erties, use temporal relations to describe the scene, gpiitinfea-
ture selection, based on the use of 1st order logic expmssto
make them robust to irrelevant variations in the data. Tolwomthe
sub-models into a single model a context chooser is used.pitks
the most appropriate set of sub-models to predict in a cedan-
text, and allows the system to predict in non-deterministications.
Using the combination of sub-models and the context choalser
reduces the complexity of the model search space, and atlvsvs
system to learn a global sub-model that matches most of tiasela
and then learn simple sub-models to cover the cases whegéothe
sub-model does not work.

This approach extends our previous work [2], by allowing algu
tative, as well as a markovian representation of time. Thdone by
replacing the step-wise markovian view with temporal iietas like
Allen’s intervals [1], and a set of four additional relat®to relate
the temporal state of objects to the current time. We use (BRmo-
gramming to learn the models, and present an improved fifness
tion. The system has been successfully tested on handtsfap,
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In this paper we describe a novel technique for learningand uno datasets, along with learning from video the streotd a

set of mock CCTV cameras.

There has been much previous work on learning from spatio-
temporal domains. Traditional methods usually require adigli-
mensionality vector, existing with canonical ordering /nstant
meaning, to represent the world. To construct this vectterofe-
quires knowledge of the domain, making these methods handeo
in a problem domain where the structure of the domain is faéeia
and not known a priori. One approach to modelling data ofalde
dimensionality is to take statistics of a variable size 8gtThis pro-
duces a fixed set description, however spatial relationstigrma-
tion is lost in this process. If this information is importamithin a
domain this leads to a poor model. Feature selection candzbtos
find the most relevant subset of the data, which then allowe fioore
general model to be built. However, the relevant subset rhapge
from one context to another.

Temporal modelling approaches such as Markov chains, Hid-
den Markov Models (HMMs) and Variable Length Markov Mod-
els (VLMMs) [7] use a description based on graphs to modeésta
transitions. These methods also usually need a fixed dimwaisi
ity vector with canonical ordering for each observationefiéghdoes
not have to be a fixed dimensionality for every observatioctae
as theoretically each observation vector can have a diffenember
of dimensions. Itis possible to optimise their structuraubing local
optimisation approaches based on information theory f3YLMMs
this optimisation acts as kind of temporal feature selectit as the
input variables stay in the same fixed order spatial featelecton
is not performed.

Bayesian networks are a generalisation of probabilistiaphr
based reasoning methods like HMMs and VLMMs. Again these net
works require a fixed input vector, but again their relatiostauc-
ture can be optimised by local search [12], genetic algoritf5], or
MCMC [6] usually based on information theoretic criteria.

An alternative to using graph based methods is to use (1st)ord
logical expressions. Feature selection is implicit in tbenfalism
of these expressions. Logical expressions also make nonassms
about the ordering of variables, so there is no need to hava/a h
them in a fixed ordering. Progol [14] and HR [4] are Inductivegic
Programming (ILP) methods. In general ILP takes data andrgées
a set of logical expressions describing the structure ofitita. Pro-
gol does this by iterative subsumption using a determmisgiarch
with the goal of data compression. HR does this by using dasic
search using a number of specialist operators. This is airtol Ge-
netic Programming which is described below. These appesashf-
fer from a number of disadvantages. Firstly, logical expi@ss are
deterministic, so it is hard for then to model non-detersticisitua-
tions. However, there has been much work on combining (strpr



logic and probability to solve this problem [16] and [9]. $adly
Progol’s search is depth bounded, which limits the size objams
it can work on, as explained in [15]. Thirdly Progol’s fithéaaction

An architecture to represent a model of spatio-temporal,@dong
with associated learning methods is described in our pusvigork
[2]. We use this architecture as shown in Figure 1. It is bnotewn

is only based on how well the model compresses the data, and ninto two parts: the sub-models, and the context chooser.stbe

how well the model predicts the data. This can cause incprogc
invalid models to be produced.

Genetic Programming (GP) [10] is a evolutionary methodlsim
to genetic algorithms, for creating a program that modeltask. In
a similar way to HR, it takes a dataset data, a set of terminals a
set of functions; and using a set of operators generatesaaytiiree
that models the data.

models each model a separate part of the underlying proesssg
ating the data. Each sub-model contains two sections: atssac-
tion, and an output section. The search section looks fortecpkar
pattern in the dataset. A query language, created by o@sehav-
ing some similarity to SQL and Prolog, is used to describeatttaal
search, and a binary tree is used to represent it. The ougjetiba
describes what is implied if the search returns true. Thikheia set

Qualitative representations can be used to describe spatiof entities and relations, and their properties the subehptedicts.

temporal data in an abstract manner. [1] describes a sevensem-
poral relations to represent temporal interactions betvwgects.

There has been previous work in learning of spatio-tempuoral-
els from video by [15] who produced a system that could leasid
card games. It had three parts: an attention mechanismpensgsed
low-level learning, and high-level protocol learning. Tagention
mechanism uses a generic blob tracker, that locates théquosf
the moving objects. From this a set of features includin¢gpwo po-
sition and texture are extracted. The data is clusteredjirtops. Us-
ing these clusters new input data is assigned its closesteclproto-
type. A symbolic data stream is then created by combiningttozy
the clustered data, with time information. The symboliean is
passed to Progol, which builds a model of the data. Once tldeimo
has been learnt it can be applied to new data. This allowsysters
to interact in the world.

[17] looked at learning event definitions from video. A ravdeo
of a scene is converted into a polygon representation. Bhikén
transformed into a force-dynamic model which shows how the o
jects in the scene are in contact with one another. Usingltitsand-
meets-and (AMA) logic formulae describing the events aaerieus-
ing a specific-to-general ILP approach. Work in the area afrimg
from spatial-temporal data, such as the previous two appeshave
inspired our work.

The reminder of this paper will take the following form. Thecs
ond section looks at previous work about the architecturettie
models. The subsequent section looks at an extension tevohisto
incorporate temporal relations into the sub-models. Thisequent
section describes how these models are learnt by Genetigdne
ming. The subsequent section presents an evaluation ofysters,
and the final section shows the conclusions of the work anduthe
ther work.

2 Architecture for Models of Spatio-Temporal
Data

\-

Context chooser —»

.

[

Data Sub-modelsOutput Overall outpui

Figure 1. This figure shows the architecture of our model. It has twaspar
a set of sub-models, and a context chooser to decide how theise
sub-models in different situations.

Figure 2 shows an example of a sub-model.

Search Outpu
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Figure 2. This shows a sub-model matching a traffic light with colouy c1
and a different light having a colour cO both at current tinie K the
expression evaluates true it will output a new light whick hacolour c2, at
the current time.

_>
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The context chooser is used to decide how to combine the sub-
models in different situations. It takes as its input a banleector de-
scribing which sub-models have evaluated true, and retLoogputs,
and using a probability distribution decides which oned feiim the
overall output. A contextS,, is defined as a set of sub-modél$
producing an output in a given context, for example = M;, M,
represents thad/;, and M- have search sections that have evalu-
ated true at the same time. For each context a probabilityilalis
tion over the possible combinations of model outputs fot tum-
text is defined, for exampl®,, (M1), P, (M2), Pn(M1, M>), where
Z]. P,(j) = 1. This distribution is formed from the frequency of
occurrence of each situation in the training data in thergz@ntext.
This can be implemented as a sparse hash table.

3 Incorporating Temporal Relationsinto
Sub-models

To evaluate the sub-models history data from the world isiireg.

The search section of the sub-model uses data pointerseienele
particular data items in the history. The search sectiorhefdub-
model is then evaluated with respect to this data. If theckesec-
tion evaluates true, then the output section is implied uinpoevious
work [2] each data pointer could only reference fixed quaedifime
points in the history, as shown in Figure 2. The use of thiditaize

markovian representation of time implies an exact ordeohghe

events. When multiple independent events are happeningtsime-
ously this representation will fail, and an alternative huet of repre-
senting temporal ordering is necessary. In order to quatgihporal
ordering in the data we use a combination of Allen’s intesya], and
four novel temporal state relations. Allen’s intervals dése tempo-
ral relations between objects. There are seven relationshvwdre:
meets, starts, finishes, during, before, overlaps, and égqualong

with describing temporal relations between objects in tiseohy, we
need to describe how the objects relate to the current timabject
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goes through a series of temporal states, based on how itasth
end time relates to current time, these are described FRjUrestly
the object is entering the world, its end time is unknown,itsustart
time is the same as the current time. Secondly the objedkerithe
world, again the end time is unknown, but its start time is ldrsn
the current time. Thirdly the object is leaving the world atdend
time is equal to the current time. Finally the object hasttedtworld,
where both its start, and end times are less than the cumeat t

Current Time
[

I
[ ]

Left
Current_time > end AND Current_time > stalLr:]

Entering
Current_time = start

Existing
Current_time > start

Leaving
Current_time = end AND Current_time > start

Figure 3. This shows the four temporal states, with respect to cutierd,
an object can be in: entering, existing, leaving, and lefie @otted lines
represent that we don’t know when the object will leave theldvo

Both the Allen’s intervals, and our additional temporaltstee-
lations, are represented in the system as functions of ttee that
appear in the search section of the sub-models. Theseoredatio
not appear in the data; only the temporal range of individimgécts

occurs in the data. As the data pointers can be used over tine en

history, it is quite likely that a sub-model will evaluate orany dif-
ferent parts of the history. To resolve this issue we justtbegesult
which includes the most recent data. The justification f&s hthe
sub-model will have already output this information at avjpes
time in other situations.

4 Learning the Models from Data

Previously in our previous work [2] it has been shown thatasvin-
tractable to find the set of optimal sub-models by exhausidarch,
for all but the simplest problems. The search space is comptea
stochastic search method was chosen as an alternative. &\@ais
netic Programming [10], which has already been succegsiiséd
for pattern recognition tasks [11].

Genetic Programming (GP) [10] evolves a population of progg
until a program with the desired behaviour is found. It is petyf
genetic algorithm, but the programs are stored as binapstrand
not as fixed length strings. Functions are used for the nadekter-
minals (for example constants, and variables) are usechtotdaf
nodes. In order for the population to evolve a fitness fumcio our
case a predictive accuracy score) must be defined. This sdbre

it, and replaces it with a randomly generated sub-tree. &®imtion
copies a program exactly as it is into the new generation. grbe
grams in the new generation are then scored based on how atall d
is predicted, and the process is repeated. The GP systerstoyll
when a certain fitness score is reached, or a certain numlgemeir-
ations has passed.

In our implementation of GP we assume that a program is a
model containing a context chooser, and a set of sub-motieisi-
tialise the population we generate a set of models just auntp
one randomly generated sub-model. The sub-model is prdduse
ing Koza’s ramped half and half method [10]. We apply a higharal
structure to our sub-models in a similar manner to [13], yatrd cut
down the search space, and to make finding a solution moreeeffic

A set of operators is then used to evolve the population. & bex
two kinds of operators. Firstly there are operators thatdrgptimise
sub-models which are used in the model, and secondly therepar
erators that optimise the sub-models themselves. A teakriglled
tournament selection [10] is used to pick a model from theupmp
tion. Tournament selection picksmodels at random from the popu-
lation, and returns the one with the lowest score, for oueexpents
we setn to be 5. The operators used to optimise sub-models which
are used in the model are shown below:

Reproduction A set number of models are picked via tournament
selection and copied directly into the new population.

Addingin a sub-model from another model Two models are
picked by tournament selection. A sub-model from the first
picked model is randomly selected, and added to the second
chosen model.

Replacing a sub-model Again two models are picked by tourna-
ment selection, and a sub-model from the first chosen model is
then replaced by a sub-model randomly selected from thenseco
chosen model.

Removing a sub-model A sub-model is picked by tournament se-
lection, and a randomly selected sub-model is removed.

The only operator used to optimise the sub-models thenséve
crossover. In crossover two models are picked using touendise-
lection. A sub-model from each model is then randomly sel&and
standard crossover [10] is performed on these sub-models.

To score the models a fixed length window is randomly moved
over the dataset. At each generation two random locatiengieked:
one for training, and one for testing. In the training phdse grob-
ability distribution used in the context chooser is caltedh In the
testing phase the fithess of a modet)(is evaluated over a win-
dowed section of the dataset); For each position in the window the
model is given a set of history dath)( calculated from the window,
and is queried to produce a prediction. This produces a spo®f
sible corresponding outputs)( and a set of possible corresponding
output likelihoods ¢l). The similarity (C') of each output with the ac-
tual output ), is computed using th&ind Best M atch function, as
shown in Equation 1. This function takes the set of actuguat,ind
the set of model output, and firstly pads out them out withbldeta

be used by the GP system to decide which programs in the turrerso that they are the same size. Then for each item in the amitmait
generation to use to produce the next generation, and whiek o set, a unique match in the model output set is found. For ebitteo

to throw away. To initialise the system, a set of randomlyegated
programs must be created. Each then receive a score usifimtes
function. Algorithms including crossover, mutation angneduction
use the programs from the current generation to create a eaerg
ation. Crossover takes two programs and randomly picks greeb
on each program, these two trees are swapped over, creatngiv
programs. Mutation takes one program, randomly picks asaéen

matches a comparison is done between the two objects. Theeebm
son looks at how similar each of the properties in the twoaijare.
Each of the comparisons are summed together to produceatbedr
shows how good that set of matches is. An exhaustive seathris
performed over all the possible combination of matches to fire
best (maximal) matching score. The result is then multipbg its
output likelihood. From this the best (maximal) output iarfd. This
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is then repeated over the rest of window, and theresults damd 5.3 Uno
then normalised to producé&, as shown in Equation 2. This fithess o
function is an improved version to the one described in oavipus ~ The handcrafted uno dataset has a similar sequence to tipe sna

work [2], as it can be applied to non-deterministic datasets dataset. Again the computer will initially see a blank scefigen
play will be heard. Next two cards, each one having one ofethre
C(o,r) = FindBestMatch(o,r) (1) possible coloured shapes on them, will be placed down eithtre
1 same time, or one by one. If the two card have the same coloured
S(m,w) = Tl * ZMG-Tn(Oln * C(on, i) (2)  shape on them the “same” is heard; or if they have shapes of the

same colour then “colour” is heard; or if they have the sansmsh

The system runs in two stages, and will stop running once-it ex on then “shape” is heard; or if the cards are different thestting”
ceeds a maximum number of generations. Firstly the systéni-is is heard. The cards are then removed either together, oryonad
tialised in the manner described above, and then for fivergéines  Three datasets were created: a non-noisy training setsg training
it works out the best set of sub-models to use in the modelsloTo set, and a non-noisy test set. Each one contained arouncuf@so
this the system uses reproduction (10%), removing (10%jingd  of uno. Again noisy data was prepared by adding 10% of noisy da
(40%), and replacement (40%). Next the system will optinti@se  to the non-noisy training data. The noise took the same fariha
models to find the best solution. It uses crossover (60%jpdeje- noisy snap data.
tion (10%), removing (10%), adding (10%), and replacem&a%4).

5 Evaluation

Our method was evaluated on three different datasets, wigch:
handcrafted uno data, handcrafted snap data, and data gopiep
walking through a network of mock CCTV cameras. More detail
about these datasets is presented in the following section.

5.1 CCTV Dataof aPath

A 10 minute video of people walking along a path containingrec}
tion was filmed. This was then used to mock up a network of CCTV  Figure 4. This figure firstly shows a frame of the video with a person
cameras. Figure 4 shows a frame from the video. Virtual nmotio  taking a decision at the junction point, and secondly it shauere the
detectors, representing CCTV cameras, were hand placacdttowe virtual detectors are on the video.

video has shown in Figure 4. Using frame differencing, andgho-
logical operations, the video was processed to determatation
of the motion. If the number of moved pixels in a region exezkd
a fixed threshold then the virtual detector outputted thationchad
occurred at that location. Hysteresis on the motion deirds im-
plemented as a 2 state, state machine (where the states tiva/mm
motion). The state machine requires a numbers of framesn@lbyr
10) of stability to change state. The data produced is thacepl in
a datafile with a motion event recorded per state change daing
no motion to motion. This was used to create a training datafih-
taining 84 state changes and a test file containing 46 statggels.

52 Snap
) o Figure 5. This shows one of the sub-model results for the snap dataset.
The snap dataset was handcrafted, but the format of it waikasim s predicting the equal state, by using the properties @fettvards. If card3

to the snap dataset used in the work of [15]. The snap sequgnce occurs before card2; and cardl has just entered the wordtthencolour of
the following: initially the computer will see a blank scerken it both card1, and card2 is the same then the sub-model evalnas and
will hear the word play, next two coloured cards will be seither Equal will be returned.

they will be both put down at the same time, or put down one by

one. If they are the same then the word “equals” will be heattal,

erwise “different” will be heard. Then the cards are remqwaghin

either one by one, or at the same time. We ask the computefffo ong  Results

learn the sections where a human is speaking, as it would be im

possible to accurately predict the next two cards becausgdhe  To test the system five runs were allocated to each possibibieo
essentially random. Again three datasets were preparezh-aoisy,  nation of dataset. For each run a different random numbet wes
and noisy training set, and a non-noisy test set. All thes#dtacon-  used to initialise the system. The tests were run on a 2GHhimac
tained around 50 rounds of snap. The noisy data was gendrgted having 8GB memory.

adding 10% noise to the non-noisy training set. The noisk the To evaluate how well the models have been learnt they wetectes
form of removing cards, removing the play state, and changfie  on a separate test set. Two metrics were used to evaluateshiésr
output state, for example making the output not equal whelndtild ~ coverage, and prediction accuracy. Coveragg gcores if the sys-
be equal. tem can correctly predict the dataset (ie. the probabilftgarect

10
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prediction is greater than 0%) and is the number of correetlior
tions (pc) divided by the dataset sizel)(as shown in Equation 3.
Prediction accuracy4) scores with what probability the correct pre-
diction is made, and is the sum of the likelihoods of eachemtrr
prediction pl) divided by the dataset size, as shown in Equation 4.
In non-deterministic scenarios this will not be 100%.

_ pe
c=5 @3)
_n

Both the snap datasets were tested on a population size 6f 400
and the system was run for 65 generations, taking around Eshou
to do each run. All the runs using the non-noisy datasets wate
cessful. However the models did not get 100% coverage bedhag
failed to produce any output at the start of the test datastbieaie was
insufficient items in the history. Figure 5 shows an examplthis,
as it will only evaluate once there are three cards in thehjisFour
of the results did not predict the first two items in the tesbdat,
and one of the results only failed to predict the first itemolout of
the five runs using the noisy snap dataset got an exact sol(tie
noise effected the models causing the sub-models to moclatrect
parts of the dataset. This was because some of the noise tiithed
noisy training set changed the outcomes for some roundsay, sn
this then causes the system to model this noise, and to euttyrr
predict the outcomes in the test set. Again, like in the noisynsnap
models there was problems predicting the start of the tesisda
The models themselves made use of both the Allen’s interaald
the temporal state relations. Figure 5 shows one of the sodeta
produced from the non-noisy snap training set. It shows geeaf
Allens intervals (the before relation), and the temporalestelations
(the enter relation). Most of the models contained four sudaels in
them.

Training Dataset] Number of runs] C(%) | A(%)
Snap No Noise 1 99.9 99.9
4 99.8 99.8

Snap Noise 2 99.8 99.8
1 99.8 96.6

1 96.0 94.8

1 96.0 93.3

Uno No Noise 1 99.7 99.7
1 97.2 97.2

1 94.0 92.0

1 91.5 89.7

1 88.8 88.8

Uno Noise 2 96.8 88.4
1 95.1 95.1

1 94.3 90.4

1 88.5 87.1

Path No Noise 1 97.9 92.1
1 97.9 89.3

1 96.8 88.8

1 95.8 90.0

1 94.7 88.5

Path Noise 1 93.6 85.8
1 92.6 85.2

1 91.5 82.4

1 90.8 83.3

1 90.1 80.7

Figure 6. This figure shows the results for the snap, uno and path datase
The number of runs column shows for each training set how mamy got
the same coverage, and accuracy scores.

as a markovian representation of time. This technique iitapt
for a number of reasons. Firstly it produces models thatalvast to
irrelevant variations in data. Secondly, it allows the systto learn
from a dataset containing single actions, and then be alpeettict
from a dataset containing multiple overlapping actions.

In future work will be looking into using spatial, as well &ipo-
ral relations in the system. We are also looking into tryingquanti-

The uno datasets were run on a population of size 6000, and fagtive relations, so that a relation will not work on objetttat are ei-

65 generations, taking around 7 hours to do each run. Onef fiueo
runs on the non-noisy dataset managed to get the corretiosglout

it did not get 100% coverage because it did not have enougbriist

the start of the test set to predict the initial items. Thé oéthe non-
noisy results were very close to the solution, and probaklyded
more generations to find the exact solution. The models takes
were very similar to the models produced for the snap dataBeth

Allen’s intervals, and the temporal state relations weredusNone
of the runs for the noisy dataset managed to produce an eesut,r
with the noise causing the sub-models to model incorrectsdithe

dataset.

The runs using the path dataset used a population size of 8060
the system was run for 65 generations, taking around 3 houts t
each run. All the runs using the non-noisy dataset prediateltiin
the main section of the test dataset, but failed to predidt atehe
start of the test dataset, due to lack of history. Some ofhs also
failed to predict infrequently occurring actions in thettsst. In the
runs using the noisy training set all the models learnt teguently
occurring actions, but they all started to learn some of thisenin
the dataset, and this effected their scores on the testadaBasth the
non-noisy and noisy models used Allen’s intervals, and ¢heporal
state relations.

7 Conclusions

We have extended the previous work of [2] and shown that that i
possible, by the use of temporal relations, to use a quatas well

1

ther too close, or too far away. We will also be looking int@nbging
the output from a sub-model based on what data the seardbrsect
has evaluated on. Finally we will be looking at speed impnossts

to the system so that the run time can be reduced.
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