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Abstract. We demonstrate how combining the reasoning compo-
nents from two existing systems designed for human-robot joint ac-
tion produces an integrated system with greater capabilities than ei-
ther of the individual systems. One of the systems supports primarily
non-verbal interaction and uses dynamic neural fields to infer the
user’s goals and to suggest appropriate system responses; the other
emphasises natural-language interaction and uses a dialogue man-
ager to process user input and select appropriate system responses.
Combining these two methods of reasoning results in a robot that is
able to coordinate its actions with those of the user while employing
a wide range of verbal and non-verbal communicative actions.

1 INTRODUCTION AND MOTIVATION
As robot systems become increasingly sophisticated, their role is
moving from one where the robot is essentially an intelligent tool
to one where the robot is able to participate as a full team member
in collaborative tasks. Supporting this type of human-robot coopera-
tion requires that the robot system be able to produce and understand
a wide range of natural communicative cues in order to allow hu-
mans to cooperate with it easily. For example, [15] experimentally
demonstrated the contribution of anticipatory action to the fluency
of human-robot interaction; similarly, natural-language dialogue has
been shown to be an effective means of coordinating actions between
a human and a robot [7].

A number of previous systems have also addressed the task of
human-robot cooperation, using a variety of communicative styles.
The Leonardo robot [2], for example, is able to learn simple action
sequences and to execute them jointly with the user. The Ripley sys-
tem [24] is able to manipulate objects in response to spoken requests
from a human partner; a more recent robot from the same group [16]
increases the responsiveness of the system and allows the action plan-
ner to adapt flexibly to a rapidly-changing world. The BARTHOC
[26] and ARMAR [27] humanoid robots both support multimodal
dialogue to interact with a human user in a variety of settings and
domains. The experiments described in [15] demonstrated that un-
derstanding and anticipating the user’s actions produces a robot that
can cooperate more smoothly with a human user.

Since an intelligent robot system must both process continuous
sensor data and reason about discrete concepts such as plans, actions,
and dialogue moves, this type of system is often made up of compo-
nents drawing from an assortment of representation and reasoning
paradigms. The robot system described in [22], for example, com-
bines low-level robot control and vision systems with a high-level

1 Technische Universität München, Germany, contact: foster@in.tum.de
2 University of Minho, Portugal, contact: wolfram.erlhagen@mct.uminho.pt

planner, using connectionist kernel perceptron learning to learn the
effects of different domain actions. Integration among the different
components of this system is achieved through a common represen-
tation of actions and their effects. Such hybrid architectures are also
particularly common when the robot is designed to cooperate with a
human partner; recent examples include [13, 17, 32].

In this paper, we present two robot systems designed to cooperate
with humans on mutual tasks and then show how combining rea-
soning components from these systems results in a more powerful
integrated system. Both of the robot systems have been developed in
the context of the JAST3 project (“Joint Action Science and Technol-
ogy”). The two main goals of this project are to investigate the cogni-
tive, neural, and communicative aspects of jointly-acting agents, both
human and artificial, and to build jointly-acting autonomous systems
that communicate and work intelligently on mutual tasks. The com-
mon task across the project is joint construction—that is, multiple
agents working together to assemble objects from their components.

The two JAST human-robot systems support intelligent coopera-
tion with humans on this joint construction task. Although both sys-
tems address the same basic task and incorporate similar input- and
output-processing components, the reasoning components are imple-
mented using very different techniques and they support very differ-
ent styles of interaction. The goal inference system is implemented
using dynamic neural fields and concentrates on inferring the user’s
intended domain actions based on their non-verbal behaviours and
on selecting appropriate domain actions for the system to perform in
response. For example, if the user picks up a bolt in a way that in-
dicates that they intend to use it themselves, the system might pick
up the corresponding wheel and hold it out to the user. The dialogue
system, on the other hand, concentrates on understanding and gener-
ating multimodal natural-language utterances to support cooperation
between the human and the robot, using a dialogue manager. Sec-
tions 2–3 present the details of these two systems and show a typical
interaction with each.

Since the two JAST human-robot systems address the same task,
using complementary forms of reasoning, it is possible to combine
the two forms of reasoning into a single system. This integrated sys-
tem is able both to intelligently infer the user’s actions and suggest
appropriate responses, and also to engage in dialogue with the user
to support coordination and to discuss situations when the system is
unable to infer the user’s goal. In Section 4, we present this integrated
system and show a sample of the interactions that it can support that
are not possible with either of the individual systems; this section
also gives some technical details of how the components of the two
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systems are combined in practice. Finally, in Section 5, we compare
the integrated system with other similar systems and summarise the
contributions of the system and the areas for future work.

2 GOAL INFERENCE BASED ON DYNAMIC
NEURAL FIELDS

The first of the JAST human-robot systems concentrates on giving
the robot the ability to predict the consequences of observed actions,
using an implementation inspired by neurocognitive mechanisms un-
derlying this capacity in humans and other social species. Many con-
temporary theories of intention understanding in familiar tasks rely
on the notion that an observer uses their own motor repertoire to sim-
ulate an observed action and its effect ([4], for a review see [25]). The
selection of an appropriate complementary behaviour in a joint action
task depends not only on the inferred goal of the partner, but also on
the integration of additional information sources such as shared task
knowledge (e.g., a construction plan) and contextual cues.

The cognitive control architecture for action coordination in the
joint construction scenario is formalized by a coupled system of
dynamic fields representing a distributed network of local but con-
nected neural populations [3]. Different pools of neurons encode
task-relevant information about action means, action goals, and con-
text in the form of activation patterns that are self-sustained through
recurrent interactions.

The motor simulation idea is implemented by the propagation of
activity through interconnected neural populations that constitute a
learned chain of motor primitives directed towards a specific goal
[6]. Typical examples in the context of the construction scenario are
reaching-grasping-placing/plugging sequences. The chains are auto-
matically triggered by an observed motor act (e.g., reaching or grasp-
ing) whenever additional input from connected dynamic fields (e.g.,
representing the currently available subgoals) pre-activates the neu-
ral populations. As a consequence of the motor simulation, the robot
is able to react to the partner’s action sequences well ahead of their
completion. This anticipation capacity has been shown to be crucial
for a fluent team performance [1, 15].

In the layer of the control architecture linked to motor execution,
neural populations represent the decision about the most appropri-
ate complementary behaviour. The behaviour is selected as a con-
sequence of a competition process between all response alternatives
getting input from connected layers (for details see [1]).

A system based on this dynamic field architecture was imple-
mented to support human-robot cooperation on the JAST joint con-
struction task. This system constructs a toy vehicle (Figure 1) with
the user. The vehicle is composed of several components which are
initially distributed in the separated working areas of the two team-
mates; this ensures that neither of the agents is able to reach all of
the required components on its own and must rely on the partner to
retrieve them, making joint action essential to a successful interac-
tion. The robotics platform we are currently using consists of a torus
on which are mounted a 7 DOFs AMTEC arm (Schunk GmbH &
Co.KG) with a 3-fingered BARRET hand (Barrett Technology Inc.)
and a stereo vision system. The system uses synthesised speech to
communicate its reasoning process to the human partner.

To control the arm-hand system, we applied a global planning
method in posture space that facilitates the integration of optimiza-
tion principles derived from experiments with humans [5]. For the
object recognition as well as for the classification of object-directed
hand postures and communicative gestures such as pointing or de-
manding an object, a combination of feature- and correspondence-

Figure 1. The JAST goal-inference robot together with the toy vehicle that
the human and the robot jointly construct.

based pattern recognizers were used [30]. As a software development
platform we haven chosen YARP [19]. This open-source project sup-
ports inter-process communication, image processing and a class hi-
erarchy to ease code reuse across different hardware platforms.

Figure 2 illustrates a typical example of the goal inference and ac-
tion selection capacities in this domain. In the top image, the human
reaches his open hand towards the robot teammate. By activating the
respective action chain in its repertoire, the robot interprets this ges-
ture as a request for a bolt to fix the wheel. Since the human has al-
ready mounted the wheel on his side of the construction, this inferred
goal describes a currently active subtask. A logical complementary
action sequence would be that the robot grasps a bolt to place it in
the teammate’s hand. However, the human has seemingly overlooked
a bolt in his own working area. In this situation, the representation of
the inferred goal together with the representation of the bolt in the
work space of the human trigger the decision to make a pointing ges-
ture directed towards the object. In addition, the robot uses speech to
explain the type of error the human is making.

3 DIALOGUE-BASED HUMAN-ROBOT
INTERACTION

Like the system described in the preceding section, the JAST human-
robot dialogue system [23] also supports multimodal human-robot
collaboration on a joint construction task. In this case, the user and
the robot work together to assemble wooden construction toys on a
common workspace, coordinating their actions through speech, ges-
tures, and facial displays. The robot (Figure 3) consists of a pair
of Mitsubishi manipulator arms with grippers, mounted in a po-
sition to resemble human arms, and an animatronic talking head
[29] capable of producing facial expressions, rigid head motion, and
lip-synchronised synthesised speech. The input channels consist of
speech recognition, object recognition, robot sensors, and face track-
ing; the outputs include synthesised speech, head motions, and robot
actions. The components of the system communicate with each other
using the Ice distributed object middleware system [14].

The robot is able to manipulate objects in the workspace and to
perform simple assembly tasks. The primary form of interaction with
the current version of the system is one in which the robot instructs
the user on building a particular compound object, explaining the
necessary assembly steps and retrieving pieces as required, with the
user performing the actual assembly actions. As with the dynamic-
field system, the workspace is divided into two areas—one belonging
to the robot and one to the human—in order to make joint action
necessary for success in the overall task.

Input on each of the channels is processed using a dedicated mod-
ule for that channel. To process the speech, we use a Java Speech
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Figure 2. Example of the goal inference (top) and action selection (bot-
tom) capacities which are implemented by the dynamic field architecture. The
robot uses speech to communicate the results of its reasoning about the be-
haviour of the teammate.

Figure 3. The JAST dialogue robot with a selection of wooden
construction-toy components.

API interface to the commercial Dragon NaturallySpeaking speech
recogniser [21]. A camera mounted above the common work area
provides two-dimensional images of the contents of the workspace.
The information from this camera is pre-processed to extract regions
of interest (ROIs). The extracted ROIs are then processed in parallel
by a template-based object-recognition module [20] and a module
that performs static hand-gesture recognition [33].

Input received on all of the input sensors is continuously processed
by the corresponding modules and broadcast through Ice, using the
built-in IceStorm publish-subscribe mechanism. All of the input mes-
sages are received by a multimodal fusion component [11, 12], which
parses the recognized speech into logical forms using the OpenCCG
grammar formalism [31] and combines it with the recognised non-
verbal behaviour to produce multimodal hypotheses representing
user requests. The fusion hypotheses are then sent to the dialogue
manager, which selects an appropriate response.

The dialogue manager is implemented using the TrindiKit dia-
logue management toolkit [18]. This toolkit uses the well-known
information-state update approach to dialogue management [28],
which allows a dialogue to be modelled declaratively. When the dia-
logue manager receives a new set of fusion hypotheses, it selects the
appropriate system response using information from three sources:
the inventory of objects in the world, a representation of the cur-
rent assembly state, and the history of the dialogue. When the sys-
tem is jointly following an assembly plan with the user, the dialogue
manager is able to select from different strategies for traversing the
plan: it may use a postorder strategy, in which it proceeds directly
to describing the concrete assembly actions, or it may use a preorder
strategy, in which the structure of the plan is described before giving
specific assembly actions. More details on the dialogue manager and
on the description strategies are given in [10].

Once the dialogue manager has selected a response to the user’s
multimodal utterance, it sends the specification of the response to
the output planner. This module in turn sends commands to select
appropriate output on each of the individual channels to meet the
specification: linguistic content including appropriate multimodal re-
ferring expressions [9], facial expressions and gaze behaviours of the
talking head [8], and actions of the robot manipulators. The user then
responds to the system utterance by speaking or performing actions
in the world, and the interaction continues until the target object has
been assembled.

An excerpt from a typical interaction between a user and the JAST
dialogue system is shown in Figure 4. In this excerpt, the robot knows
the full plan for building the target object: a “railway signal”, which
has sub-components called a “snowman” and a “flower”. The assem-
bled object is shown in Figure 4(a). In the excerpt, the robot instructs
the user on how to build the target object, using a preorder strat-
egy, and the user learns to make particular sub-components along the
way. We are currently carrying out a system evaluation based on this
robot-as-instructor scenario. The evaluation is designed to compare
the two description strategies in terms both of user satisfaction and
in success in the overall joint-construction task.

We will shortly extend the dialogue system to handle scenarios
where the user also knows the assembly plan. In such situations, the
main goal of the interaction is no longer instruction, but rather—as
with the goal-inference system described previously—coordination
between the partners, and the user will be able to take much more
initiative in the dialogue than is currently possible. We will return to
the details of this extended scenario in the following section.
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(a) “Railway signal”

• SYSTEM: To build a railway signal, we
need to make a snowman and a flower.

• USER: How do you make a snowman?
• SYSTEM: [Picking up a red cube and

holding it out] To make a snowman, in-
sert the green bolt into your blue cube
and fasten it with this cube.

• USER: [picks up bolt and cube; takes
other cube; assembles “snowman”]
Okay.

• SYSTEM: Well done, you have made
a snowman. Now we need to make a
flower. To make a flower, [. . . ]

(b) Dialogue excerpt

Figure 4. A sample object and an excerpt from an interaction where the
robot instructs the user on how to construct this object.

4 INTEGRATING GOAL INFERENCE AND
NATURAL-LANGUAGE DIALOGUE

There are a number of similarities between the two human-robot
systems described above. Both support the same basic task—joint
construction—and view the goals and subgoals of this task in a simi-
lar way. Also, the input and output channels used by the two systems
are very similar: both include object and gesture recognition in the
input and produce speech and robot-manipulator actions as part of
their output. On the other hand, the reasoning processes used by the
two systems are very different: the former uses dynamic neural fields
to perform goal inference and action selection based entirely on non-
verbal input, while the latter uses techniques from issue-based dia-
logue management to engage in natural-language conversation with
some multimodal components. The strengths of the two systems are
also complementary: the dynamic-field system is good at detecting
and reasoning about the user’s non-verbal actions, but uses language
only for a limited form of canned output; the dialogue system sup-
ports advanced linguistic interaction, but has no mechanism to infer
the user’s intention from their actions in the world.

Motivated by the above similarities and complementary features,
we have combined components from the two individual human-robot
systems into a single, integrated architecture. The hardware platform
for the integrated system is the robot from the dialogue system (Fig-
ure 3), while the scenario is an extended version of the scenarios
used by each of the individual systems. As in the dynamic-field sce-
nario, the user and the robot are both assumed to know the assembly
plan for the target object and are able to infer the partner’s intentions
based on their behaviour, and the main goal of the interaction is for
the two participants to coordinate their actions. As in the dialogue
system, this coordination is accomplished through natural-language
dialogue incorporating both verbal and non-verbal communication.

Figure 5 shows the high-level architecture of the integrated sys-
tem. Messages on all of the multimodal input channels (speech, ges-
tures, and recognised objects) are sent to both of the input-processing
components, each of which—just as in the individual systems—
reasons about the meaning of the user’s actions in the current con-
text, each drawing information from the same set of state modules
(plan state, object inventory, interaction history). The inferred goals
and suggested system responses from the goal-inference system are
then passed to the the dialogue manager, which incorporates this in-

formation along with the processed messages from the fusion sys-
tem into the (extended) information state of the integrated system.
The dialogue manager then uses enhanced update rules to select an
appropriate system response to the input. Finally, just as in the indi-
vidual systems, the selected response is sent to the output system for
realisation on the output channels.

Multimodal
Input

Object
Inventory

Goal
Inference

Dialogue
Manager

Goal
State

Multimodal
Output

Figure 5. The architecture of the integrated system.

This integrated system supports interaction patterns that would not
be possible with either of the individual systems. Most importantly,
it is able both to detect unexpected actions from the user (i.e., ac-
tions that do not meet what it believes to be the current subgoals)
and to engage the user in dialogue to discuss how to deal with the
unexpected action. When both forms of reasoning work together, the
system is able to detect such user actions and to produce a variety of
responses, including correcting the user, asking for clarification as to
the user’s intentions, or attempting to silently revise its representa-
tion of the goal state. Varying the system’s response to this situation
is able to produce systems with different interactive “personalities”,
ranging from one that always makes the user follow the plan selected
by the system to one where the user has full control over the course
of the interaction.

Figure 6 shows a sample interaction between a user and the inte-
grated system, where the role of each of the reasoning components
is shown throughout. In this interaction, the user and the robot are
jointly building the “railway signal” object (Figure 4(a)). At the start,
the robot system has assumed that the user is building the “snow-
man” sub-component. When the user grasps a medium slat, which
is not needed for that subgoal, the goal inference system detects this
(just as in the sample interaction described at the end of Section 2)
and sends a message to the dialogue manager that the user’s action
cannot be integrated into the current plan.

At this point, the system has several options to deal with the mis-
match between its beliefs about the current subgoals and the recent
action of the user. It might silently revise its view of the current sub-
goals, for example, or it might—as in Figure 2—correct the user’s
apparent “error”. In the example, the system uses a third strategy,
and one that is only available because of the integration of the di-
alogue components: it asks the user in words to clarify their inten-
tions. After the user provides the needed clarification, also verbally,
the dialogue manager updates the system’s subgoals and informs the
goal-inference system of the change. The goal-inference system then
anticipates that, to meet this new subgoal, the user will need the nut
that is lying on the robot’s side of the table. The system therefore
picks up the nut and offers it to the user without being asked.

As can be seen by the right-hand columns in Figure 6, this type
of interaction would not be possible with either of the individual sys-
tems. The dialogue system does not have the necessary mechanism to
infer the user’s goals from their actions, while the goal-inference sys-
tem would only have been able to respond to the user’s unexpected
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Actions Dialogue Manager Goal Inference
User grasps a medium slat

Notices that action does not
meet current subgoal

Tells output planner to ask
for clarification

SYSTEM: “We don’t need a medium slat for the snowman”
USER: “Yes, but I want to build the flower now”

Interprets response and up-
dates subgoals

Suggests system response
Sends message to output
planner

Robot picks up a nut and holds it out
SYSTEM: “Then you’ll need this nut”

Figure 6. A sample interaction with the integrated system, showing the role of each individual reasoning component in the decision-making process.

action by treating it as an error rather than discussing the user’s goals
as in the example. Only when these two components are combined is
this rich interaction made possible.

4.1 Technical Details
The two individual systems use the same basic information in their
reasoning (task goals and subgoals, object inventory, input events);
however, due to the different implementations, they represent this
information quite differently. Also, at the implementation level, the
components of the dynamic-field system use YARP to communicate
with one another, while the dialogue system uses Ice as an integration
platform. A specific goal of the integration has been to make as few
changes as possible to the individual systems. An important aspect
of creating the integrated system has therefore been coming up with
a common representation for all of the relevant information, where
the representation is compatible with both of the systems and both of
the integration platforms.

To support the integration, we have defined generic interfaces to
represent recognised gestures and objects, as well as inferred and
proposed domain actions. These representations include the follow-
ing information:

• The Gestures representation includes the type of gesture recog-
nised (pointing, grasping, holding-out, unknown) and if necessary,
the object indicated.

• The Objects representation includes the classification of the ob-
ject, a 3D position and a flag indicating whether the object can be
reached by the robot.

• The Action representation consists of the type of action (grasp-
and-give, demand-and-receive, speak, undefined) and a string con-
taining further specifications (e.g. the object-id for grasp-and-give
or the sentence to speak out loud).

Internal communication between YARP and Ice is implemented
via a connector module that translates Ice messages to YARP mes-
sages and vice versa.

5 DISCUSSION
We have presented two human-robot systems, each of which is de-
signed to support the same joint construction task. One system uses
dynamic neural fields to perform non-verbal goal inference and ac-
tion selection, while the other uses a dialogue manager to support
multimodal natural-language interaction. We have then shown how

a system integrating the reasoning components of the two individual
systems is able to take advantage of the complementary strengths of
each to support interactions that neither system is able to support on
its own. In particular, this integrated system is able both to detect
the user’s intentions and anticipate their needs, and to use natural-
language dialogue to manage the joint activity. The integration of
these two systems is made possible through well-defined interfaces
that allow the two sets of reasoning components to share information
about world state, task goals, and input events.

In contrast to the other systems mentioned in the introduction,
the integrated JAST system is unique in that it combines methods
and techniques taken from two separate, fully-implemented, existing
systems—a neuro-inspired perception-action system and a symbolic,
multimodal-dialogue system—to produce an integrated robot system
that is able both to communicate with its human partner using lan-
guage and to intelligently understand and anticipate the partner’s in-
tentions. As demonstrated by the example in the preceding section,
the integrated system is able to go beyond the capabilities of either
of the individual systems to support intelligent human-robot cooper-
ation on the joint construction task.

The integrated system is currently under development: the neces-
sary interfaces have been specified as described in Section 4.1, and
the reasoning modules from the two systems are being adapted to
use the common interfaces. When the is completed, we will run a
user evaluation of the full system similar to that currently under way
for the dialogue system to demonstrate the contribution of both forms
of reasoning to natural human-robot joint action.
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