
Using Genetic Programming to Learn Models Containing
Temporal Relations from Spatio-Temporal Data

Andrew Bennett and Derek Magee 1

Abstract. In this paper we describe a novel technique for learning
predictive models from non-deterministic spatio-temporal data. Our
technique learns a set of sub-models that model different, typically
independent, aspects of the data. By using temporal relations, and
implicit feature selection, based on the use of 1st order logic expres-
sions, we make the sub-models general, and robust to irrelevant vari-
ations in the data. We use Allen’s intervals [1], plus a set offour novel
temporal state relations, which relate temporal intervalsto the current
time. These are added to the system as background knowledge in the
form of functions. To combine the sub-models into a single model a
context chooser is used. This probabilistically picks the most appro-
priate set of sub-models to predict in a certain context, andallows
the system to predict in non-deterministic situations. Themodels are
learnt using an evolutionary technique called Genetic Programming.
The method has been applied to learning the rules of snap, anduno
by observation; and predicting a person’s course through a network
of CCTV cameras.

1 Introduction

Learning predictive models from spatial-temporal data is,in general,
a hard problem. Events and activities can have variations intheir spa-
tial, and temporal scope; include multiple (variable numbers of) ob-
jects; can overlap temporally with other events, and activities; and
happen in a non-deterministic manner. A model for predicting spatio-
temporal events must support this complexity. Our novel technique
learns a set of sub-models that model different, typically indepen-
dent, aspects of data. The sub-models can, in addition to object prop-
erties, use temporal relations to describe the scene, and implicit fea-
ture selection, based on the use of 1st order logic expressions, to
make them robust to irrelevant variations in the data. To combine the
sub-models into a single model a context chooser is used. This picks
the most appropriate set of sub-models to predict in a certain con-
text, and allows the system to predict in non-deterministicsituations.
Using the combination of sub-models and the context chooseralso
reduces the complexity of the model search space, and allowsthe
system to learn a global sub-model that matches most of the dataset,
and then learn simple sub-models to cover the cases where theglobal
sub-model does not work.

This approach extends our previous work [2], by allowing a quali-
tative, as well as a markovian representation of time. This is done by
replacing the step-wise markovian view with temporal relations like
Allen’s intervals [1], and a set of four additional relations to relate
the temporal state of objects to the current time. We use Genetic Pro-
gramming to learn the models, and present an improved fitnessfunc-
tion. The system has been successfully tested on handcrafted snap,

1 University of Leeds, UK, email:{andrewb,drm}@comp.leeds.ac.uk

and uno datasets, along with learning from video the structure of a
set of mock CCTV cameras.

There has been much previous work on learning from spatio-
temporal domains. Traditional methods usually require a fixed di-
mensionality vector, existing with canonical ordering / constant
meaning, to represent the world. To construct this vector often re-
quires knowledge of the domain, making these methods hard touse
in a problem domain where the structure of the domain is variable,
and not known a priori. One approach to modelling data of variable
dimensionality is to take statistics of a variable size set [8]. This pro-
duces a fixed set description, however spatial relationshipinforma-
tion is lost in this process. If this information is important within a
domain this leads to a poor model. Feature selection can be used to
find the most relevant subset of the data, which then allows for a more
general model to be built. However, the relevant subset may change
from one context to another.

Temporal modelling approaches such as Markov chains, Hid-
den Markov Models (HMMs) and Variable Length Markov Mod-
els (VLMMs) [7] use a description based on graphs to model state
transitions. These methods also usually need a fixed dimensional-
ity vector with canonical ordering for each observation. There does
not have to be a fixed dimensionality for every observation vector,
as theoretically each observation vector can have a different number
of dimensions. It is possible to optimise their structure byusing local
optimisation approaches based on information theory [3]. In VLMMs
this optimisation acts as kind of temporal feature selection, but as the
input variables stay in the same fixed order spatial feature selection
is not performed.

Bayesian networks are a generalisation of probabilistic graph
based reasoning methods like HMMs and VLMMs. Again these net-
works require a fixed input vector, but again their relational struc-
ture can be optimised by local search [12], genetic algorithms [5], or
MCMC [6] usually based on information theoretic criteria.

An alternative to using graph based methods is to use (1st order)
logical expressions. Feature selection is implicit in the formalism
of these expressions. Logical expressions also make no assumptions
about the ordering of variables, so there is no need to have a have
them in a fixed ordering. Progol [14] and HR [4] are Inductive Logic
Programming (ILP) methods. In general ILP takes data and generates
a set of logical expressions describing the structure of thedata. Pro-
gol does this by iterative subsumption using a deterministic search
with the goal of data compression. HR does this by using a stochastic
search using a number of specialist operators. This is similar to Ge-
netic Programming which is described below. These approaches suf-
fer from a number of disadvantages. Firstly, logical expressions are
deterministic, so it is hard for then to model non-deterministic situa-
tions. However, there has been much work on combining (1st order)

7

logic and probability to solve this problem [16] and [9]. Secondly
Progol’s search is depth bounded, which limits the size of problems
it can work on, as explained in [15]. Thirdly Progol’s fitnessfunction
is only based on how well the model compresses the data, and not
how well the model predicts the data. This can cause incorrect, or
invalid models to be produced.

Genetic Programming (GP) [10] is a evolutionary method, similar
to genetic algorithms, for creating a program that model a dataset. In
a similar way to HR, it takes a dataset data, a set of terminals, and a
set of functions; and using a set of operators generates a binary tree
that models the data.

Qualitative representations can be used to describe spatio-
temporal data in an abstract manner. [1] describes a set of seven tem-
poral relations to represent temporal interactions between objects.

There has been previous work in learning of spatio-temporalmod-
els from video by [15] who produced a system that could learn basic
card games. It had three parts: an attention mechanism, unsupervised
low-level learning, and high-level protocol learning. Theattention
mechanism uses a generic blob tracker, that locates the position of
the moving objects. From this a set of features including: colour, po-
sition and texture are extracted. The data is clustered intogroups. Us-
ing these clusters new input data is assigned its closest cluster proto-
type. A symbolic data stream is then created by combining together
the clustered data, with time information. The symbolic stream is
passed to Progol, which builds a model of the data. Once the model
has been learnt it can be applied to new data. This allows the system
to interact in the world.

[17] looked at learning event definitions from video. A raw video
of a scene is converted into a polygon representation. This is then
transformed into a force-dynamic model which shows how the ob-
jects in the scene are in contact with one another. Using thisdata and-
meets-and (AMA) logic formulae describing the events are learnt us-
ing a specific-to-general ILP approach. Work in the area of learning
from spatial-temporal data, such as the previous two approaches have
inspired our work.

The reminder of this paper will take the following form. The sec-
ond section looks at previous work about the architecture for the
models. The subsequent section looks at an extension to thiswork to
incorporate temporal relations into the sub-models. The subsequent
section describes how these models are learnt by Genetic Program-
ming. The subsequent section presents an evaluation of our system,
and the final section shows the conclusions of the work and thefur-
ther work.

2 Architecture for Models of Spatio-Temporal
Data

? Context chooser

Data OutputSub−models Overall output

Figure 1. This figure shows the architecture of our model. It has two parts:
a set of sub-models, and a context chooser to decide how to usethe

sub-models in different situations.

An architecture to represent a model of spatio-temporal data, along
with associated learning methods is described in our previous work
[2]. We use this architecture as shown in Figure 1. It is broken down
into two parts: the sub-models, and the context chooser. Thesub-
models each model a separate part of the underlying process gener-
ating the data. Each sub-model contains two sections: a search sec-
tion, and an output section. The search section looks for a particular
pattern in the dataset. A query language, created by ourselves, hav-
ing some similarity to SQL and Prolog, is used to describe theactual
search, and a binary tree is used to represent it. The output section
describes what is implied if the search returns true. This will be a set
of entities and relations, and their properties the sub-model predicts.
Figure 2 shows an example of a sub-model.

&

C1

= ==

Light2.colour(t−1)Light1.colour(t−1) Light3.colour(t) C2C0

Search Output

Figure 2. This shows a sub-model matching a traffic light with colour c1,
and a different light having a colour c0 both at current time -1. If the

expression evaluates true it will output a new light which has a colour c2, at
the current time.

The context chooser is used to decide how to combine the sub-
models in different situations. It takes as its input a boolean vector de-
scribing which sub-models have evaluated true, and returned outputs,
and using a probability distribution decides which ones will form the
overall output. A contextSn is defined as a set of sub-modelsM

producing an output in a given context, for exampleSn = M1, M2

represents thatM1, andM2 have search sections that have evalu-
ated true at the same time. For each context a probability distribu-
tion over the possible combinations of model outputs for that con-
text is defined, for examplePn(M1), Pn(M2), Pn(M1, M2), where∑

j
Pn(j) = 1. This distribution is formed from the frequency of

occurrence of each situation in the training data in the given context.
This can be implemented as a sparse hash table.

3 Incorporating Temporal Relations into
Sub-models

To evaluate the sub-models history data from the world is required.
The search section of the sub-model uses data pointers to reference
particular data items in the history. The search section of the sub-
model is then evaluated with respect to this data. If the search sec-
tion evaluates true, then the output section is implied. In our previous
work [2] each data pointer could only reference fixed quantified time
points in the history, as shown in Figure 2. The use of this qualitative
markovian representation of time implies an exact orderingof the
events. When multiple independent events are happening simultane-
ously this representation will fail, and an alternative method of repre-
senting temporal ordering is necessary. In order to quantify temporal
ordering in the data we use a combination of Allen’s intervals [1], and
four novel temporal state relations. Allen’s intervals describe tempo-
ral relations between objects. There are seven relations which are:
meets, starts, finishes, during, before, overlaps, and equal to. Along
with describing temporal relations between objects in the history, we
need to describe how the objects relate to the current time. An object

2

8

Γιάννης
Rectangle

goes through a series of temporal states, based on how its start and
end time relates to current time, these are described Figure3. Firstly
the object is entering the world, its end time is unknown, butits start
time is the same as the current time. Secondly the object exists in the
world, again the end time is unknown, but its start time is less than
the current time. Thirdly the object is leaving the world andits end
time is equal to the current time. Finally the object has leftthe world,
where both its start, and end times are less than the current time.

Current_time = start

Current_time = end AND Current_time > start

Entering

Leaving
Current_time > start
Existing

Current_time > end AND Current_time > start
Left

Current Time

Figure 3. This shows the four temporal states, with respect to currenttime,
an object can be in: entering, existing, leaving, and left. The dotted lines

represent that we don’t know when the object will leave the world.

Both the Allen’s intervals, and our additional temporal state re-
lations, are represented in the system as functions of the data, that
appear in the search section of the sub-models. These relations do
not appear in the data; only the temporal range of individualobjects
occurs in the data. As the data pointers can be used over the entire
history, it is quite likely that a sub-model will evaluate onmany dif-
ferent parts of the history. To resolve this issue we just usethe result
which includes the most recent data. The justification for this is the
sub-model will have already output this information at a previous
time in other situations.

4 Learning the Models from Data

Previously in our previous work [2] it has been shown that it was in-
tractable to find the set of optimal sub-models by exhaustivesearch,
for all but the simplest problems. The search space is complex, so a
stochastic search method was chosen as an alternative. We use Ge-
netic Programming [10], which has already been successfully used
for pattern recognition tasks [11].

Genetic Programming (GP) [10] evolves a population of programs
until a program with the desired behaviour is found. It is a type of
genetic algorithm, but the programs are stored as binary trees, and
not as fixed length strings. Functions are used for the nodes,and ter-
minals (for example constants, and variables) are used for the leaf
nodes. In order for the population to evolve a fitness function (in our
case a predictive accuracy score) must be defined. This scorewill
be used by the GP system to decide which programs in the current
generation to use to produce the next generation, and which ones
to throw away. To initialise the system, a set of randomly generated
programs must be created. Each then receive a score using thefitness
function. Algorithms including crossover, mutation and reproduction
use the programs from the current generation to create a new gener-
ation. Crossover takes two programs and randomly picks a sub-tree
on each program, these two trees are swapped over, creating two new
programs. Mutation takes one program, randomly picks a sub-tree on

it, and replaces it with a randomly generated sub-tree. Reproduction
copies a program exactly as it is into the new generation. Thepro-
grams in the new generation are then scored based on how well data
is predicted, and the process is repeated. The GP system willstop
when a certain fitness score is reached, or a certain number ofgener-
ations has passed.

In our implementation of GP we assume that a program is a
model containing a context chooser, and a set of sub-models.To ini-
tialise the population we generate a set of models just containing
one randomly generated sub-model. The sub-model is produced us-
ing Koza’s ramped half and half method [10]. We apply a hierarchical
structure to our sub-models in a similar manner to [13], to try and cut
down the search space, and to make finding a solution more efficient.

A set of operators is then used to evolve the population. There are
two kinds of operators. Firstly there are operators that tryto optimise
sub-models which are used in the model, and secondly there are op-
erators that optimise the sub-models themselves. A technique called
tournament selection [10] is used to pick a model from the popula-
tion. Tournament selection picksn models at random from the popu-
lation, and returns the one with the lowest score, for our experiments
we setn to be 5. The operators used to optimise sub-models which
are used in the model are shown below:

Reproduction A set number of models are picked via tournament
selection and copied directly into the new population.

Adding in a sub-model from another model Two models are
picked by tournament selection. A sub-model from the first
picked model is randomly selected, and added to the second
chosen model.

Replacing a sub-model Again two models are picked by tourna-
ment selection, and a sub-model from the first chosen model is
then replaced by a sub-model randomly selected from the second
chosen model.

Removing a sub-model A sub-model is picked by tournament se-
lection, and a randomly selected sub-model is removed.

The only operator used to optimise the sub-models themselves is
crossover. In crossover two models are picked using tournament se-
lection. A sub-model from each model is then randomly selected, and
standard crossover [10] is performed on these sub-models.

To score the models a fixed length window is randomly moved
over the dataset. At each generation two random locations are picked:
one for training, and one for testing. In the training phase the prob-
ability distribution used in the context chooser is calculated. In the
testing phase the fitness of a model (m) is evaluated over a win-
dowed section of the dataset (w). For each position in the window the
model is given a set of history data (h), calculated from the window,
and is queried to produce a prediction. This produces a set ofpos-
sible corresponding outputs (o), and a set of possible corresponding
output likelihoods (ol). The similarity (C) of each output with the ac-
tual output (r), is computed using theFindBestMatch function, as
shown in Equation 1. This function takes the set of actual output, and
the set of model output, and firstly pads out them out with blank data
so that they are the same size. Then for each item in the actualoutput
set, a unique match in the model output set is found. For each of the
matches a comparison is done between the two objects. The compari-
son looks at how similar each of the properties in the two objects are.
Each of the comparisons are summed together to produce a score that
shows how good that set of matches is. An exhaustive search isthen
performed over all the possible combination of matches to find the
best (maximal) matching score. The result is then multiplied by its
output likelihood. From this the best (maximal) output is found. This

3

9

Γιάννης
Rectangle

is then repeated over the rest of window, and the results summed and
then normalised to produce (S), as shown in Equation 2. This fitness
function is an improved version to the one described in our previous
work [2], as it can be applied to non-deterministic datasets.

C(o, r) = FindBestMatch(o, r) (1)

S(m, w) =
1

|w|
∗

∑

i

Maxn(oln ∗ C(on, ri)) (2)

The system runs in two stages, and will stop running once it ex-
ceeds a maximum number of generations. Firstly the system isini-
tialised in the manner described above, and then for five generations
it works out the best set of sub-models to use in the models. Todo
this the system uses reproduction (10%), removing (10%), adding
(40%), and replacement (40%). Next the system will optimisethese
models to find the best solution. It uses crossover (60%), reproduc-
tion (10%), removing (10%), adding (10%), and replacement (10%).

5 Evaluation

Our method was evaluated on three different datasets, whichwere:
handcrafted uno data, handcrafted snap data, and data from people
walking through a network of mock CCTV cameras. More detail
about these datasets is presented in the following section.

5.1 CCTV Data of a Path

A 10 minute video of people walking along a path containing a junc-
tion was filmed. This was then used to mock up a network of CCTV
cameras. Figure 4 shows a frame from the video. Virtual motion
detectors, representing CCTV cameras, were hand placed over the
video has shown in Figure 4. Using frame differencing, and morpho-
logical operations, the video was processed to determine the location
of the motion. If the number of moved pixels in a region exceeded
a fixed threshold then the virtual detector outputted that motion had
occurred at that location. Hysteresis on the motion detection is im-
plemented as a 2 state, state machine (where the states are motion/no
motion). The state machine requires a numbers of frames (normally
10) of stability to change state. The data produced is then placed in
a datafile with a motion event recorded per state change goingfrom
no motion to motion. This was used to create a training datafile con-
taining 84 state changes and a test file containing 46 state changes.

5.2 Snap

The snap dataset was handcrafted, but the format of it was similar
to the snap dataset used in the work of [15]. The snap sequenceis
the following: initially the computer will see a blank scene, then it
will hear the word play, next two coloured cards will be seen.Either
they will be both put down at the same time, or put down one by
one. If they are the same then the word “equals” will be heard,oth-
erwise “different” will be heard. Then the cards are removed, again
either one by one, or at the same time. We ask the computer to only
learn the sections where a human is speaking, as it would be im-
possible to accurately predict the next two cards because they are
essentially random. Again three datasets were prepared: a non-noisy,
and noisy training set, and a non-noisy test set. All the datasets con-
tained around 50 rounds of snap. The noisy data was generatedby
adding 10% noise to the non-noisy training set. The noise took the
form of removing cards, removing the play state, and changing the
output state, for example making the output not equal when itshould
be equal.

5.3 Uno

The handcrafted uno dataset has a similar sequence to the snap
dataset. Again the computer will initially see a blank scene. Then
play will be heard. Next two cards, each one having one of three
possible coloured shapes on them, will be placed down eitherat the
same time, or one by one. If the two card have the same coloured
shape on them the “same” is heard; or if they have shapes of the
same colour then “colour” is heard; or if they have the same shapes
on then “shape” is heard; or if the cards are different then “nothing”
is heard. The cards are then removed either together, or one by one.
Three datasets were created: a non-noisy training set, a noisy training
set, and a non-noisy test set. Each one contained around 50 rounds
of uno. Again noisy data was prepared by adding 10% of noisy data
to the non-noisy training data. The noise took the same form as the
noisy snap data.

3
0

1

2

Figure 4. This figure firstly shows a frame of the video with a person
taking a decision at the junction point, and secondly it shows where the

virtual detectors are on the video.

AND

BEFORE

CARD1

COLOUR
GET

COLOUR
GET

EQUAL
ENTERING

CARD2CARD1CARD2

EQUAL

CARD3

AND

Figure 5. This shows one of the sub-model results for the snap dataset.It
is predicting the equal state, by using the properties of three cards. If card3
occurs before card2; and card1 has just entered the world; and the colour of

both card1, and card2 is the same then the sub-model evaluates true, and
Equal will be returned.

6 Results

To test the system five runs were allocated to each possible combi-
nation of dataset. For each run a different random number seed was
used to initialise the system. The tests were run on a 2GHz machine
having 8GB memory.

To evaluate how well the models have been learnt they were tested
on a separate test set. Two metrics were used to evaluate the results:
coverage, and prediction accuracy. Coverage (C) scores if the sys-
tem can correctly predict the dataset (ie. the probability of correct

4

10

Γιάννης
Rectangle

prediction is greater than 0%) and is the number of correct predic-
tions (pc) divided by the dataset size (d) as shown in Equation 3.
Prediction accuracy (A) scores with what probability the correct pre-
diction is made, and is the sum of the likelihoods of each correct
prediction (pl) divided by the dataset size, as shown in Equation 4.
In non-deterministic scenarios this will not be 100%.

C =
pc

d
(3)

A =
pl

d
(4)

Both the snap datasets were tested on a population size of 4000,
and the system was run for 65 generations, taking around 5 hours
to do each run. All the runs using the non-noisy datasets weresuc-
cessful. However the models did not get 100% coverage because they
failed to produce any output at the start of the test dataset as there was
insufficient items in the history. Figure 5 shows an example of this,
as it will only evaluate once there are three cards in the history. Four
of the results did not predict the first two items in the test dataset,
and one of the results only failed to predict the first item. Two out of
the five runs using the noisy snap dataset got an exact solution. The
noise effected the models causing the sub-models to model incorrect
parts of the dataset. This was because some of the noise addedto the
noisy training set changed the outcomes for some rounds of snap,
this then causes the system to model this noise, and to incorrectly
predict the outcomes in the test set. Again, like in the non-noisy snap
models there was problems predicting the start of the test dataset.
The models themselves made use of both the Allen’s intervals, and
the temporal state relations. Figure 5 shows one of the sub-models
produced from the non-noisy snap training set. It shows the use of
Allens intervals (the before relation), and the temporal state relations
(the enter relation). Most of the models contained four sub-models in
them.

The uno datasets were run on a population of size 6000, and for
65 generations, taking around 7 hours to do each run. One out of five
runs on the non-noisy dataset managed to get the correct solution, but
it did not get 100% coverage because it did not have enough history at
the start of the test set to predict the initial items. The rest of the non-
noisy results were very close to the solution, and probably needed
more generations to find the exact solution. The models themselves
were very similar to the models produced for the snap datasets. Both
Allen’s intervals, and the temporal state relations were used. None
of the runs for the noisy dataset managed to produce an exact result,
with the noise causing the sub-models to model incorrect parts of the
dataset.

The runs using the path dataset used a population size of 2000, and
the system was run for 65 generations, taking around 3 hours to do
each run. All the runs using the non-noisy dataset predictedwell in
the main section of the test dataset, but failed to predict well at the
start of the test dataset, due to lack of history. Some of the runs also
failed to predict infrequently occurring actions in the test set. In the
runs using the noisy training set all the models learnt the frequently
occurring actions, but they all started to learn some of the noise in
the dataset, and this effected their scores on the test dataset. Both the
non-noisy and noisy models used Allen’s intervals, and the temporal
state relations.

7 Conclusions

We have extended the previous work of [2] and shown that that it is
possible, by the use of temporal relations, to use a qualitative, as well

Training Dataset Number of runs C(%) A(%)
Snap No Noise 1 99.9 99.9

4 99.8 99.8
Snap Noise 2 99.8 99.8

1 99.8 96.6
1 96.0 94.8
1 96.0 93.3

Uno No Noise 1 99.7 99.7
1 97.2 97.2
1 94.0 92.0
1 91.5 89.7
1 88.8 88.8

Uno Noise 2 96.8 88.4
1 95.1 95.1
1 94.3 90.4
1 88.5 87.1

Path No Noise 1 97.9 92.1
1 97.9 89.3
1 96.8 88.8
1 95.8 90.0
1 94.7 88.5

Path Noise 1 93.6 85.8
1 92.6 85.2
1 91.5 82.4
1 90.8 83.3
1 90.1 80.7

Figure 6. This figure shows the results for the snap, uno and path datasets.
The number of runs column shows for each training set how manyruns got

the same coverage, and accuracy scores.

as a markovian representation of time. This technique is important
for a number of reasons. Firstly it produces models that are robust to
irrelevant variations in data. Secondly, it allows the system to learn
from a dataset containing single actions, and then be able topredict
from a dataset containing multiple overlapping actions.

In future work will be looking into using spatial, as well as tempo-
ral relations in the system. We are also looking into trying out quanti-
tative relations, so that a relation will not work on objectsthat are ei-
ther too close, or too far away. We will also be looking into changing
the output from a sub-model based on what data the search section
has evaluated on. Finally we will be looking at speed improvements
to the system so that the run time can be reduced.

REFERENCES

[1] James Allen, ‘Maintaining knowledge about temporal intervals’,Com-
munications of the ACM, 26, 832–843, (1983).

[2] A. Bennett and D. Magee, ‘Learning sets of sub-models forspatio-
temporal prediction’, inProceedings of AI-2007, the Twenty-seventh
SGAI International Conference on Innovate Techniques and Applica-
tions of Artificial Intelligence, pp. 123–136, (2007).

[3] Matthew Brand, ‘Pattern discovery via entropy minimization’, in Arti-
ficial Intelligence and Statistics, (1998).

[4] Simon Colton, Alan Bundy, and Toby Walsh, ‘Automatic identification
of mathematical concepts’, inInternational Conference on Machine
Learning, (2000).

[5] R. Etxeberria, P. Larranaga, and J.M. Picaza, ‘Analysisof the behaviour
of genetic algorithms when learning bayesian network structure from
data’,Pattern Recognition Letters, 13, 1269–1273, (1997).

[6] Nir Friedman and Daphne Koller, ‘Being bayesian about network struc-
ture’, Machine Learning, 50, 95–126, (2003).

[7] Aphrodite Galata, Neil Johnson, and David Hogg, ‘Learning behaviour
models of human activities’, inBritish Machine Vision Conference
(BMVC), (1999).

[8] Kristen Grauman and Trevor Darrell, ‘The pyramid match ker-
nel:discriminative classication with sets of image features’, in Inter-
national Conference on Computer Vision, (2005).

[9] R Haenni, ‘Towards a unifying theory of logical and probabilistic rea-

5

11

Γιάννης
Rectangle

soning’, in International Symposium on Imprecise Probabilities and
Their Applications, pp. 193–202, (2005).

[10] John Koza,Genetic Programming, MIT Press, 1992.
[11] John Koza,Genetic Programming II, MIT Press, 1994.
[12] Philippe Leray and Olivier Francios, ‘Bayesian network structural

learning and incomplete data’, inAdaptive Knowledge Representation
and Reasoning, (2005).

[13] David Montana, ‘Strongly typed genetic programming’,in Evolution-
ary Computation, (1995).

[14] S.H. Muggleton and J. Firth, ‘CProgol4.4: a tutorial introduction’, in
Relational Data Mining, 160–188, Springer-Verlag, (2001).

[15] Chris Needham, Paulo Santos, Derek Magee, Vincent Devin, David
Hogg, and Anthony Cohn, ‘Protocols from perceptual observations’,
Artificial Intelligence, 167, 103–136, (2005).

[16] N. J. Nilsson, ‘Probabilistic logic’,Artificial Intelligence, 28, 71–87,
(1986).

[17] Jeffrey Mark Siskind, ‘Grounding the lexical semantics of verbs in vi-
sual perception using force dynamics and event logic’,Articial Intelli-
gence Research, 15, 31–90, (2000).

6

12

Γιάννης
Rectangle

