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Abstract. We investigate the existence of rules (in the form
of binary patterns) that allow the short-term prediction of
highly complex binary sequences. We also study the extent to
which these rules retain their predictive power when the se-
quence is contaminated with noise. Complex binary sequences
are derived by applying two binary transformations on real-
valued sequences generated by the well known tent map. To
identify short-term predictors we employ Genetic Algorithms.
The dynamics of the tent map depend strongly on the value
of the control parameter, r. The experimental results suggest
that the same is true for the number of predictors. Despite
the chaotic nature of the tent map and the complexity of the
derived binary sequences, the results reported suggest that
there exist settings in which an unexpectedly large number
of predictive rules exists. Furthermore, rules that permit the
risk free prediction of the value of the next bit are detected in
a wide range of parameter settings. By incorporating noise in
the data generating process, the rules that allow the risk free
prediction of the next bit are eliminated. However, for small
values of the variance of the Gaussian noise term there exist
rules that retain much of their predictive power.

1 Introduction

In this paper we consider the problem of identifying rules, in
the form of binary patterns, that are perfect, or in the worst
case good, short-term predictors of complex binary sequences.
A binary pattern of length L is defined as perfect short-term
predictor if its presence in any place of the binary sequence is
declarative of the value of the next bit. By definition, perfect
predictors, enable the risk-free prediction of the next bit. Sim-
ilarly, good short-term predictors, are binary patterns whose
appearance in any position of the binary sequence renders the
value of the next bit highly predictable.

Complex binary sequences are derived through the applica-
tion of binary transformations on real–valued data sequences
obtained from the tent map. The tent map is a piecewise-
linear, continuous map on the unit interval [0, 1] into itself:

fr(x) =


rx, x ∈ [0, 1/2]
r(1− x), x ∈ (1/2, 1]

, (1)
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where r is a control parameter that assumes values in the
interval [0, 2]. We consider a discrete process generated by:

xn+1 = fr(xn) = fr (fr (. . .))| {z }
(n+1) times

= f (n+1)
r (x0), n = 0, 1, . . . ,

(2)

where f
(n)
r denotes the nth iterate of fr. The Lyapunov ex-

ponent is given by:

λr(x) = lim
n→∞

1

n
ln

˛̨̨̨
d

dx
f (n)

r (x)

˛̨̨̨
= ln r,

everywhere in [0, 1]. For r ∈ (0, 1), the orbit, f
(n)
r (x0), for

any x0 ∈ [0, 1] converges to the unique fixed point 0, as n
increases. For r = 1, every point x ∈ [0, 1/2] is a fixed point.
The chaotic region is 1 < r 6 2, in which λr > 0 [5]. For
r > 1 the map has two unstable fixed points, one at 0 and the
other at x∗(r) = r/(r+1). Using the notation in [5], we write,

xn(r) ≡ f
(n)
r (1/2). Then x1(r) = r/2 and x2(r) = r(1−r/2).

The intervals, (0, x2(r)) and (x1(r), 1) are transient for fr, and
we have frA = A for A = [x2(r), x1(r)]. If r ∈

`√
2, 2
˜
, then

A is an attractor. At r =
√

2, the attractor A splits into two
bands, A0 and A1, at the position x = x∗(r). For r ∈

`
1,
√

2
˜

we have fr(A0) = A1 and fr(A1) = A0. Similarly, at r2 =
√

2,
each of the two bands splits into two bands, Aij(i, j = 0, 1). In
this manner, as r decreases, band splitting occurs successively
at r = r1, r2, . . . , rm, . . ., where rm = 21/2m

, and m = 1, 2, . . ..
By setting r0 = 2, then, for rm+1 < r < rm, there exist 2m

disjoint intervals Ai1,i2,...,im , ik = (0, 1) in which the invariant
density is positive (the 2m-band regime). Defining, l = 1+i1+
2i2+· · ·+2m−1im, and Jl ≡ Ai1,i2,...,im , it is shown in [5] that
fr(Jl) = Jl+1 for 1 6 l 6 2m − 1, and fr(JM ) = J1, where
M = 2m. Therefore, if r lies in the interval

`
1,
√

2
˜
, fr maps

a set of intervals between r − r2/2 and r/2 to themselves.
If, on the other hand, r >

√
2 these intervals merge. This is

illustrated in the bifurcation diagram of Fig. 1.
Real-world time series are frequently contaminated by

noise. To this end, we investigate the resilience of the predic-
tors to the presence of noise in the data generating process.
We include an additive Gaussian noise term with zero mean,
to Eq. (1), and study the extent to which the predictors de-
tected in the original sequences retain their predictive power
for different values of the variance of the distribution.

2 Methods

The tent map, described in Eq. (1), was employed to gener-
ate raw data sequences xn(x0, r). To generate the raw data
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Figure 1. Bifurcation diagram of the steady states of the tent
map with respect to r.

from the tent map the GNU Multiple Precision Arithmetic Li-
brary (GMP) [1] was utilized to generate floating point num-
bers with precision of at least 5000 bits. Subsequently, binary
data sequences bn(x0, r) were produced by applying the sim-
ple, threshold, binary transformation originally proposed for
the logistic equation in [4]:

bn(x0, r) =


0, if xn 6 0.5,
1, if xn > 0.5.

(3)

Eq. (3) produces a bit with value ‘1’ when the value of
the tent map is greater that 0.5 and a bit with value ‘0’
otherwise. To avoid transient phenomena, the first 104 iter-
ations of the map were discarded. A number of real-valued
sequences xn(x0, r) were generated through Eq. (1) for differ-
ent values of the control parameter, r, and starting points, x0.
Binary sequences, bn(x0, r), of 106 bits were produced by ap-
plying Eq. (3) on the raw data, xn(x0, r).

A second binary transformation, also proposed in [4] for the
logistic equation, was applied on the raw data. This transfor-
mation is also a simple, linear, threshold binary transforma-
tion, but with a variable threshold. The threshold value is the
previous value of the raw data of the tent map. Hence, the
second transformation is formulated as:

bn(x0, r) =


0, if xn 6 xn−1,
1, if xn > xn−1.

(4)

The number of all possible patterns of length L, 2L, in-
creases exponentially with respect to L. For large values of L,
therefore, it is infeasible to perform exhaustive search, and
more efficient search methods, such as Genetic Algorithms
(GAs), are required [2, 3]. To this end, a simple GA with bi-
nary representation was implemented and utilized. The GA
population consisted of L–bit patterns. The fitness of a pat-
tern p, was the number of times p was encountered in the
binary sequence bn(x0, r). The selection process used was
roulette wheel selection. As crossover operator the well–known
one–point crossover operator was employed. Finally, the mu-
tation operator utilized was the flip bit mutation operator .
GAs were applied for several values of L and a number of
binary sequences, bn(x0, r). Consequently, patterns that can
account as perfect, or good, predictors can be identified by
comparing the obtained results for L–bit and (L+1)–bit pat-
terns.

3 Presentation of Results

3.1 Fixed threshold

In the following, we present indicative results for binary se-
quences of length 106, obtained by applying the transforma-
tion of Eq. (3). In Fig. 2 the distribution of bits with value ‘1’
and ‘0’ for different values of r is plotted. Evidently, an equal
distribution of the two occurs only as r tends to 2.

Figure 2. Distribution of ones (dashed) and zeros (solid)
according to the transformation of Eq. (3) for bn(0.1, r) and

r ∈ [1, 2] with stepsize 10−3.

The number of distinct patterns of length L that appear for
different values of r, is reported in Table 1. In detail, the first
column of Table 1 reports the value of r; the second column
indicates the length of the binary patterns L; the third column
corresponds to the number of different patterns of length L
identified in each binary sequence (#f); and finally the fourth
column reports the ratio of the number of patterns of length L
found (#f) to the number of possible binary patterns of this
length (2L). The lower the ratio shown in the last column of
the table the fewer the patterns that appear in the binary
sequence and hence the higher the predictability.

An inspection of Table 1 suggests that increasing the value
of r, gradually increases the number of patterns that are en-
countered for each value of L and hence degrades predictabil-
ity. This effect becomes clear by comparing the results for
r = 1.44 and r = 1.999. For r = 1.44 and L = 2, already the
ratio of appearing to all possible patterns is 0.75 suggesting
that one out of the four possible patterns is absent. This ratio
decreases as L increases to reach 0.091 for L = 9 indicating
that less than 10% of all possible patterns of this length are
present in the sequence b106(0.1, 1.44). On the contrary, for
r = 1.999 all possible patterns appear for all the different val-
ues of L up to and including L = 9. It should be noted that
for r = 1.999 and L = 10 the ratio of column four becomes
less than unity, but still its value is very close to that, 0.999,
suggesting that even in this case increasing L reduces the ratio
but this effect takes place very slowly.

Next, the impact of introducing noise to the data generating
process is investigated. A normally distributed, ε ∼ N (0, σ2),
additive noise term was included in the tent map equation,
yielding xn+1 = fr(xn) + ε, where fr(xn) is given by Eq. (1).
It should be noted that we enforced the resulting raw data se-
ries to lie in the interval [0, 1] by rejecting realizations of the
noise term that would result in xn+1 /∈ [0, 1]. The obtained
experimental results for the most predictable binary sequence

44



Table 1. Number of patterns in b106 (0.1, r) obtained through
the transformation of Eq. (3) for different values of r.

r L #f #f/2L

2 3 0.750
3 5 0.625
4 7 0.437
5 11 0.343

1.44 6 15 0.234
7 23 0.179
8 31 0.121
9 47 0.091
2 3 0.750
3 5 0.625
4 7 0.437
5 11 0.343

1.5 6 16 0.250
7 25 0.195
8 37 0.144
9 57 0.111
2 3 0.750
3 5 0.625
4 8 0.500
5 13 0.406

1.6 6 21 0.328
7 34 0.265
8 55 0.214
9 88 0.171
2 4 1.000
3 7 0.875

1.7 4 12 0.750
5 21 0.656

r L #f #f/2L

6 36 0.562
1.7 7 61 0.476

8 105 0.410
9 179 0.349
2 4 1.000
3 7 0.875
4 13 0.812
5 24 0.750

1.8 6 43 0.671
7 78 0.609
8 141 0.550
9 253 0.494
2 4 1.000
3 8 1.000
4 15 0.937
5 29 0.906

1.9 6 55 0.859
7 105 0.820
8 199 0.777
9 379 0.740
2 4 1.000
3 8 1.000
4 16 1.000
5 32 1.000

1.999 6 64 1.000
7 128 1.000
8 256 1.000
9 512 1.000

when no noise is included, b106(0.1, 1.44), are summarised in
Table 2. The first column of the table corresponds to the pat-
tern length L; the second lists all the possible binary patterns
of length L (due to space limitations, only patterns of length
up to four are included); while columns three to six report the
number of occurrences of each pattern for different values of
the variance, σ2, starting with the case of no noise (σ2 = 0).

Starting from the case of no noise, we observe that more
than three quarters of the binary sequence consists of bits
with value ‘1’. Furthermore, from the patterns with length
two, the pattern ‘00’ is missing, indicating that a ‘0’ is always
followed by a ‘1’. This fact renders the unit length pattern
‘0’ (and consequently all patterns of any length ending with a
‘0’) a perfect predictor, and hence approximately 23% of the
sequence is perfectly predictable. The inclusion of the additive
noise term distorts these findings gradually as the variance in-
creases. For σ2 = 0.01 findings are marginally altered as the
length two pattern ‘00’ appears only 17 times in the length
106 binary sequence. Thus, the probability of a ‘1’ following
a bit with value ‘0’ is 0.99993. For σ2 = 0.1 and σ2 = 0.5
this probability becomes 0.56109 and 0.44146 respectively. In
the case of σ2 = 0.5, therefore, the impact of noise is so large
that the original finding is reversed and a ‘0’ is more likely to
be followed by a ‘0’. The fact that increasing the variance of
the noise term deteriorates the predictability of the binary se-
quence is also evident from the fact that patterns that did not
appear in the not contaminated with noise sequence, appear
frequently in the contaminated series. The predictive power
of the binary pattern ‘0’ (perfect predictors in the noise-free
binary sequence) with respect to the value of the variance of
the additive noise term, σ2 is illustrated in Fig. 3. To gen-
erate Fig. 3, σ2 assumed values in the interval [0, 0.5] with
stepsize 10−3.

Table 2. Patterns in b106 (0.1, 1.44) obtained through the
transformation of Eq. (3) and different values of σ2.

L patterns σ2 = 0.0 σ2 = 0.01 σ2 = 0.1 σ2 = 0.5
1 0 230307 246757 434808 552264

1 769693 753243 565192 447736
00 0 17 190252 308874

2 01 231742 246799 243209 244133
10 231742 246799 243209 244133
11 536514 506383 323328 202858
000 0 0 93237 173043
001 0 17 97015 135831
010 112119 119901 108060 133112
011 119623 126897 135149 111021

3 100 0 17 97015 135831
101 231742 246782 146194 108301
110 119623 126898 135148 111021
111 416890 379485 188179 91837
0000 0 0 50612 96905
0001 0 0 42625 76138
0010 0 17 43068 74254
0011 0 0 53947 61577
0100 0 9 44101 74116
0101 112119 119892 63959 58995
0110 0 2915 55812 60753

4 0111 119622 123982 79336 50268
1000 0 0 42625 76138
1001 0 17 54390 59693
1010 112119 119884 64992 58858
1011 119623 126897 81202 49443
1100 0 8 52914 61715
1101 119623 126890 82234 49306
1110 119623 123983 79336 50268
1111 297267 255502 108843 41569

Figure 3. Predictive power of the unit length binary pattern ‘0’
in the sequences obtained through the transformation of Eq (3)

with respect to the variance σ2 of the noise term.

3.2 Variable threshold

In this subsection we present results from the analysis of
binary sequences derived by applying the transformation of
Eq. (4), according to which the threshold is equal to the previ-
ous value of the tent map. The distribution of bits with value
‘1’ and ‘0’ for different values of the control parameter r is
illustrated in Fig. 4. Comparing Figs. 2 and 4 it is evident
that the two transformations yield substantially different dis-
tributions of ones and zeros. For the second transformation,
the proportion of ones exceeds that of zeros for r marginally
larger than 1. As shown in Fig. 4 the two proportions are
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Figure 4. Distribution of ones (dashed) and zeros (solid)
according to the transformation of Eq. (4) for bn(0.1, r)

and r ∈ [1, 2] with stepsize 10−3.

equal until r becomes equal to
√

2. This finding is attributed
to the band splitting phenomenon, briefly described in Sec-
tion 1, that occurs for r ∈ (1,

√
2] [5]. From that point and

onward their difference increases.
The number of patterns of different length L that appear

in the binary sequences of length 106, are reported in Table 3
for different values of the control parameter r. More specifi-
cally, the first column of Table 3 reports the value of r; the
second column corresponds to the length L of the binary pat-
terns; the third column reports the number of different pat-
terns of length L that were identified in the sequence (#f);
and lastly, column four depicts the proportion of the patterns
encountered (#f) to the number of possible binary patterns
of length L (2L).

As in the case of the fixed threshold binary transforma-
tion, increasing the value of the control parameter r increases
the number of patterns that appear in the derived binary
sequences. However, this effect is more pronounced for the
fixed threshold transformation of Eq. (3) than for the vari-
able threshold transformation of Eq. (4). Even for r = 1.999,
Table 3 reports that the number of binary patterns of length
two is three, suggesting that one pattern of length two does
not appear, and hence a unit length perfect binary predictor
exists. In contrast, for the fixed threshold binary transforma-
tion, Table 1, all four length two binary patterns are present
in the sequences that are generated with r > 1.7. Moreover,
the ratio of the patterns of length L found to the number of
possible patterns of this length decreases more rapidly in the
sequences generated by the variable threshold transformation.
For instance, for r = 1.44, the number of patterns of length
nine is 47 for the fixed threshold transformation, while for the
variable threshold transformation this number is 10.

The impact of introducing noise on the short-term predic-
tors is studied next. Table 4 reports the patterns of length
two to four that were encountered in the binary sequence
b106(0.1, 1.44) that was obtained through the second transfor-
mation, for different values of σ2. In detail, the first column of
Table 4 corresponds to the length L of the patterns; the second
column lists all possible binary patterns of this length; while
columns three to six report the number of occurrences of each
pattern in the binary sequences obtained for different values

Table 3. Number of patterns in b106 (0.1, r) obtained through
the transformation of Eq. (4) for different values of r.

r L #f #f/2L

2 3 0.750
3 4 0.500
4 5 0.312
5 6 0.187

1.44 6 7 0.109
7 8 0.062
8 9 0.035
9 10 0.019
2 3 0.750
3 4 0.500
4 5 0.312
5 6 0.187

1.5 6 7 0.109
7 8 0.062
8 9 0.035
9 11 0.021
2 3 0.750
3 4 0.500
4 5 0.312
5 7 0.218

1.6 6 9 0.140
7 12 0.093
8 15 0.058
9 19 0.037
2 3 0.750

1.7 3 4 0.500
4 5 0.312
5 7 0.218

r L #f #f/2L

6 9 0.140
1.7 7 12 0.093

8 16 0.062
9 21 0.041
2 3 0.750
3 5 0.625
4 7 0.437
5 10 0.312

1.8 6 14 0.218
7 19 0.148
8 27 0.105
9 38 0.074
2 3 0.750
3 5 0.625
4 8 0.500
5 12 0.375

1.9 6 18 0.281
7 27 0.210
8 40 0.156
9 59 0.115
2 3 0.750
3 5 0.625
4 8 0.500
5 13 0.406

1.999 6 21 0.328
7 34 0.265
8 55 0.214
9 89 0.173

of the variance of the additive noise term ε ∼ N (0, σ2). Note
that as in the previous case, the resulting raw data sequence

{xn}10
6

n=0 was restrained in the interval [0, 1] by rejecting re-
alizations of the noise term that would result in xn /∈ [0, 1].

Starting from the case of no noise, we observe that zeros
and ones are approximately equally distributed in the binary
sequence. As in the case of the first transformation, pattern
‘00’ is missing from the patterns of length two, a finding which
implies that a ‘0’ is always followed by a ‘1’, and hence all the
binary patterns of any length that end with ‘0’ are perfect pre-
dictors. Furthermore, the pattern ‘111’ was not encountered,
implying that ‘11’ is always followed by a ‘0’. From the inspec-
tion of the findings for patterns of length three we also obtain
a good predictor of length two, namely the pattern ‘01’, for
which the probability of appearance of ‘0’ immediately after
this pattern is 0.96919. Comparing the aforementioned find-
ings for the case of no noise, with the corresponding ones
obtained by the first, fixed threshold, transformation we con-
clude that the binary sequence obtained through the variable
threshold transformation is more predictable.

As expected, the introduction of noise eliminates all the
perfect predictors identified in the original binary sequence.
For a low value of the variance, σ2 = 0.01, the findings are
marginally distorted. The previously not encountered pattern
‘00’ appears 5979 times yielding a probability of encounter-
ing a bit with the value ‘1’ following a bit with a value of
‘0’ equal to 0.987688. This probability is marginally lower
than the corresponding probability for the first transforma-
tion. On the other hand, when the variance of the noise term
increases to σ2 = 0.1 and σ2 = 0.5 this probability becomes
0.867348 and 0.698495, respectively. Both these probabilities
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Table 4. Patterns in bn(0.1, 1.44) obtained through the
transformation of Eq. (4) and different values of σ2.

L patterns σ2 = 0.0 σ2 = 0.01 σ2 = 0.1 σ2 = 0.5
1 0 492207 485787 399771 471981

1 507793 514213 600229 528019
00 0 5979 52973 142274

2 01 492415 479647 346368 329606
10 492414 479647 346368 329606
11 15169 34725 254289 198512
000 0 628 7257 32975
001 0 5351 45716 109299
010 477246 447216 186610 187262
011 15169 32430 159758 142343

3 100 0 5351 45716 109299
101 492414 474296 300652 220307
110 15168 32430 159758 142343
111 0 2295 94530 56169
0000 0 71 979 6175
0001 0 557 6278 26800
0010 0 4840 24665 57459
0011 0 511 21051 51840
0100 0 3964 24580 59905
0101 477246 443252 162030 127357
0110 15168 30378 98071 98715

4 0111 0 2052 61686 43628
1000 0 557 6278 26800
1001 0 4794 39438 82499
1010 477245 442376 161945 129803
1011 15169 31919 138707 90503
1100 0 1387 21136 49394
1101 15168 31043 138622 92949
1110 0 2052 61686 43628
1111 0 243 32844 12541

are higher than the corresponding ones for the case of the
transformation of Eq. (3). Moreover, note that for the case of
the first transformation and σ2 = 0.5 a bit with value ‘0’ is
more likely to be followed by a bit with the same value (prob-
ability equal to 0.55854); a phenomenon that does not occur
at present. For the pattern ‘11’ the probability of encounter-
ing a zero immediately after it becomes 0.933909, 0.628256,
and 0.717049, for σ2 equal to 0.01, 0.1, and 0.5, respectively.
Finally, for the pattern ‘01’ the probability of zero after its
appearance is 0.932387, 0.538762, and 0.568140 for σ2 equal
to 0.01, 0.1, and 0.5, respectively. The predictive power of the
binary patterns, ‘0’, ‘11’, (perfect predictors in the noise-free
binary sequence) and ‘01’ (good predictor in the noise-free
binary sequence), with respect to the value of the variance of
the additive noise term, σ2 is illustrated in Fig. 5. To gener-
ate Fig. 5, σ2 assumed values in the interval [0, 0.5] with a
stepsize of 10−3.

4 Conclusions

Despite the chaotic nature of the tent map and the resulting
complexity of the binary sequences that were derived after the
application of two threshold, binary, transformations a large
number of short-term predictors was detected. The reported
experimental results indicate that the binary sequences gen-
erated through the variable threshold binary transformation
are more predictable than those obtained through the fixed
threshold transformation. This finding is clearer for values of
the control parameter, r, close to its upper bound, 2. Indeed
for r = 1.999 all the patterns of length up to nine appear in the
binary sequences obtained through the first transformation,

Figure 5. Predictive power of binary patterns identified in the
sequences obtained through the transformation of Eq (4) with

respect to the variance σ2 of the noise term.

suggesting that there is no perfect predictor. On the contrary,
for the sequences generated through the second transforma-
tion with the same value of r, only three out of the four pos-
sible patterns of length two are encountered, suggesting that
there is a perfect short-term predictor of length one. The in-
clusion of an additive Gaussian noise term with zero mean in
the tent map equation eliminated all perfect predictors. How-
ever, for small values of the variance of the Gaussian noise
binary patterns with high predictive power were identified.

Future work on the subject will include the investigation of
multiplicative noise, as well as, the application of this method-
ology to real–world time series and in particular financial time
series. It is worth noting that the second binary transforma-
tion is particularly meaningful in the study of financial time
series as it corresponds to the direction of change of the next
value relative to the present one.
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