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Abstract. In this paper, we present an improved approach 
integrating rules, neural networks and cases, compared to a 
previous one. The main approach integrates neurules and cases. 
Neurules are a kind of integrated rules that combine a symbolic 
(production rules) and a connectionist (adaline unit) 
representation. Each neurule is represented as an adaline unit. 
The main characteristics of neurules are that they improve the 
performance of symbolic rules and, in contrast to other hybrid 
neuro-symbolic approaches, retain the modularity of production 
rules and their naturalness in a large degree. In the improved 
approach, various types of indices are assigned to cases 
according to different roles they play in neurule-based 
reasoning, instead of one. Thus, an enhanced knowledge 
representation scheme is derived resulting in accuracy 
improvement. Experimental results demonstrate its 
effectiveness.  

1   INTRODUCTION 
In contrast to rule-based systems that solve problems from 
scratch, case-based systems use pre-stored situations (i.e., 
cases) to deal with similar new situations. Case-based reasoning 
offers some advantages compared to symbolic rules and other 
knowledge representation formalisms. Cases represent specific 
knowledge of the domain, are natural and usually easy to obtain 
[11], [12]. Incremental learning comes natural to case-based 
reasoning. New cases can be inserted into a knowledge base 
without making changes to the preexisting knowledge. The 
more cases are available, the better the domain knowledge is 
represented. Therefore, the accuracy of a case-based system can 
be enhanced throughout its operation, as new cases become 
available. A negative aspect of cases compared to symbolic 
rules is that they do not provide concise representations of the 
incorporated knowledge. Also it is not possible to represent 
heuristic knowledge. Furthermore, the time-performance of the 
retrieval operations is not always the desirable.   

Approaches integrating rule-based and case-based reasoning 
have given interesting and effective knowledge representation 
schemes and are becoming more and more popular in various 
fields [3], [13], [14], [15], [17], [18], [19]. The objective of 
these efforts is to derive hybrid representations that augment the 
positive aspects of the integrated formalisms and 
simultaneously minimize their negative aspects. The 
complementary advantages and disadvantages of rule-based and 
case-based reasoning are a good justification for their possible 

combination. The bulk of the approaches combining rule-based 
and case-based reasoning follow the coupling models [17]. In 
these models, the problem-solving (or reasoning) process is 
decomposed into tasks (or stages) for which different 
representation formalisms (i.e., rules or cases) are applied. 

However, a more interesting approach is one integrating 
more than two reasoning methods towards the same objective. 
In [16] and [10], such an approach integrating three reasoning 
schemes, namely rules, neurocomputing and case-based 
reasoning in an effective way is introduced. To this end, 
neurules and cases are combined. Neurules are a type of hybrid 
rules integrating symbolic rules with neurocomputing in a 
seamless way. Their main characteristic is that they retain the 
modularity of production rules and also their naturalness in a 
large degree. In that approach, on the one hand, cases are used 
as exceptions to neurules, filling their gaps in representing 
domain knowledge and, on the other hand, neurules perform 
indexing of the cases facilitating their retrieval. Finally, it 
results in accuracy improvement. 

In this paper, we enhance the above approach by employing 
different types of indices for the cases according to different 
roles they play in neurule-based reasoning. In this way, an 
improved knowledge representation scheme is derived as 
various types of neurules’ gaps in representing domain 
knowledge are filled in by indexed cases. Experimental results 
demonstrate the effectiveness of the presented approach 
compared to our previous one. 

The rest of the paper is organized as follows. Section 2 
presents neurules, whereas Section 3 presents methods for 
constructing the indexing scheme of the case library. Section 4 
describes the hybrid inference mechanism. Section 5 presents 
experimental results regarding accuracy of the inference 
process. Section 6 discusses related work. Finally, Section 7 
concludes. 

2   NEURULES 
Neurules are a type of hybrid rules integrating symbolic rules 
with neurocomputing giving pre-eminence to the symbolic 
component. Neurocomputing is used within the symbolic 
framework to improve the performance of symbolic rules [7], 
[10]. In contrast to other hybrid approaches (e.g. [4], [5]), the 
constructed knowledge base retains the modularity of 
production rules, since it consists of autonomous units 
(neurules), and also retains their naturalness in a large degree, 
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since neurules look much like symbolic rules [7], [8]. Also, the 
inference mechanism is a tightly integrated process, which 
results in more efficient inferences than those of symbolic rules 
[7], [10]. Explanations in the form of if-then rules can be 
produced [9], [10]. 

 

2.1 Syntax and Semantics 

The form of a neurule is depicted in Fig.1a. Each condition Ci is 
assigned a number sfi, called its significance factor. Moreover, 
each rule itself is assigned a number sf0, called its bias factor. 
Internally, each neurule is considered as an adaline unit 
(Fig.1b). The inputs Ci (i=1,...,n) of the unit are the conditions 
of the rule. The weights of the unit are the significance factors 
of the neurule and its bias is the bias factor of the neurule. Each 
input takes a value from the following set of discrete values: [1 
(true), 0 (false), 0.5 (unknown)]. This gives the opportunity to 
easily distinguish between the falsity and the absence of a 
condition in contrast to symbolic rules. The output D, which 
represents the conclusion (decision) of the rule, is calculated via 
the standard formulas: 
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where a is the activation value and f(x) the activation function, 
a threshold function. Hence, the output can take one of two 
values (‘-1’, ‘1’) representing failure and success of the rule 
respectively. 

 
Fig. 1. (a) Form of a neurule (b) a neurule as an adaline unit 

The general syntax of a condition Ci and the conclusion D is: 
<condition>::= <variable> <l-predicate> <value>  
<conclusion>::= <variable> <r-predicate> <value> 
where <variable> denotes a variable, that is a symbol 
representing a concept in the domain, e.g. ‘sex’, ‘pain’ etc, in a 
medical domain. <l-predicate> denotes a symbolic or a numeric 
predicate. The symbolic predicates are {is, isnot} whereas the 
numeric predicates are {<, >, =}. <r-predicate> can only be a 
symbolic predicate. <value> denotes a value. It can be a symbol 
or a number. The significance factor of a condition represents 
the significance (weight) of the condition in drawing the 

conclusion(s). Table 1 (Section 3) presents two example 
neurules, from a medical diagnosis domain. 

Neurules can be constructed either from symbolic rules, thus 
exploiting existing symbolic rule bases, or from empirical data 
(i.e., training examples) (see [7] and [8] respectively). An 
adaline unit is initially assigned to each possible conclusion.  
Each unit is individually trained via the Least Mean Square 
(LMS) algorithm. When the training set is inseparable, special 
techniques are used. In that case, more than one neurule having 
the same conclusion are produced. 

 
Table 1. Example neurules 

NR1: (-23.9) 
if patient-class is human0-20 (10.6), 
    pain is continuous (10.5), 
    fever is high (8.8), 
    fever is medium (8.4), 
    patient-class is human21-35 (6.2), 
    fever is no-fever (2.7), 
    ant-reaction is medium (1.1) 
then disease-type is inflammation 

NR2: (-13.4) 
 if patient-class is human21-35 (6.9), 

  pain is continuous (3.2), 
  joints-pain is yes (3.1), 
  fever is low (1.5), 
  fever is no-fever (1.5) 

 then disease-type is chronic-
inflammation 

 

2.2  The Neurule-Based Inference Engine 

The neurule-based inference engine performs a task of 
classification: based on the values of the condition variables 
and the weighted sums of the conditions, conclusions are 
reached. It gives pre-eminence to symbolic reasoning, based on 
a backward chaining strategy [7], [10]. As soon as the initial 
input data is given and put in the working memory, the output 
neurules are considered for evaluation. One of them is selected 
for evaluation. Selection is based on textual order. A neurule 
fires if the output of the corresponding adaline unit is computed 
to be ‘1’ after evaluation of its conditions. A neurule is said to 
be ‘blocked’ if the output of the corresponding adaline unit is 
computed to be ‘-1’ after evaluation of its conditions. 

A condition evaluates to ‘true’ (‘1’), if it matches a fact in 
the working memory, that is there is a fact with the same 
variable, predicate and value. A condition evaluates to 
‘unknown’, if there is a fact with the same variable, predicate 
and ‘unknown’ as its value. A condition cannot be evaluated if 
there is no fact in the working memory with the same variable. 
In this case, either a question is made to the user to provide data 
for the variable, in case of an input variable, or an intermediate 
neurule with a conclusion containing the variable is examined, 
in case of an intermediate variable. A condition with an input 
variable evaluates to ‘false’ (‘0’), if there is a fact in the 
working memory with the same variable, predicate and 
different value. A condition with an intermediate variable 
evaluates to ‘false’ if additionally to the latter there is no 
unevaluated intermediate neurule that has a conclusion with the 
same variable. Inference stops either when one or more output 
neurules are fired (success) or there is no further action 
(failure). 

During inference, a conclusion is rejected (or not drawn) 
when none of the neurules containing it fires. This happens 
when: (i) all neurules containing the conclusion have been 
examined and are blocked or/and (ii) a neurule containing an 
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alternative conclusion for the specific variable fires instead. For 
instance, if all neurules containing the conclusion ‘disease-type 
is inflammation’ have been examined and are blocked, then this 
conclusion is rejected (or not drawn). If a neurule containing 
e.g. the alternative conclusion ‘disease-type is primary-
malignant’ fires, then conclusion ‘disease-type is inflammation’ 
is rejected (or not drawn), no matter whether all neurules 
containing as conclusion ‘disease-type is inflammation’ have 
been examined (and are blocked) or not. 

3   INDEXING 
Indexing concerns the organization of the available cases so 
that combined neurule-based and case-based reasoning can be 
performed. Indexed cases fill in gaps in the domain knowledge 
representation by neurules and during inference may assist in 
reaching the right conclusion. To be more specific, cases may 
enhance neurule-based reasoning to avoid reasoning errors by 
handling the following situations: 

(a) Examining whether a neurule misfires. If sufficient 
conditions of the neurule are satisfied so that it can fire, it 
should be examined whether the neurule misfires for the 
specific facts, thus producing an incorrect conclusion. 

(b) Examining whether a specific conclusion was erroneously 
rejected (or not drawn). 

In the approach in [10], the neurules contained in the neurule 
base were used to index cases representing their exceptions. A 
case constitutes an exception to a neurule if its attribute values 
satisfy sufficient conditions of the neurule (so that it can fire) 
but the neurule's conclusion contradicts the corresponding 
attribute value of the case. In this approach, various types of 
indices are assigned to cases. More specifically, indices are 
assigned to cases according to different roles they play in 
neurule-based reasoning and assist in filling in different types 
of gaps in the knowledge representation by neurules. Assigning 
different types of indices to cases can produce an effective 
approach combining symbolic rule-based with case-based 
reasoning [1]. 

In this new approach, a case may be indexed by neurules and 
by neurule base conclusions as well. In particular, a case may 
be indexed as: 

(a) False positive (FP), by a neurule whose conclusion is 
contradicting. Such cases, as in our previous approach, 
represent exceptions to neurules and may assist in 
avoiding neurule misfirings.  

(b) True positive (TP), by a neurule whose conclusion is 
endorsing. The attribute values of such a case satisfy 
sufficient conditions of the neurule (so that it can fire) 
and the neurule's conclusion agrees with the 
corresponding attribute value of the case. Such cases 
may assist in endorsing correct neurule firings.  

(c) False negative (FN), by a conclusion erroneously 
rejected (or not drawn) by neurules. Such cases may 
assist in reaching conclusions that ought to have been 
drawn by neurules (and were not drawn). If neurules 
with alternative conclusions containing this variable 
were fired instead, it may also assist in avoiding neurule 
misfirings. ‘False negative’ indices are associated with 

conclusions and not with specific neurules because there 
may be more than one neurule with the same conclusion 
in the neurule base. 

The indexing process may take as input the following types 
of knowledge: 

(a) Available neurules and non-indexed cases. 
(b) Available symbolic rules and indexed cases. This type of 

knowledge concerns an available formalism of symbolic 
rules and indexed exception cases as the one presented in 
[6].  

The availability of data determines which type of knowledge 
is provided as input to the indexing module. If an available 
formalism of symbolic rules and indexed cases is presented as 
input, the symbolic rules are converted to neurules using the 
‘rules to neurules’ module. The produced neurules are 
associated with the exception cases of the corresponding 
symbolic rules [10]. Exception cases are indexed as ‘false 
positives’ by neurules. Furthermore, for each case ‘true 
positive’ and ‘false negative’ indices may be acquired using the 
same process as in type (a). 

When available neurules and non-indexed cases are given as 
input to the indexing process, cases must be associated with 
neurules and neurule base conclusions. For each case, this 
information can be easily acquired as following: 

Until all intermediate and output attribute values of the case 
have been considered: 
1. Perform neurule-based reasoning for the neurules based on 

the attribute values of the case. 
2. If a neurule fires, check whether the value of its conclusion 

variable matches the corresponding attribute value of the 
case. If it does (doesn't), associate the case as a ‘true 
positive’ (‘false positive’) with this neurule. 

3. Check all intermediate and final conclusions. Associate the 
case as a ‘false negative’ with each rejected (or not drawn) 
conclusion that ought to have been drawn based on the 
attribute values of the case. 
To illustrate how the indexing process works, we present the 

following example. Suppose that we have a neurule base 
containing the two neurules in Table 1 and the example cases 
shown in Table 2 (only the most important attributes of the 
cases are shown). The cases however, also possess other 
attributes (not shown in Table 2). 

‘disease-type’ is the output attribute that corresponds to the 
neurules’ conclusion variable. Table 3 shows the types of 
indices associated with each case in Table 2 at the end of the 
indexing process. 

To acquire indexing information, the input values 
corresponding to the attribute values of the cases are presented 
to the example neurules. Recall that when a neurule condition 
evaluates to ‘true’ it gets the value ‘1’, whereas when it is false 
gets ‘0’. 

For example, given the input case C2, the final weighted sum 
of neurule NR1 is: -23.9 + 10.6 + 10.5 + 8.8 = 6>0. Note that 
the first three conditions of NR1 evaluate to ‘true’ whereas the 
remaining four (i.e., ‘fever is medium’, ‘fever is no-fever’, 
‘patient-class is human21-35’ and ‘ant-reaction is medium’) to 
‘false’ (not contributing to the weighted sum). 
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Table 2. Example cases 
Case 
ID 

patient-class pain fever ant-
reaction 

joints-
pain disease-type 

C1 human21-35 continuous low none yes chronic-
inflammation 

C2 human0-20 continuous high none no inflammation 
C3 human0-20 night high none no inflammation 
C4 human0-20 continuous medium none no inflammation 

C5 human21-35 continuous no-fever medium yes chronic-
inflammation 

C6 human0-20 continuous low none no 
chronic-

inflammation 
 

The fact that the final weighted sum is positive means that 
sufficient conditions of NR1 are satisfied so that it can fire. 
Furthermore, the corresponding output attribute value of the 
case matches the conclusion of NR1 and therefore C2 is 
associated as ‘true positive’ with NR1.  
 

Table 3. Indices assigned to the example cases in Table 2 
Case 
ID 

Type of index Indexed by 

C1 ‘True positive’ Neurule NR2 
C2 ‘True positive’ Neurule NR1 
C3 ‘False negative’ Conclusion ‘disease-type is 

inflammation’ 
C4 ‘True positive’ Neurule NR1 
C5 ‘False positive’ Neurule NR1 
C5 ‘True positive’ Neurule NR2 
C6 ‘False negative’ Conclusion ‘disease-type is chronic-

inflammation’ 
 

Similarly, when the input values corresponding to the 
attribute values of cases C1 and C4 are given as input to the 
neurule base, sufficient conditions of neurules NR2 and NR1 
respectively are satisfied so that they can fire and the 
corresponding output attribute case values match their 
conclusions. Furthermore, when the input values corresponding 
to the attribute values of case C5 are given as input to the 
neurule base, sufficient conditions of both neurules NR1 and 
NR2 are satisfied so that they can fire. However, the 
corresponding output attribute case values match the conclusion 
of NR2 and contradict the conclusion of NR1. In addition, 
conclusion ‘disease-type is inflammation’ cannot be drawn 
when the input values corresponding to the attribute values of 
case C3 are given as input because the only neurule with the 
corresponding conclusion (i.e., NR1) is blocked. A similar 
situation happens for case C6. 

4  THE HYBRID INFERENCE MECHANISM 
The inference mechanism combines neurule-based with case-
based reasoning. The combined inference process mainly 
focuses on the neurules. The indexed cases are considered 
when: (a) sufficient conditions of a neurule are fulfilled so that 
it can fire, (b) all output or intermediate neurules with a specific 
conclusion variable are blocked and thus no final or 
intermediate conclusion containing this variable is drawn.  

In case (a), firing of the neurule is suspended and case-based 
reasoning is performed for cases indexed as ‘false positives’ 
and ‘true positives’ by the neurule and cases indexed as ‘false 
negatives’ by alternative conclusions containing the neurule’s 
conclusion variable. Cases indexed as ‘true positives’ by the 
neurule endorse its firing whereas the other two sets of cases 
considered (i.e., ‘false positives’ and ‘false negatives’) prevent 
its firing. The results produced by case-based reasoning are 
evaluated in order to assess whether the neurule will fire or 
whether an alternative conclusion proposed by the retrieved 
case will be considered valid instead.  

In case (b), the case-based module will focus on cases 
indexed as ‘false negatives’ by conclusions containing the 
specific (intermediate or output) variable. 

The basic steps of the inference process are the following: 

1. Perform neurule-based reasoning for the neurules. 
2. If sufficient conditions of a neurule are fulfilled so that it can 
fire, then 

2.1. Perform case-based reasoning for the ‘false positive’ 
and ‘true positive’ cases indexed by the neurule and the 
‘false negative’ cases associated with alternative 
conclusions containing the neurule’s conclusion 
variable. 

2.2. If none case is retrieved or the best matching case is 
indexed as ‘true positive’, the neurule fires and its 
conclusion is inserted into the working memory. 

2.3. If the best matching case is indexed as ‘false positive’ or 
‘false negative’, insert the conclusion supported by the 
case into the working memory and mark the neurule as 
'blocked'.  

3. If all intermediate neurules with a specific conclusion 
variable are blocked, then 

3.1. Examine all cases indexed as ‘false negatives’ by the 
corresponding intermediate conclusions, retrieve the 
best matching one and insert the conclusion supported 
by the retrieved case into the working memory. 

4. If all output neurules with a specific conclusion variable are 
blocked, then 

4.1. Examine all cases indexed as ‘false negatives’ by the 
corresponding final conclusions, retrieve the best 
matching one and insert the conclusion supported by the 
retrieved case into the working memory. 

The similarity measure between two cases ck and cl is 
calculated via a distance metric [1]. The best-matching case to 
the problem at hand is the one having the maximum similarity 
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with (minimum distance from) the input case. If multiple stored 
cases have a similarity equal to the maximum one, a simple 
heuristic is used. 

Let present now two simple inference examples concerning 
the combined neurule base (Table 1) and the indexed example 
cases (Tables 2 and 3). Suppose that during inference sufficient 
conditions of neurule NR1 are satisfied so that it can fire. Firing 
of NR1 is suspended and the case-based reasoning process 
focuses on the cases contained in the union of the following sets 
of indexed cases:  

• the set of cases indexed as ‘true positives’ by NR1: 
{C2, C4},  

• the set of cases indexed as ‘false positives’ by 
NR1: {C5} and 

• the set of cases indexed as ‘false negatives’ by 
alternative conclusions containing variable 
‘disease-type’ (i.e., ‘disease-type is chronic 
inflammation’): {C6}. 

So, in this example the case-based reasoning process focuses on 
the following set of indexed cases: {C2, C4} ∪ {C5} ∪ {C6} = 
{C2, C4, C5, C6}. 

Suppose now that during inference both output neurules in 
the example neurule base are blocked. The case-based 
reasoning process will focus on the cases contained in the union 
set of the following sets of indexed cases: 

• the set of cases indexed as ‘false negatives’ by 
conclusion ‘disease-type is inflammation’: {C3}. 

• the set of cases indexed as ‘false negatives’ by 
conclusion ‘disease-type is chronic-inflammation’: 
{C6}. 

Therefore, in this example the case-based reasoning process 
focuses on the following set of indexed cases: {C3} ∪ {C6} = 
{C3, C6}. 

5   EXPERIMENTAL RESULTS 
In this section, we present experimental results using datasets 
acquired from [2]. Note that there are no intermediate 
conclusions in these datasets. The experimental results involve 
evaluation of the presented approach combining neurule-based 
and case-based reasoning and comparison with our previous 
approach [10]. 75% and 25% of each dataset were used as 
training and testing sets respectively. Each initial training set 
was used to create a combined neurule base and indexed case 
library. For this purpose, each initial training set was randomly 
split into two disjoint subsets, one used to create neurules and 
one used to create an indexed case library. More specifically, 
2/3 of each initial training set was used to create neurules by 
employing the ‘patterns to neurules’ module [8] whereas the 
remaining 1/3 of each initial training set constituted non-
indexed cases. Both types of knowledge (i.e., neurules and non-
indexed cases) were given as input to the indexing construction 
module presented in this paper producing a combined neurule 
base and an indexed case library which will be referred to as 
NBRCBR. Neurules and non-indexed cases were also used to 
produce a combined neurule base and an indexed case library 

according to [10] which will be referred to as 
NBRCBR_PREV. 

Inferences were run for both NBRCBR and 
NBRCBR_PREV using the testing sets. Inferences from 
NBRCBR_Prev were performed using the inference mechanism 
combining neurule-based and CBR as described in [10]. 
Inferences from NBRCBR were performed according to the 
inference mechanism described in this paper. No test case was 
stored in the case libraries. 

Table 4 presents such experimental results regarding 
inferences from NBRCBR and NBRCBR_PREV. It presents 
results regarding classification accuracy of the integrated 
approaches and the percentage of test cases resulting in neurule-
based reasoning errors that were successfully handled by case-
based reasoning. Column ‘% FPs handled’ refers to the 
percentage of test cases resulting in neurule misfirings (i.e., 
‘false positives’) that were successfully handled by case-based 
reasoning. Column ‘% FNs handled’ refers to the percentage of 
test cases resulting in having all output neurules blocked (i.e., 
‘false negatives’) that were successfully handled by case-based 
reasoning. ‘False negative’ test cases are handled in 
NBRCBR_PREV by retrieving the best-matching case from the 
whole library of indexed cases. 

 
Table 4. Experimental results 

 NBRCBR NBRCBR_PREV 
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Car 
(1728 

patterns) 

96.04% 52.81% 64.07% 92.49% 15.51% 20.36%

Nursery 
(12960 

patterns) 

98.92% 58.68% 52.94% 97.68% 6.60% 18.82%

 
As can be seen from the table, the presented approach results 

in improved classification accuracy. Furthermore, in inferences 
from NBRCBR the percentages of both ‘false positive’ and 
‘false negative’ test cases successfully handled are greater than 
the corresponding percentages in inferences from 
NBRCBR_PREV. Results also show that there is still room for 
improvement. 

We also tested a nearest neighbor approach working alone in 
these two datasets (75% of the dataset used as case library and 
25% of the dataset used as testing set). We used the similarity 
measure presented in Section 5. The approach classified the 
input case to the conclusion supported by the best-matching 
case retrieved from the case library. Classification accuracy for 
car and nursery dataset is 90.45% and 96.67% respectively. So, 
both integrated approaches perform better. This is due to the 
fact that the indexing schemes assist in focusing on specific 
parts of the case library.  
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7   CONCLUSIONS 
In this paper, we present an approach integrating neurule-based 
and case-based reasoning that improves a previous hybrid 
approach [10]. Neurules are a type of hybrid rules integrating 
symbolic rules with neurocomputing. In contrast to other neuro-
symbolic approaches, neurules retain the naturalness and 
modularity of symbolic rules. Integration of neurules and cases 
is done in order to improve the accuracy of the inference 
mechanism. Cases are indexed according to the roles they can 
play during neurule-based inference. More specifically, they are 
associated as ‘true positives’ and ‘false positives’ with neurules 
and as ‘false negatives’ with neurule base conclusions. 

The presented approach integrates three types of knowledge 
representation schemes: symbolic rules, neural networks and 
case-based reasoning. Most hybrid intelligent systems 
implemented in the past usually integrate two intelligent 
technologies e.g. neural networks and expert systems, neural 
and fuzzy logic, genetic algorithms and neural networks, etc. A 
new development that should receive interest in the future is the 
integration of more than two intelligent technologies, 
facilitating the solution of complex problems and exploiting 
multiple types of data sources. 
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