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Abstract. Fuzzy Bayesian networks are a generalisation
of classic Bayesian networks to networks with fuzzy variable
state. This paper describes our formalisation and outlines how
belief propagation can be conducted. Fuzzy techniques can
lead to more robust inference. A key advantage of our formal-
isation is that it can take advantage of all existing network
inference and Bayesian network algorithms. Another key ad-
vantage is that we have developed several techniques to con-
trol the algorithmic complexity. When these techniques can
be applied it means that fuzzy Bayesian networks are only
a small linear factor less efficient than classic Bayesian net-
works. With appropriate pre-processing they may be substan-
tially more efficient.

1 Introduction

Modern machine learning research frequently uses Bayesian
networks (BNs)[6; 7; 15; 16]. However, BN inference is NP-
complete due to cycles in the undirected graph[4], and belief
propagation is exponential in the tree-width of the network.
This makes them difficult to use for large problems.

Fuzzy[3] and hybrid fuzzy systems[11; 13] are also fre-
quently used. In a fuzzy system, a variable’s state is repre-
sented by a set of fuzzy values (FVs). Because fuzzy systems
do not force a model to artificially discretise a continuous un-
derlying state they are often more robust in the face of noise.

To date there has been very little research into BNs with
fuzzy variable states. What there is has centred around the
use of fuzzy approximations to perform inference and belief
propagation in a hybrid BN [1; 12]. A hybrid BN is one where
the parameters are a mix of continuous and multinomial dis-
tributions.

This paper’s key contribution is a formal generalisation of
classic BNs to fuzzy Bayesian networks (FBNs). In a FBN
the variables can have fuzzy states. The paper also describes
tractable belief propagation over FBNs. An important ad-
vantage of the presented formalisation is that existing infer-
ence algorithms (e.g. MCMC, simulated annealing) can be
used without modification. Furthermore, FBNs may be only
a small linear constant less efficient than classic BNs of the
same size, and appropriate pre-processing may make some
problems which were intractable for classic BNs tractable for
FBNs.

The paper is structured as follows. Section 2 presents a
fuzzy Bayesian network which will be used as an example.
Section 3 introduces some notation (subsection 3.1), and
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presents belief propagation for variables with one parent (sub-
section 3.3) and for variables with multiple parents (subsec-
tion 3.4). Section 4 analyses the algorithmic efficiency of FBNs
and how it can be controlled. Section 5 outlines an important
bioinformatic domain where FBNs may be especially useful,
and section 6 concludes the paper.

2 A Fuzzy Bayesian Network

The structure of the FBN that is used as an example in this
paper is shown in figure 1. Call this FBN G = 〈η, θ〉, where η

denotes the structure of G and θ its parameters.
For clarity of presentation, G is a multinomial (discrete)

BN. However, the formalisation generalises easily and trans-
parently to continuously-valued FBNs and hybrid FBNs.

The relevant conditional distributions of G are shown in
figure 2. D’s distribution is not shown and we will later assume
a state for D with no loss of generality.

Because we have restricted the differences between BNs and
FBNs to belief propagation, the specification of a FBN and a
BN are identical.

3 Belief Propagation

Belief propagation in a Bayesian network involves calculat-
ing the updated probability distributions of variables in the
network, given θ and the observed states of other variables.

3.1 Some Notation

The terminology and notation is as follows. A variable has a
state, either a fuzzy state (FS) or a discrete state (DS).

A fuzzy state is made up of one or more components, and
each component is annotated with the variable’s degree of
membership (µ) in that component. For example, equation 1
is an example of a variable (S) with two components. It has
membership 0.7 in the component hi and membership 0.3
in the component mid. hi and mid are examples of values
that the variable can take. When annotated with µ they are
referred to as fuzzy values (FV). The set of all possible values
(fuzzy values) that a variable can take is the range of that
variable, e.g. hi, mid, lo.

S = [hi0.7, mid0.3] (1)

In general, the components of a variable’s state are enclosed
in square brackets. A discrete state is just a special case of
a fuzzy state. Discrete states have just one component with
µ = 1, and the square brackets and µ subscript can be omitted
in this situation. We assume that

P

c∈C
µc = 1 for a FS with

C components and have not considered other situations.
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Figure 1. The fuzzy Bayesian network G, used as an example in this paper.

→ A A = lo A = mid A = hi

0.7 0.1 0.2

(a) θA, A’s prior distribution

A → B B = lo B = mid B = hi

A = lo 0.6 0.2 0.2

A = mid 0.1 0.1 0.8

A = hi 0.1 0.2 0.7

(b) θB , B’s conditional distribution

B → C C = lo C = mid C = hi

B = lo 0.1 0.1 0.8

B = mid 0.1 0.8 0.1

B = hi 0.7 0.2 0.1

(c) θC , C’s conditional distribution

C, D → E E = lo E = mid E = hi

C = lo D = lo 0.6 0.2 0.2

C = lo D = mid 0.1 0.1 0.8

C = lo D = hi 0.1 0.1 0.8

C = mid D = lo 0.6 0.2 0.2

C = mid D = mid 0.1 0.6 0.3

C = mid D = hi 0.1 0.6 0.3

C = hi D = lo 0.1 0.2 0.7

C = hi D = mid 0.1 0.2 0.7

C = hi D = hi 0.8 0.1 0.1

(d) θE , E’s conditional distribution

Figure 2. θ for G. The conditional distributions of A, B, C and

E.

Just as a component can be a value from the range of
a variable, e.g. hi, a component can also be a probability
distribution (PD). PD are denoted with curly brackets, e.g.
{hi0.3, mid0.2, lo0.5}. Because the value associated with each
subscripted probability is implicit in the tuple order the value
names can be omitted: {0.3, 0.2, 0.5}.

An example of a fuzzy state which mixes values and prob-
ability distributions is shown in equation 2.

T = [{0.2, 0.1, 0.7}0.2, {0.1, 0.8, 0.1}0.6 , mid0.2] (2)

A PD which is annotated (subscripted) with µ is called a

fuzzy probability distribution (FPD). Samples are drawn from
a FPD in the same way that they are drawn from a PD.
However, a variable with membership µ in a FPD can only
have µ proportion of its state determined by that FPD; a
sample from a FPD will have the same µ as the FPD does.
For example, a sample from {0.2, 0.1, 0.7}0.2 will be one of
lo0.2, mid0.2 or hi0.2, and each of these components will be
drawn with probability 0.2, 0.1 and 0.7 respectively.

This means that the state of a sample from the uncertain
variable T (equation 2 will be some member from the set
[lo[0..0.8], mid[0.2..1], hi[0..0.8]] and the distribution over mem-
bers in this set is determined by the two FPD and one FV
which make up the fuzzy state of T .

3.2 Assumptions

The full and general analysis of FBNs would also consider un-
restricted interactions amongst components in a fuzzy state,
allowing

P

µ 6= 1 and so forth. In this article we make a num-
ber of linearising assumptions which make FBN belief propa-
gation cheap, relative to the cost of full general propagation.
They also greatly aid the clarity of the presentation in the
space available. Furthermore, these assumptions are reason-
able and do not restrict the general utility of FBNs. However
it is important to make them explicit. The assumptions (and
consequently the nature of full general propagation) will be
briefly summarised in this section; a more general discussion
is forthcoming.

3.2.1 Assumption: Total Membership

As noted above and in subsection 3.1, we assume that
P

µ =
1. This is our first linearising assumption, and it can be con-
ceptualised as follows. A variable’s degree of membership in
each of its |C| components forms a |C|-dimensional fuzzy state
space. If the variable has no uncertainty (no component is an
FPD) then |C| will be the same as the variable’s range. Even
if a FS has 0 membership in some of its range those values are
still part of the state’s FSS. By assuming that

P

c∈C
µc = 1,

we restrict our attention to a smaller |C|−1 dimensional sub-
space. This subspace constrains the degrees of membership
in each component in a cyclically conditional way on the de-
grees of membership in the other components. This assump-
tion simplifies the combination of components of fuzzy states
in subsection 3.4.

For example, if a FS has membership 0.5 in the value hi

its membership in the values lo and mid in the FSS are con-
strained to be in the range [0, 0.5]. Furthermore, its member-
ship in lo and mid mutually constrain (in this case define, as
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there are no other values in the range) each other. Figure 3
illustrates the impact of the first assumption on the FSS for
a fuzzy state with two components.
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Figure 3. Imagine a fuzzy state with two components, A and

B. Such a state would have a two-dimensional FSS, as in this

figure. Without restriction, the state’s degree of membership in

each component could be specified by any point in the FSS.

However, we assume that
P

c∈C µc = 1. Therefore its membership

in components A and B must be specified by some point on the

dashed line.

3.2.2 Assumption: Component Independence

We also make two further assumptions about FBN during
belief propagation. The first is that components are indepen-
dent. This means that when a variable has only one parent
then its state will have one component for each component
its parent has, and these components will have the same µ

as the corresponding parent’s component. For example, the
children which have S (equation 1) as their only parent will
have two components in their FS, one with µ = 0.7 and one
with µ = 0.3.

When a variable has more than one parent then the com-
ponents of the parents will be mixed and combined before
propagation. This is described in subsection 3.4. Because we
assume independence, the child’s fuzzy state will have one
component for each component in the mixed and combined
parent set, and each of the child’s component will have the
same µ as the corresponding component in the parent set.

It will also be clear that we assume independence when we
describe how the parents’ components are mixed and com-
bined in subsection 3.4.

3.2.3 Assumption: FPD Samples

The third assumption implicit in this model is the assumption
that a sample from an FPD with µ = x will be a single fuzzy
component with µ = x. Although natural and intuitive we
do not believe that this is automatically entailed, thus we
explicitly assume it.

Consider an uncertain variable with a range of r in a stan-
dard (discrete) Bayesian network. Its state will be a probabil-
ity distribution which specified a single point in the r dimen-
sional probability space (p-space).

Now consider this variable in a FBN. Any uncertainty in
its state will be represented by an FPD component with some
µ. As described in subsection 3.1, a FPD is just PD with a
fixed (0 dimensional) µ associated with it.

This definition of a FPD could be generalised so that µ

could vary independently but was fixed for each of the r pos-
sible samples that could be drawn from the FPD. Call this
a slightly general FPD (SGFPD) and call the FPD defined
in subsection 3.1 a standard FPD. An SGFPD would specify
a single point in an r + r dimensional space, where r of the
dimensions are the probability of each value and the other r

dimensions specify the µ of a sample of each value. Just as the
first r dimensions specify a p-space, the second r dimensions
specify a µ-space. An example of such a space is given dia-
grammatically in figure 4, and it is used to contrast a SGFPD
with a standard FPD.

An example of an SGFPD might be “there is a 0.2 prob-
ability of drawing a sample of hi, and any sample of hi will
have µ = 0.3, and there is a 0.3 probability of drawing a sam-
ple of mid, and any sample of mid will have µ = 0.5, and. . . ”
and so forth. The assumption that

P

c∈C
µc = 1 for a state

could be relaxed if SGFPD were used.
After considering figure 4 it will be clear that SGFPD could

be further generalised so that the µ of any sample also varied
probabilistically, conditional on the value (hi, mid, etc.) of
the sample. Such a general FPD (GFPD) would be an r +
r dimensional probability distribution over the joint µ and
range of the variable. We believe that this represents the most
general kind of inference and belief propagation in a FBN.
Such inference is intractable and we do not consider it in this
paper.

In summary, the assumptions which we have made substan-
tially reduce the dimensionality of belief propagation and are
necessary for it to be tractable. However, more general FBNs
with GFPD do not have these restrictions; their utility will
be considered in a forthcoming publication.

3.3 Single-Parent Belief Propagation

Assume that observations indicate A = [mid0.2, hi0.8] in G.
With this information we can calculate the updated distribu-
tions on B and C.

Because A has an observed (certain) FS and is B’s only
parent the components of B’s updated FS can be read from
θB. This shows that:

B = [{0.1, 0.1, 0.8}0.2 , {0.1, 0.2, 0.7}0.8] (3)

The FS over C is calculated similarly. Just as each of the
fuzzy values in A lead to a weighted FPD in the FS of B

the same occurs for C, and C = [α0.2, β0.8]. The weighted
distributions α and β are calculated using standard BN belief
propagation, based on the conditional distribution of B. This
is shown in equations 4, 5 and 6.

p(C|B = lo) = {0.1, 0.1, 0.8}

p(C|B = mid) = {0.1, 0.8, 0.1}

p(C|B = hi) = {0.7, 0.2, 0.1} (4)

α = {0.1, 0.1, 0.8} × 0.1 + {0.1, 0.8, 0.1} × 0.1 +

{0.7, 0.2, 0.1} × 0.8

= {0.01, 0.01, 0.08} + {0.01, 0.08, 0.01} +

{0.56, 0.16, 0.08}

= {0.58, 0.25, 0.17} (5)
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Figure 4. Assume a variable with a range (r) of 2 (A and B). Each point in the 2 dimensional p-space (left hand side) could be

considered an index into a 2 dimensional µ-space (right hand side), as diagrammed. All proper probability distributions (
P

p = 1) fall on

the dotted dashed line in the p-space. The µ-space that is indexed by some point in the p-space could be unique to that point. In a

standard FPD, the µ-space is reduced to a single point on the dashed line and that point on the line in the µ-space is specified precisely

by the µ of the FPD. Because any sample from a standard FPD, regardless of its value, will have the same µ, r of the dimensions are

eliminated. In addition, we assume that an FPD has a proper probability distribution. In total, these reduces the dimensionality from

r + r to r − 1. In a SGFPD the µ-space would also be reduced to a single point, but any point in the µ-space would be a valid reduction,

so an SGFPD with a proper distribution over the values still has r + r − 1 dimensions.

β = {0.1, 0.1, 0.8} × 0.1 + {0.1, 0.8, 0.1} × 0.2 +

{0.7, 0.2, 0.1} × 0.7

= {0.01, 0.01, 0.08} + {0.02, 0.16, 0.02} +

= {0.49, 0.14, 0.07}

= {0.52, 0.31, 0.17} (6)

The calculated FS for C is shown in equation 7.

C = [{0.58, 0.25, 0.17}0.2 , {0.52, 0.31, 0.17}0.8 ] (7)

3.4 Multi-Parent Belief Propagation

Subsection 3.3 illustrated belief propagation in a FBN when
a variable has only one parent. This subsection shows naive
FBN belief propagation in the case of a variable with multiple
parents. Section 4 outlines several more nuanced approaches
which address the problems with naive propagation.

Take the calculated value of C, and assume a fuzzy state
for D (equation 8). What is the updated fuzzy state of E?

C = [{0.58, 0.25, 0.17}0.2 , {0.52, 0.31, 0.17}0.8 ]

D = [{0.45, 0.30, 0.25}0.3 , {0.1, 0.8, 0.1}0.7] (8)

Any combination of components, one from each parent, can
be used to calculate an updated probability distribution for a
variable. However, this raises the question of how to combine
and weight each combination of component distributions in
the parent FSs to calculate an updated FS for the child.

Because the parents are conditionally independent given
the variable being updated3, any particular combination of
PD and observations can be summed over, as one was in each
of equations 5 and 6. The summed over combinations became
components of C’s updated distribution.

3
And also given their updated state and the acyclic nature of the

graph

In the naive approach to belief propagation the Cartesian
product of the parents’ FS is used to find all possible combi-
nations of components. µ for each one of these combinations
is calculated using the product t-norm[2]. Any other fuzzy
conjunction (normalising µ where necessary) could also be
used. Because we assumed that

P

µ = 1 holds for each of
the parents though, using this fuzzy conjunction guarantees
that

P

µ over the child’s components will also equal 1 and no
normalisation is necessary.

For example, if we use the first components of C and
D ({0.58, 0.25, 0.17}0.2 and {0.45, 0.30, 0.25}0.3, respectively,
equation 8) then standard Bayesian propagation and using
the product t-norm to calculate µ shows that one member of
E’s updated FS is:

α = {0.3165, 0.2189, 0.4647}0.06 (9)

The full FPD for E will have four members, one for each
member of C × D (equation 10, below). For clarity, the cal-
culated α from equation 9 has not been substituted into this
equation.

E = [α0.06, β0.14, γ0.24, δ0.56] (10)

In general a variable with k parents that each have an FS
with m components will have an updated FS of size mk. As-
suming all variables have k parents, the grand-children will

have updated FS of size mkk
, and so forth. This is the fuzzy

state size explosion (FSSE), and it makes naive belief propa-
gation in a FBN intractable.

4 Dealing with Complexity

There are several ways that the explosion in the complex-
ity can be controlled by approximating the FS. This sec-
tion discusses four kinds of control. The bimodal fuzzy state
X = [{0.9α, 0.1β}0.5, {0.1α, 0.9β}0.5] is used as an example in
several places in this section. Such a variable could represent
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a committee of two in which the committee members (compo-
nents) hold diametrically opposite beliefs about the outcome
of some future event.

4.1 Linear Collapse

A first approximation that addresses the FSSE is to linearly
collapse a FS that is made up only of FPDs, immediately
after they are calculated. Each component can be weighted by
its fuzzy membership and they can be summed to calculate
a single, discrete, PD. For example, B (equation 3) can be
collapsed as shown in equation 11. Collapsed FS are denoted
with a prime.

B = [{0.1, 0.1, 0.8}0.2, {0.1, 0.2, 0.7}0.8 ]

∴ B
′ = {0.1, 0.18, 0.72} (11)

However, this approximation is unsatisfactory: it conflates
probability with fuzziness and may change the expected value
of the variable. Although it may be approximately correct in
some circumstances, a simple thought experiment will show
why it is insufficient.

Consider the bimodal FS X. The expected sample from X

is X ′ = [α0.5, β0.5]. Although this sample does not reflect any
of the uncertainty in X it does reflect the bi-modality (inde-
cision) of the variable (committee) as a whole. Subsection 4.4
returns to this approach.

If X is linearly collapsed though then X ′ = {0.5, 0.5}. No
sample drawn from this PD can be half α and half β. Im-
portant information in X has been lost. Although further be-
lief propagation will not be biased if this variable is summed
over4, there is no way to compare the linearly collapsed value
X ′ with any observed value for X when trying to evaluate the
quality of an inferred network.

Other approximations to the naive approach have been de-
veloped. They are discussed in the next three subsections.

4.2 Strict and Dynamic Top Fuzzy
Combinations

Consider again the full (naive) FS of E, reproduced in equa-
tion 12.

E = [α0.06, β0.14, γ0.24, δ0.56] (12)

Some of the components barely contribute to the overall
state and will not have a substantial influence on any children
either. Such components could be ignored, and the remaining
components could have their µ normalised. For example, if
just the top three components of E were used then the up-
dated FS would take the form:

E = [β0.149 , γ0.255, δ0.596] (13)

The number of components retained could be either k-
component strict selected or φ-dynamically selected. In the
former case, the top k components would be selected. In the
latter, the |C| components with greatest µ would be selected
so that

P

c∈C
µc > φ. Strict selection would mean that FBNs

were only a small linear factor less efficient than classic BNs
of the same size. However, the top k components may not be

4
Due to the use of the product t-norm.

an accurate reflection of the full FS, thus φ-dynamic selection
may be more appropriate in some cases.

4.3 Clustering the Fuzziness

Another way of controlling the FSSE is to calculate the full
FS of each variable during belief propagation. However, be-
fore using the full FS to update the state of its children, its
components could be clustered so that FPD which specified
similar distributions were combined together.

For example, the FS [. . . , {0.7, 0.2, 0.1}0.3, {0.6, 0.3, 0.1}0.2 , . . .]
might cluster to [. . . , {0.66, 0.24, 0.1}0.5, . . .].

Because the clustering problem would only have as many
dimensions as the range of each FPD, we speculate that a
simple fixed-k clustering algorithm like k-means would work
very well.

Although this approach is more complex than selection or
linear collapse, the total increase in complexity in belief prop-
agation would be related to and bound by the maximum in-
degree and range of a variable.

4.4 Expected Values

A fourth kind of control is inspired by particle filtering and
the Condensation algorithm[9]. The general sequential Monte
Carlo (SMC) method will be outlined first. Although this
approach is not as efficient as others it is applicable in all
cases and is strictly correct.

Consider X. An infinite sequence of independent samples
drawn from this uncertain fuzzy state will take something like
the form [α0.5, β0.5], [α0.5, β0.5], . . . , [α1], [α0.5, β0.5]. . . and so
forth.

The properties of this sequence are identical to those of
the fuzzy state, and a long-enough finite sequence will be a
good approximation to it. For example, 100 samples could
be drawn from X. Each of these samples could then be used
to propagate the uncertain state of X to X’s children. The
relative efficiency of this technique compared to clustering
depends on the range and kmax of the variables, but in certain
situations it may also be better.

As noted in subsection 4.1, the expected value of a variable
is easily calculated analytically. For example, the expected
value of X is [α0.5×0.9+0.5×0.1 , β0.5×0.1+0.5×0.9 ] = [α0.5, β0.5].

Doing this expectation calculation is analogous to summing
over or numerically integrating a probability distribution, and
we call it fuzzy integration. Like clustering the impact on ef-
ficiency of fuzzy integration depends on the range and kmax.

This approach is very similar to linear collapse but it has
a number of key advantages. Firstly, like linear collapse, it
does not bias any further belief propagation. This is untrue
of selection and clustering. Secondly, the expected value X ′

which is the result of this fuzzy integration can be meaning-
fully compared with observed values of X when performing
network inference. In many cases, users are only interested in
the expected (integrated) value. In these cases the expected
value of a FS is ideal.

5 A Bioinformatic Domain

Inference of large genetic regulatory networks (GRN) is a cen-
tral problem in modern bioinformatics. However, algorith-
mic complexity has limited detailed inference using BNs[6;
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15; 16] to N / 100 genes[5]. Approaches which can be ap-
plied to larger numbers of genes include modern clustering
methods[10] and the inference of graphical Gaussian models
over clustered gene expression data[8; 14].

FBNs suggest a novel approach to detailed exploration of
large GRN. Such a methodology generalises to the inference
of other large causal networks as well.

If the data is pre-processed by using a fuzzy cover algo-
rithm the dimensionality of the problem may be reduced by
an order of magnitude or more. This could lead to an expo-
nential reduction in the algorithmic complexity which would
more than offset any increase caused by the fuzzy state size
explosion and its collapse.

A fuzzy cover is a clustering algorithm which covers the
data, rather than clusters it. In a fuzzy cover, a variable (gene)
can have

P

c∈C
µc > 1, where C is the set of covers that the

algorithm finds.
Inference over the covers is performed using a standard al-

gorithm to find a virtual GRN. Using the retained µc for each
n ∈ N and c ∈ C, most of the original fidelity can be recovered
after the inference has been performed by linearly devolving
and normalising the network of covers back down to a net-
work of genes. The synergistic use of dimension-reduction and
FBNs are what we believe will be most useful.

The authors are using this approach (fuzzy covering, FBN
inference, FBN devolution) to infer and explore large genetic
regulatory networks. With fuzzy clustering and FBNs we ex-
pect to be able to perform more detailed exploratory inference
for N ≈ 1000.

6 Contributions and Future Work

This paper has presented a new formalisation which combines
fuzzy theory and Bayesian networks. Because of the way that
it extends classic BNs, all existing algorithms, tools and ma-
chine learning techniques for classic BNs can be used imme-
diately with FBNs.

Several techniques for tractably propagating fuzzy beliefs
across a FBN are also described. Using these techniques, pre-
viously used BNs can be assigned fuzzy variable states and
updated accordingly. This means that existing networks, of-
ten learnt only after substantial effort, can be easily reused.

Furthermore, the difference in BN and FBN efficiency with
sensible fuzziness collapse may be as little as a small linear
constant in some circumstances. This means that there are
few disadvantages to using FBNs instead of BNs.

The possibility of integrating FBNs into a machine learn-
ing pipeline which involves dimension-reduction and network
devolution also suggests that the inference of larger causal
networks will be possible using FBNs.

Future research may uncover more efficient methods for in-
tegrating, clustering or otherwise collapsing a FS. In addition,
the authors plan to present an even more generalised formali-
sation which relaxes the assumptions made in subsection 3.2.
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