
Improving the Accuracy of Neuro-Symbolic Rules with
Case-Based Reasoning

Jim Prentzas1, Ioannis Hatzilygeroudis2 and Othon Michail2

1 Technological Educational Institute of Lamia, Department of Informatics and Computer Technology, 35100 Lamia, Greece, email: dprentzas@teilam.gr.
2 University of Patras, Dept of Computer Engineering & Informatics, 26500 Patras, Greece, email: {ihatz, michailo}@ceid.upatras.gr.

Abstract. In this paper, we present an improved approach
integrating rules, neural networks and cases, compared to a
previous one. The main approach integrates neurules and cases.
Neurules are a kind of integrated rules that combine a symbolic
(production rules) and a connectionist (adaline unit)
representation. Each neurule is represented as an adaline unit.
The main characteristics of neurules are that they improve the
performance of symbolic rules and, in contrast to other hybrid
neuro-symbolic approaches, retain the modularity of production
rules and their naturalness in a large degree. In the improved
approach, various types of indices are assigned to cases
according to different roles they play in neurule-based
reasoning, instead of one. Thus, an enhanced knowledge
representation scheme is derived resulting in accuracy
improvement. Experimental results demonstrate its
effectiveness.

1 INTRODUCTION
In contrast to rule-based systems that solve problems from
scratch, case-based systems use pre-stored situations (i.e.,
cases) to deal with similar new situations. Case-based reasoning
offers some advantages compared to symbolic rules and other
knowledge representation formalisms. Cases represent specific
knowledge of the domain, are natural and usually easy to obtain
[11], [12]. Incremental learning comes natural to case-based
reasoning. New cases can be inserted into a knowledge base
without making changes to the preexisting knowledge. The
more cases are available, the better the domain knowledge is
represented. Therefore, the accuracy of a case-based system can
be enhanced throughout its operation, as new cases become
available. A negative aspect of cases compared to symbolic
rules is that they do not provide concise representations of the
incorporated knowledge. Also it is not possible to represent
heuristic knowledge. Furthermore, the time-performance of the
retrieval operations is not always the desirable.

Approaches integrating rule-based and case-based reasoning
have given interesting and effective knowledge representation
schemes and are becoming more and more popular in various
fields [3], [13], [14], [15], [17], [18], [19]. The objective of
these efforts is to derive hybrid representations that augment the
positive aspects of the integrated formalisms and
simultaneously minimize their negative aspects. The
complementary advantages and disadvantages of rule-based and
case-based reasoning are a good justification for their possible

combination. The bulk of the approaches combining rule-based
and case-based reasoning follow the coupling models [17]. In
these models, the problem-solving (or reasoning) process is
decomposed into tasks (or stages) for which different
representation formalisms (i.e., rules or cases) are applied.

However, a more interesting approach is one integrating
more than two reasoning methods towards the same objective.
In [16] and [10], such an approach integrating three reasoning
schemes, namely rules, neurocomputing and case-based
reasoning in an effective way is introduced. To this end,
neurules and cases are combined. Neurules are a type of hybrid
rules integrating symbolic rules with neurocomputing in a
seamless way. Their main characteristic is that they retain the
modularity of production rules and also their naturalness in a
large degree. In that approach, on the one hand, cases are used
as exceptions to neurules, filling their gaps in representing
domain knowledge and, on the other hand, neurules perform
indexing of the cases facilitating their retrieval. Finally, it
results in accuracy improvement.

In this paper, we enhance the above approach by employing
different types of indices for the cases according to different
roles they play in neurule-based reasoning. In this way, an
improved knowledge representation scheme is derived as
various types of neurules’ gaps in representing domain
knowledge are filled in by indexed cases. Experimental results
demonstrate the effectiveness of the presented approach
compared to our previous one.

The rest of the paper is organized as follows. Section 2
presents neurules, whereas Section 3 presents methods for
constructing the indexing scheme of the case library. Section 4
describes the hybrid inference mechanism. Section 5 presents
experimental results regarding accuracy of the inference
process. Section 6 discusses related work. Finally, Section 7
concludes.

2 NEURULES
Neurules are a type of hybrid rules integrating symbolic rules
with neurocomputing giving pre-eminence to the symbolic
component. Neurocomputing is used within the symbolic
framework to improve the performance of symbolic rules [7],
[10]. In contrast to other hybrid approaches (e.g. [4], [5]), the
constructed knowledge base retains the modularity of
production rules, since it consists of autonomous units
(neurules), and also retains their naturalness in a large degree,

49

since neurules look much like symbolic rules [7], [8]. Also, the
inference mechanism is a tightly integrated process, which
results in more efficient inferences than those of symbolic rules
[7], [10]. Explanations in the form of if-then rules can be
produced [9], [10].

2.1 Syntax and Semantics

The form of a neurule is depicted in Fig.1a. Each condition Ci is
assigned a number sfi, called its significance factor. Moreover,
each rule itself is assigned a number sf0, called its bias factor.
Internally, each neurule is considered as an adaline unit
(Fig.1b). The inputs Ci (i=1,...,n) of the unit are the conditions
of the rule. The weights of the unit are the significance factors
of the neurule and its bias is the bias factor of the neurule. Each
input takes a value from the following set of discrete values: [1
(true), 0 (false), 0.5 (unknown)]. This gives the opportunity to
easily distinguish between the falsity and the absence of a
condition in contrast to symbolic rules. The output D, which
represents the conclusion (decision) of the rule, is calculated via
the standard formulas:

D = f(a) , ∑
n

i=
ii Csf + = sf

1
0a

()
⎩
⎨
⎧ ≥

=

a
a

otherwise-
if

f
1

01

where a is the activation value and f(x) the activation function,
a threshold function. Hence, the output can take one of two
values (‘-1’, ‘1’) representing failure and success of the rule
respectively.

Fig. 1. (a) Form of a neurule (b) a neurule as an adaline unit

The general syntax of a condition Ci and the conclusion D is:
<condition>::= <variable> <l-predicate> <value>
<conclusion>::= <variable> <r-predicate> <value>
where <variable> denotes a variable, that is a symbol
representing a concept in the domain, e.g. ‘sex’, ‘pain’ etc, in a
medical domain. <l-predicate> denotes a symbolic or a numeric
predicate. The symbolic predicates are {is, isnot} whereas the
numeric predicates are {<, >, =}. <r-predicate> can only be a
symbolic predicate. <value> denotes a value. It can be a symbol
or a number. The significance factor of a condition represents
the significance (weight) of the condition in drawing the

conclusion(s). Table 1 (Section 3) presents two example
neurules, from a medical diagnosis domain.

Neurules can be constructed either from symbolic rules, thus
exploiting existing symbolic rule bases, or from empirical data
(i.e., training examples) (see [7] and [8] respectively). An
adaline unit is initially assigned to each possible conclusion.
Each unit is individually trained via the Least Mean Square
(LMS) algorithm. When the training set is inseparable, special
techniques are used. In that case, more than one neurule having
the same conclusion are produced.

Table 1. Example neurules

NR1: (-23.9)
if patient-class is human0-20 (10.6),
 pain is continuous (10.5),
 fever is high (8.8),
 fever is medium (8.4),
 patient-class is human21-35 (6.2),
 fever is no-fever (2.7),
 ant-reaction is medium (1.1)
then disease-type is inflammation

NR2: (-13.4)
 if patient-class is human21-35 (6.9),

 pain is continuous (3.2),
 joints-pain is yes (3.1),
 fever is low (1.5),
 fever is no-fever (1.5)

 then disease-type is chronic-
inflammation

2.2 The Neurule-Based Inference Engine

The neurule-based inference engine performs a task of
classification: based on the values of the condition variables
and the weighted sums of the conditions, conclusions are
reached. It gives pre-eminence to symbolic reasoning, based on
a backward chaining strategy [7], [10]. As soon as the initial
input data is given and put in the working memory, the output
neurules are considered for evaluation. One of them is selected
for evaluation. Selection is based on textual order. A neurule
fires if the output of the corresponding adaline unit is computed
to be ‘1’ after evaluation of its conditions. A neurule is said to
be ‘blocked’ if the output of the corresponding adaline unit is
computed to be ‘-1’ after evaluation of its conditions.

A condition evaluates to ‘true’ (‘1’), if it matches a fact in
the working memory, that is there is a fact with the same
variable, predicate and value. A condition evaluates to
‘unknown’, if there is a fact with the same variable, predicate
and ‘unknown’ as its value. A condition cannot be evaluated if
there is no fact in the working memory with the same variable.
In this case, either a question is made to the user to provide data
for the variable, in case of an input variable, or an intermediate
neurule with a conclusion containing the variable is examined,
in case of an intermediate variable. A condition with an input
variable evaluates to ‘false’ (‘0’), if there is a fact in the
working memory with the same variable, predicate and
different value. A condition with an intermediate variable
evaluates to ‘false’ if additionally to the latter there is no
unevaluated intermediate neurule that has a conclusion with the
same variable. Inference stops either when one or more output
neurules are fired (success) or there is no further action
(failure).

During inference, a conclusion is rejected (or not drawn)
when none of the neurules containing it fires. This happens
when: (i) all neurules containing the conclusion have been
examined and are blocked or/and (ii) a neurule containing an

50

alternative conclusion for the specific variable fires instead. For
instance, if all neurules containing the conclusion ‘disease-type
is inflammation’ have been examined and are blocked, then this
conclusion is rejected (or not drawn). If a neurule containing
e.g. the alternative conclusion ‘disease-type is primary-
malignant’ fires, then conclusion ‘disease-type is inflammation’
is rejected (or not drawn), no matter whether all neurules
containing as conclusion ‘disease-type is inflammation’ have
been examined (and are blocked) or not.

3 INDEXING
Indexing concerns the organization of the available cases so
that combined neurule-based and case-based reasoning can be
performed. Indexed cases fill in gaps in the domain knowledge
representation by neurules and during inference may assist in
reaching the right conclusion. To be more specific, cases may
enhance neurule-based reasoning to avoid reasoning errors by
handling the following situations:

(a) Examining whether a neurule misfires. If sufficient
conditions of the neurule are satisfied so that it can fire, it
should be examined whether the neurule misfires for the
specific facts, thus producing an incorrect conclusion.

(b) Examining whether a specific conclusion was erroneously
rejected (or not drawn).

In the approach in [10], the neurules contained in the neurule
base were used to index cases representing their exceptions. A
case constitutes an exception to a neurule if its attribute values
satisfy sufficient conditions of the neurule (so that it can fire)
but the neurule's conclusion contradicts the corresponding
attribute value of the case. In this approach, various types of
indices are assigned to cases. More specifically, indices are
assigned to cases according to different roles they play in
neurule-based reasoning and assist in filling in different types
of gaps in the knowledge representation by neurules. Assigning
different types of indices to cases can produce an effective
approach combining symbolic rule-based with case-based
reasoning [1].

In this new approach, a case may be indexed by neurules and
by neurule base conclusions as well. In particular, a case may
be indexed as:

(a) False positive (FP), by a neurule whose conclusion is
contradicting. Such cases, as in our previous approach,
represent exceptions to neurules and may assist in
avoiding neurule misfirings.

(b) True positive (TP), by a neurule whose conclusion is
endorsing. The attribute values of such a case satisfy
sufficient conditions of the neurule (so that it can fire)
and the neurule's conclusion agrees with the
corresponding attribute value of the case. Such cases
may assist in endorsing correct neurule firings.

(c) False negative (FN), by a conclusion erroneously
rejected (or not drawn) by neurules. Such cases may
assist in reaching conclusions that ought to have been
drawn by neurules (and were not drawn). If neurules
with alternative conclusions containing this variable
were fired instead, it may also assist in avoiding neurule
misfirings. ‘False negative’ indices are associated with

conclusions and not with specific neurules because there
may be more than one neurule with the same conclusion
in the neurule base.

The indexing process may take as input the following types
of knowledge:

(a) Available neurules and non-indexed cases.
(b) Available symbolic rules and indexed cases. This type of

knowledge concerns an available formalism of symbolic
rules and indexed exception cases as the one presented in
[6].

The availability of data determines which type of knowledge
is provided as input to the indexing module. If an available
formalism of symbolic rules and indexed cases is presented as
input, the symbolic rules are converted to neurules using the
‘rules to neurules’ module. The produced neurules are
associated with the exception cases of the corresponding
symbolic rules [10]. Exception cases are indexed as ‘false
positives’ by neurules. Furthermore, for each case ‘true
positive’ and ‘false negative’ indices may be acquired using the
same process as in type (a).

When available neurules and non-indexed cases are given as
input to the indexing process, cases must be associated with
neurules and neurule base conclusions. For each case, this
information can be easily acquired as following:

Until all intermediate and output attribute values of the case
have been considered:
1. Perform neurule-based reasoning for the neurules based on

the attribute values of the case.
2. If a neurule fires, check whether the value of its conclusion

variable matches the corresponding attribute value of the
case. If it does (doesn't), associate the case as a ‘true
positive’ (‘false positive’) with this neurule.

3. Check all intermediate and final conclusions. Associate the
case as a ‘false negative’ with each rejected (or not drawn)
conclusion that ought to have been drawn based on the
attribute values of the case.
To illustrate how the indexing process works, we present the

following example. Suppose that we have a neurule base
containing the two neurules in Table 1 and the example cases
shown in Table 2 (only the most important attributes of the
cases are shown). The cases however, also possess other
attributes (not shown in Table 2).

‘disease-type’ is the output attribute that corresponds to the
neurules’ conclusion variable. Table 3 shows the types of
indices associated with each case in Table 2 at the end of the
indexing process.

To acquire indexing information, the input values
corresponding to the attribute values of the cases are presented
to the example neurules. Recall that when a neurule condition
evaluates to ‘true’ it gets the value ‘1’, whereas when it is false
gets ‘0’.

For example, given the input case C2, the final weighted sum
of neurule NR1 is: -23.9 + 10.6 + 10.5 + 8.8 = 6>0. Note that
the first three conditions of NR1 evaluate to ‘true’ whereas the
remaining four (i.e., ‘fever is medium’, ‘fever is no-fever’,
‘patient-class is human21-35’ and ‘ant-reaction is medium’) to
‘false’ (not contributing to the weighted sum).

51

Table 2. Example cases
Case
ID

patient-class pain fever ant-
reaction

joints-
pain disease-type

C1 human21-35 continuous low none yes chronic-
inflammation

C2 human0-20 continuous high none no inflammation
C3 human0-20 night high none no inflammation
C4 human0-20 continuous medium none no inflammation

C5 human21-35 continuous no-fever medium yes chronic-
inflammation

C6 human0-20 continuous low none no
chronic-

inflammation

The fact that the final weighted sum is positive means that
sufficient conditions of NR1 are satisfied so that it can fire.
Furthermore, the corresponding output attribute value of the
case matches the conclusion of NR1 and therefore C2 is
associated as ‘true positive’ with NR1.

Table 3. Indices assigned to the example cases in Table 2
Case
ID

Type of index Indexed by

C1 ‘True positive’ Neurule NR2
C2 ‘True positive’ Neurule NR1
C3 ‘False negative’ Conclusion ‘disease-type is

inflammation’
C4 ‘True positive’ Neurule NR1
C5 ‘False positive’ Neurule NR1
C5 ‘True positive’ Neurule NR2
C6 ‘False negative’ Conclusion ‘disease-type is chronic-

inflammation’

Similarly, when the input values corresponding to the
attribute values of cases C1 and C4 are given as input to the
neurule base, sufficient conditions of neurules NR2 and NR1
respectively are satisfied so that they can fire and the
corresponding output attribute case values match their
conclusions. Furthermore, when the input values corresponding
to the attribute values of case C5 are given as input to the
neurule base, sufficient conditions of both neurules NR1 and
NR2 are satisfied so that they can fire. However, the
corresponding output attribute case values match the conclusion
of NR2 and contradict the conclusion of NR1. In addition,
conclusion ‘disease-type is inflammation’ cannot be drawn
when the input values corresponding to the attribute values of
case C3 are given as input because the only neurule with the
corresponding conclusion (i.e., NR1) is blocked. A similar
situation happens for case C6.

4 THE HYBRID INFERENCE MECHANISM
The inference mechanism combines neurule-based with case-
based reasoning. The combined inference process mainly
focuses on the neurules. The indexed cases are considered
when: (a) sufficient conditions of a neurule are fulfilled so that
it can fire, (b) all output or intermediate neurules with a specific
conclusion variable are blocked and thus no final or
intermediate conclusion containing this variable is drawn.

In case (a), firing of the neurule is suspended and case-based
reasoning is performed for cases indexed as ‘false positives’
and ‘true positives’ by the neurule and cases indexed as ‘false
negatives’ by alternative conclusions containing the neurule’s
conclusion variable. Cases indexed as ‘true positives’ by the
neurule endorse its firing whereas the other two sets of cases
considered (i.e., ‘false positives’ and ‘false negatives’) prevent
its firing. The results produced by case-based reasoning are
evaluated in order to assess whether the neurule will fire or
whether an alternative conclusion proposed by the retrieved
case will be considered valid instead.

In case (b), the case-based module will focus on cases
indexed as ‘false negatives’ by conclusions containing the
specific (intermediate or output) variable.

The basic steps of the inference process are the following:

1. Perform neurule-based reasoning for the neurules.
2. If sufficient conditions of a neurule are fulfilled so that it can
fire, then

2.1. Perform case-based reasoning for the ‘false positive’
and ‘true positive’ cases indexed by the neurule and the
‘false negative’ cases associated with alternative
conclusions containing the neurule’s conclusion
variable.

2.2. If none case is retrieved or the best matching case is
indexed as ‘true positive’, the neurule fires and its
conclusion is inserted into the working memory.

2.3. If the best matching case is indexed as ‘false positive’ or
‘false negative’, insert the conclusion supported by the
case into the working memory and mark the neurule as
'blocked'.

3. If all intermediate neurules with a specific conclusion
variable are blocked, then

3.1. Examine all cases indexed as ‘false negatives’ by the
corresponding intermediate conclusions, retrieve the
best matching one and insert the conclusion supported
by the retrieved case into the working memory.

4. If all output neurules with a specific conclusion variable are
blocked, then

4.1. Examine all cases indexed as ‘false negatives’ by the
corresponding final conclusions, retrieve the best
matching one and insert the conclusion supported by the
retrieved case into the working memory.

The similarity measure between two cases ck and cl is
calculated via a distance metric [1]. The best-matching case to
the problem at hand is the one having the maximum similarity

52

with (minimum distance from) the input case. If multiple stored
cases have a similarity equal to the maximum one, a simple
heuristic is used.

Let present now two simple inference examples concerning
the combined neurule base (Table 1) and the indexed example
cases (Tables 2 and 3). Suppose that during inference sufficient
conditions of neurule NR1 are satisfied so that it can fire. Firing
of NR1 is suspended and the case-based reasoning process
focuses on the cases contained in the union of the following sets
of indexed cases:

• the set of cases indexed as ‘true positives’ by NR1:
{C2, C4},

• the set of cases indexed as ‘false positives’ by
NR1: {C5} and

• the set of cases indexed as ‘false negatives’ by
alternative conclusions containing variable
‘disease-type’ (i.e., ‘disease-type is chronic
inflammation’): {C6}.

So, in this example the case-based reasoning process focuses on
the following set of indexed cases: {C2, C4} ∪ {C5} ∪ {C6} =
{C2, C4, C5, C6}.

Suppose now that during inference both output neurules in
the example neurule base are blocked. The case-based
reasoning process will focus on the cases contained in the union
set of the following sets of indexed cases:

• the set of cases indexed as ‘false negatives’ by
conclusion ‘disease-type is inflammation’: {C3}.

• the set of cases indexed as ‘false negatives’ by
conclusion ‘disease-type is chronic-inflammation’:
{C6}.

Therefore, in this example the case-based reasoning process
focuses on the following set of indexed cases: {C3} ∪ {C6} =
{C3, C6}.

5 EXPERIMENTAL RESULTS
In this section, we present experimental results using datasets
acquired from [2]. Note that there are no intermediate
conclusions in these datasets. The experimental results involve
evaluation of the presented approach combining neurule-based
and case-based reasoning and comparison with our previous
approach [10]. 75% and 25% of each dataset were used as
training and testing sets respectively. Each initial training set
was used to create a combined neurule base and indexed case
library. For this purpose, each initial training set was randomly
split into two disjoint subsets, one used to create neurules and
one used to create an indexed case library. More specifically,
2/3 of each initial training set was used to create neurules by
employing the ‘patterns to neurules’ module [8] whereas the
remaining 1/3 of each initial training set constituted non-
indexed cases. Both types of knowledge (i.e., neurules and non-
indexed cases) were given as input to the indexing construction
module presented in this paper producing a combined neurule
base and an indexed case library which will be referred to as
NBRCBR. Neurules and non-indexed cases were also used to
produce a combined neurule base and an indexed case library

according to [10] which will be referred to as
NBRCBR_PREV.

Inferences were run for both NBRCBR and
NBRCBR_PREV using the testing sets. Inferences from
NBRCBR_Prev were performed using the inference mechanism
combining neurule-based and CBR as described in [10].
Inferences from NBRCBR were performed according to the
inference mechanism described in this paper. No test case was
stored in the case libraries.

Table 4 presents such experimental results regarding
inferences from NBRCBR and NBRCBR_PREV. It presents
results regarding classification accuracy of the integrated
approaches and the percentage of test cases resulting in neurule-
based reasoning errors that were successfully handled by case-
based reasoning. Column ‘% FPs handled’ refers to the
percentage of test cases resulting in neurule misfirings (i.e.,
‘false positives’) that were successfully handled by case-based
reasoning. Column ‘% FNs handled’ refers to the percentage of
test cases resulting in having all output neurules blocked (i.e.,
‘false negatives’) that were successfully handled by case-based
reasoning. ‘False negative’ test cases are handled in
NBRCBR_PREV by retrieving the best-matching case from the
whole library of indexed cases.

Table 4. Experimental results

 NBRCBR NBRCBR_PREV

Dataset

C
la

ss
ifi

ca
tio

n
A

cc
ur

ac
y

%
 F

Ps

H
an

dl
ed

%
 F

N
s

H
an

dl
ed

C
la

ss
ifi

ca
tio

n
A

cc
ur

ac
y

%
 F

Ps

H
an

dl
ed

%
 F

N
s

H
an

dl
ed

Car
(1728

patterns)

96.04% 52.81% 64.07% 92.49% 15.51% 20.36%

Nursery
(12960

patterns)

98.92% 58.68% 52.94% 97.68% 6.60% 18.82%

As can be seen from the table, the presented approach results

in improved classification accuracy. Furthermore, in inferences
from NBRCBR the percentages of both ‘false positive’ and
‘false negative’ test cases successfully handled are greater than
the corresponding percentages in inferences from
NBRCBR_PREV. Results also show that there is still room for
improvement.

We also tested a nearest neighbor approach working alone in
these two datasets (75% of the dataset used as case library and
25% of the dataset used as testing set). We used the similarity
measure presented in Section 5. The approach classified the
input case to the conclusion supported by the best-matching
case retrieved from the case library. Classification accuracy for
car and nursery dataset is 90.45% and 96.67% respectively. So,
both integrated approaches perform better. This is due to the
fact that the indexing schemes assist in focusing on specific
parts of the case library.

53

7 CONCLUSIONS
In this paper, we present an approach integrating neurule-based
and case-based reasoning that improves a previous hybrid
approach [10]. Neurules are a type of hybrid rules integrating
symbolic rules with neurocomputing. In contrast to other neuro-
symbolic approaches, neurules retain the naturalness and
modularity of symbolic rules. Integration of neurules and cases
is done in order to improve the accuracy of the inference
mechanism. Cases are indexed according to the roles they can
play during neurule-based inference. More specifically, they are
associated as ‘true positives’ and ‘false positives’ with neurules
and as ‘false negatives’ with neurule base conclusions.

The presented approach integrates three types of knowledge
representation schemes: symbolic rules, neural networks and
case-based reasoning. Most hybrid intelligent systems
implemented in the past usually integrate two intelligent
technologies e.g. neural networks and expert systems, neural
and fuzzy logic, genetic algorithms and neural networks, etc. A
new development that should receive interest in the future is the
integration of more than two intelligent technologies,
facilitating the solution of complex problems and exploiting
multiple types of data sources.

References

[1] G. Agre, ‘KBS Maintenance as Learning Two-Tiered Domain
Representation’, In M.M. Veloso, A. Aamodt, (Eds.): Case-Based
Reasoning Research and Development, First International Conference,
ICCBR-95, Proceedings, Lecture Notes in Computer Science, Vol.
1010, Springer-Verlag, 108-120, 1995.

[2] A. Asuncion, D.J. Newman, ‘UCI Repository of Machine Learning
Databases’ [http://www.ics.uci.edu/~mlearn/MLRepository.html].
Irvine, CA, University of California, School of Information and
Computer Science (2007).

[3] N. Cercone, A. An, C. Chan, ‘Rule-Induction and Case-Based
Reasoning: Hybrid Architectures Appear Advantageous’, IEEE
Transactions on Knowledge and Data Engineering, 11, 164-174,
(1999).

[4] S. I. Gallant, Neural Network Learning and Expert Systems, MIT
Press, 1993.

[5] A.Z. Ghalwash, ‘A Recency Inference Engine for Connectionist
Knowledge Bases’, Applied Intelligence, 9, 201-215, (1998).

[6] A.R. Golding, P.S. Rosenbloom, ‘Improving accuracy by combining
rule-based and case-based reasoning’, Artificial Intelligence, 87, 215-
254, (1996).

[7] I. Hatzilygeroudis, J. Prentzas, ‘Neurules: Improving the Performance
of Symbolic Rules’, International Journal on AI Tools, 9, 113-130,
(2000).

[8] I. Hatzilygeroudis, J. Prentzas, ‘Constructing Modular Hybrid Rule
Bases for Expert Systems’, International Journal on AI Tools, 10, 87-
105, (2001).

[9] I. Hatzilygeroudis, J. Prentzas, ‘An Efficient Hybrid Rule-Based
Inference Engine with Explanation Capability’, Proceedings of the
14th International FLAIRS Conference, AAAI Press, 227-231,
(2001).

[10] I. Hatzilygeroudis, J. Prentzas, ‘Integrating (Rules, Neural Networks)
and Cases for Knowledge Representation and Reasoning in Expert
Systems’, Expert Systems with Applications, 27, 63-75, (2004).

[11] J. Kolodner, Case-Based Reasoning, Morgan Kaufmann Publishers,
San Mateo, CA, 1993.

[12] D.B. Leake (ed.), Case-Based Reasoning: Experiences, Lessons &
Future Directions, AAAI Press/MIT Press, 1996.

[13] M.R. Lee, ‘An Exception Handling of Rule-Based Reasoning Using
Case-Based Reasoning’, Journal of Intelligent and Robotic Systems,
35, 327-338, (2002).

[14] C.R. Marling, M. Sqalli, E. Rissland, H. Munoz-Avila, D. Aha,
‘Case-Based Reasoning Integrations’, AI Magazine, 23, 69-86,
(2002).

[15] S. Montani, R. Bellazzi, ‘Supporting Decisions in Medical
Applications: the Knowledge Management Perspective’, International
Journal of Medical Informatics, 68, 79-90, (2002).

[16] J. Prentzas, I. Hatzilygeroudis, ‘Integrating Hybrid Rule-Based with
Case-Based Reasoning’, In S. Craw and A. Preece (Eds), Advances in
Case-Based Reasoning, Proceedings of the European Conference on
Case-Based Reasoning, ECCBR-2002, Lecture Notes in Artificial
Intelligence, Vol. 2416, Springer-Verlag, 336-349, 2002.

[17] J. Prentzas, I. Hatzilygeroudis, ‘Categorizing Approaches Combining
Rule-Based and Case-Based Reasoning’, Expert Systems, 24, 97-122,
(2007).

[18] E.L. Rissland, D.B. Skalak, ‘CABARET: Rule Interpretation in a
Hybrid Architecture’, International Journal of Man-Machine Studies,
34, 839-887, (1991).

[19] D. Rossille, J.-F. Laurent, A. Burgun, ‘Modeling a Decision Support
System for Oncology using Rule-Based and Case-Based Reasoning
Methodologies’, International Journal of Medical Informatics, 74,
299-306, (2005).

[20] H. Vafaie, C. Cecere, ‘CORMS AI: Decision Support System for
Monitoring US Maritime Environment’, Proceedings of the 17th
Innovative Applications of Artificial Intelligence Conference (IAAI),
AAAI Press, 1499-1507, (2005).

54

