
Using visualisation to elicit domain information as part

of the Model Driven Architecture approach

John Mathenge Kanyaru, Melanie Coles, Sheridan Jeary, and Keith Phalp

Software Systems Research Centre

Bournemouth University

{jkanyaru, mcoles, sjeary, kphalp @bournemouth.ac.uk}

Abstract

Model Driven Architecture adopts a visual approach to software development.

The main development activities are the construction of visual (typically

Unified Modelling Language (UML)) models and the transformation of source

models into target models, including application code generation. The use of

visual models to produce application code often starts at the design (Platform

Independent Model) level, and whereas business processes (Computation

Independent Models (CIM)) have lately been considered, they are not used in

MDA to either derive design models or application code. This paper enhances

the MDA process by considering the early stages of software development that

pertain to problem domain analysis. We argue that problem domain analysis

and modelling can form valuable input to the more formal MDA phases at the

CIM and PIM levels. We propose the use of a visual notation that allows

informal modelling of domain-based concepts. Modelling at this stage using the

proposed notation is geared to support involvement of non-technical business

stakeholders whilst feeding into business process modelling at the CIM phase.

Keywords: domain analysis, elicitation, MDA, traceability.

1 Introduction

The Model Driven Architecture (MDA) approach emphasises the development of

software systems based on visual models as the primary software artefacts [1]). For

example, business processes, termed CIM models are typically constructed using the

Business Process Modelling Notation (BPMN) [2]. On the other hand PIM models

may be constructed using the Unified Modelling Language class diagram notation.

The key development activity is to derive application code by applying transformation

technology on the PIM model [3]. One benefit attributed to use of visual notations in

development of software systems is the ease of comprehension [4] of graphical

notations as compared to textual code. Hence, the use of visual (typically UML)

notations in MDA can be seen to have twofold benefits. The main benefit cited by the

OMG [5] is the potential to derive application code for different platforms from one

model (typically PIM model). From the visual development perspective, there is the

benefit of the visual models being amenable to understanding by non-technical

development participants [6].

This paper considers a visual-oriented development approach for the early phases of

development that are concerned with analysis of the problem. Such development

activities, unlike those of CIM and PIM development, are largely informal, and often

involve interactions with business stakeholders [7]. Jeary et. al [8] argue that the use

use of a pre-CIM level in MDA is necessary to create the means for MDA to capture

the richness of the business domain. In this paper we agree that the MDA approach

does not consider such pre-CIM issues. Consequently current MDA tools (e.g., [9],

[10], [11]) do not provide support for pre-CIM development activities, nor a means to

construct typical pre-CIM artefacts. Furthermore, progression from CIM models to

PIM is not supported by mainstream tools.

A key strength of MDA is the emphasis on software development by way of building

visual models of the software system [12]. This paper discusses how software support

for the business user is possible at the pre-CIM level. Section 2.1 looks at how the

user may store and organise domain information demonstrated using a Scrapbook

concept. Section 2.2 discusses how an informed analysis of the domain is made and

details how an informal model may be constructed based on the scrapbook

information. Section 3 discusses the benefits to be gained by using visual notations

for pre-CIM development and Section 4 outlines possible mappings between analysis

and CIM models.

2 Visual development at pre-CIM level

The Object Management Group has attempted to address concerns about business

support by incorporating the CIM [2] phase into the MDA process model. CIM

modelling however entails the semi-formal modelling of a business process using

clear and unambiguous elements of the BPMN notation [13]. Analysts (or

developers) initially attempt to comprehend the problem domain by eliciting

information from domain experts [14]. Therefore the production of business models is

often not the first step of the software process [15]. We argue that the analysis of

such elicitation information should be used to build business process models that

constitute the MDA’s CIM model. The MDA approach misses out the domain

analysis phase.

2.1 Organising problem domain information

A key challenge to software development is the elicitation of domain information [16]

and the organisation of that information in a way that is accessible for successive

phases of development. The use of metaphors is recognised [17] as one way of

enhancing comprehensibility of either problem domain information or even software

artefacts. We use the scrapbook metaphor as a means of organising information

elicited from the problem domain. Such information maybe textual, or could be

folders that may in turn contain subfolders. The storage and organisation of domain

information is useful for subsequent stages of development because it acts as a basis

for validating subsequent artefacts. Customers, end-users, or other stakeholders with

knowledge regarding the problem domain can populate the scrapbook.

Consider a scenario where an organisation pursues business opportunities with

prospective (or existing) clients. Such an opportunity elicitation process may require

identifying possible clients, visiting the client and obtaining a lead. The organisation

might want to store documents relating to previous successful opportunities, or

unsuccessful ones with reasons to their success or lack of it. The MDA process does

not provide a means to record such informal information. We propose the scrapbook

concept to record and inter-relate artefacts that are built or elicited during problem

domain analysis. Each item in the scrapbook model is a scrap item, which can be

refined or expanded when further information comes to light. Figure 1 demonstrates

an example of the usage of a scrapbook.

Opportunity

Sub
heading1

Sub
heading2

Doc1

Doc2

Scrap1

Scrap2

Doc3

Sub
heading3

Doc4 Doc5

Figure 1: Scrapbook model editor

It shows scraps organised and linked in the scrap editor, with the left side of the

screen showing a tree structure of the scrap items, including a preview of the scrap

model. The elements in the scrapbook model are associated based on the way in

which a business user understands their domain. The links may be annotated to

indicate the relationship between any two items. The main contribution of the

scrapbook to the MDA process is recording and organising domain information, and

affording non-technical users flexibility in creating very informal models of the

storage and organisation of their information.

2.2 Domain Analysis

Elicitation of problem domain information and the organisation of such information

using the scrapbook concept provides a record of such information for use in the

MDA process. There are a variety of issues and concepts that domain experts (or

business users) identify from the scrapbook that may interest business and system

analysts during the elicitation of problem domain information. For example, many

business stakeholders will be familiar with their organisational hierarchy and with the

roles and responsibilities of various stakeholders. In addition they will have

knowledge of which of these stakeholders produce or consume data, and indeed who

has ownership of that data. All this information is of interest to the business and

system analysts.

Analysis has been defined as an effort in trying to understand a problem [12], and

problem domain analysis, like requirements analysis [18], is bound to be challenging

in various ways. For example, the business user might be unclear about aspects of

their business concerns which are of interest to the business or systems analyst, whilst

the complexity of the problem domain might pose significant learning overheads on

the part of the analyst. There are therefore likely to be concepts that aren’t clearly

articulated or understood by both business users and analysts; one might want to

record them with a view to elicit further clarity in the future. We have given the term

“Bloop” to such unidentified concepts. A cloud figure is used to depict these Bloops

on an informal analysis model in the Analysis Palette. Hence a prevalence of Bloops

in an analysis model may be an indication that further analysis of the problem is

needed. Identification of this issue so early in the development process highlights the

value of this concept. Further analysis might mean that Bloops are broken down into

the more clear concepts such as activities, roles or data objects.

Consider a business situation where an enterprise seeks to manage arising business

opportunities, the contacts made for enabling pursuit of the opportunities, and

production of quotations where the opportunity has progressed to a business

transaction. One might envisage a business user constructing their own informal

model where these items regarding opportunites are shown along with their inter-

relatedness, including any items that may not be clear.

We have developed tool support for enabling business users to build these informal

models that depict their understanding of the problem domain. The Analysis Palette

(see Figure 2) provides a means for creating models of the domain using notational

elements such as roles, activities, data objects and bloops. We use a visual notation to

depict these concepts in order to construct such models as part a MDA development

process. Activities are shown as rounded rectangles with a letter A at the top left

corner of the rectangle. Roles and data objects are depicted using a similar shape, with

the indicative letters R and D at the top left corner of the rectangle. Figure 2 shows a

number of activities (e.g., Make Order), bloops (e.g., Sales) and roles (e.g.,

Customer).

Figure 2: Analysis model of the domain in VIDE Analysis Palette

A typical challenge for development of software systems is the traceability [19,20] of

information across phases. This is particularly relevant in the MDA process. For

example, existing MDA tools have no means to indicate to a developer where any

elements of a PIM model are derived from within an associated CIM model. The

richness associated with models created at the CIM level is lost in subsequent

successive stages. We provide tool support that provides traceability between the

scrapbook and the domain model, and the domain model and the subsequent CIM.

The use of a visual notation, rather than textual description in this setting has a

number of advantages. Firstly, an analysis model of the problem domain that shows

activities, the roles that perform those activities and the produced or used data is one

that non-technical business stakeholders can identify with and therefore validate.

Secondly, the use of informal notations such as Bloops, or annotated rounded

rectangles means that modelling is simple because there are no strict rules on using

such elements. Thirdly, whereas the notational elements that depict the concepts of

activities, roles, and data are informal, similar concepts are used in the MDA’s CIM

development phase. This suggests the possibility of one-to-one mapping between

similar concepts between both pre-CIM and CIM.

3 Value of information visualisation at pre-CIM level

The traditional approach of producing software implementations is by describing

using precise syntax of a language (e.g., Java, C++) to specify the program. Whereas

many programming languages have graphical environments in which to specify the

program, such programs cannot themselves be specified using graphical elements. A

visual programming language is one that is seen to provide graphical elements for

program construction, with no obvious textual counterpart [6]. The concept of MDA

is based on such a visual language (mainly, the UML). One of the main development

phases is the production of PIM models using UML class diagrams. The OMG does

not specify a counterpart textual language for PIM development since application

code is to be generated from PIM models directly.

The OMG outline support for business process modelling at the CIM level, but there

is no support for the direct use of CIM models to build PIM models. We note however

that, emphasis on visual development in MDA is beneficial for the reason that,

generally, a diagram is easier to build and comprehend than textual descriptions [21].

In section 2, we described three advantages of using a visual notation. The business

user is able to validate any models, that informal notations are easy to understand, and

if models are simple they are easy to map to formal notations. These advantages are

all based on the increased communication level between the business user and the

analysts. It is also a much more reasoned communication because the notation is

based on vocabulary that is used in the business domain. However, the underlying

significance of our contribution (with domain analysis and modelling) to MDA is that

by taking a ‘step back’ from the MDA process and considering the pre-CIM we are

contributing to the initial analysis of the problem. MDA ignores this phase and always

assumes that the problem is well understood, hence the emphasis on CIM and PIM

modelling. We argue that producing domain models during MDA development

facilitates early communication between analysts on the one hand, and business

stakeholders on the other without forcing the immediate consideration of formal

notations for CIM or PIM modelling. Moreover, it has been argued by others [22]

[23] the use of visual notations during analysis can help tease out tacit knowledge

from domain experts.

4 Mapping between analysis models and CIM models

MDA development environments are maturing, and depending on the MDA tool that

one is using, there are several intermediate models (e.g., [24][25]) to be built in order

to move from a PIM model to application code. Regardless of these tool-specific

models, there are two main software development activities within the MDA

approach. First is the construction of a model as a primary software artefact. Second

is the application of a transformation technology to derive a target model from a

source model. Most MDA support tools only apply transformation technologies to

generate application code from PIM models. There is no support for generating PIM

models from CIM models.

This paper proposes a means to derive CIM models from analysis models by direct

use of domain model elements to build subsequent CIM model elements. For

example, activities, roles, and data objects within a domain model would be used in a

similar way within a CIM model. Rather than proposing a radical approach of

transforming domain models into CIM models using formal transformations, we

argue that, both models are representations of different world views and that human

intervention is necessary for moving from one to the other. Therefore a set of guiding

heuristics will be of more value than trying to create a model-to-model transformation

standard.

5 Conclusion

This paper outlines the significance of eliciting and organising information about the

business domain and details undertaking further analysis including informal

modelling as part of the MDA development process. In particular, the paper outlines

the need to use visual notation that is informal and accessible to business stakeholders

whilst considering desirable mappings to the CIM phase.

The benefits for an informal, visual development approach seem well recognised

[26]. The main benefit is the comprehensibility of visual artefacts as opposed to their

textual counterparts. The benefit of visual development at pre-CIM level is the

intention to involve non-technical domain experts in developing the models, thereby

adding the benefit of model validation prior to CIM development.

Given the MDA approach suggests transition from a source model to a target model,

we demonstrate the plausibility for developers to derive parts of a CIM model from

the informal model of the domain. This paper has therefore described one way of

enhancing the MDA approach to provide seamless development from domain models

to CIM models. Additionally, where model elements are derived from a given source

model, traceability among such elements is supported. The current set of MDA tools

have largely ignored the domain analysis phase (in favour of design and code

generation), and have not considered traceability among different models either.

References

1. OMG 2003. MDA Guide version 1.0.1; document no. omg/2003-06-01.

2. OMG.Business Process Modeling Notation Specification. 2006, dtc/06-02-01

3. Mellor, S., Kendall Scott, Axel Uhl and Weise, D. MDA Distilled. Addison

Wesley, 2004.

4. Petre, M. "Why Looking Isn't Always Seeing: Readership Skills and

Graphical Programming." in Communcations of the ACM, 1995, 38(6).

5. OMG 2006. Meta Object Facility (MOF) Core Specification; document no.

formal/06-01-01; www.omg.org.

6. Green, G. and Petre, M. "Usability Analysis of Visual Programming

Environments:a ‘cognitive dimensions’ framework." in Visual Languages

and Computing, 2001.

7. Olsson, E. "What active users and designers contribute in the design

process." in Interacting with Computers, 2004, 16.

8. Jeary, S. F., A. Phalp, K. Extending the Model Driven Architecture with a

pre-CIM level. in 1st International Workshop on Business Support for MDA,

2008. Zurich, Switzerland.

9. PathFinderSolutions. "PathMate MDA transformation environment

(http://www.pathfindermda.com/products/index.php)." Retrieved 07/2006

2006, from http://www.pathfindermda.com/products/index.php.

10. Objects, I. "ArcStyler MDA tool (http://www.arcstyler.com/)." Retrieved

08/2006 2006, from http://www.arcstyler.com/.

11. Codagen. "Codagen Architect for MDA (http://www.codagen.com/)."

Retrieved 07/2006 2006, from http://www.codagen.com/.

12. Heckel, R. and Lohmann, M. "Model-driven development of reactive

information systems." in International Journal on Software Tools for

Technology Transfer, 2006.

13. White, S.Introduction to BPMN. 2006, IBM

14. Jackson, M. Problem Frames: Analyzing and structuring software

development problems. Addison-Wesley, 2001.

15. Pressman, R. Software engineering: a practitioner's approach. McGraw-

Hill, 2000.

16. Sánchez, P., P. Letelier and Ramos, I. Validation of Conceptual Models by

Animation in an Scenario-based Approach. in ACM Conference on Object-

Oriented Programming, Systems,Languages, and Applications: Workshop

on scenario-based round-trip engineering., 2000. Minneapolis, Minnesota,

USA.

17. Petre, M. and Quincey, E.A gentle overview of software visualisation. 2006,

Open University

18. Jørgensen, J. B. and Lasen, K. B. Aligning Work Processes and the Adviser

Portal Bank System. in 1st International Workshop on Requirements

Engineering for Business Need and IT Alignment, in conjunction with

RE'05, 2005. Paris, France.

19. Alexander, I. SemiAutomatic Tracing of Requirement Versions to Use

Cases: Experiences & Challenges. in 2nd International Workshop on

Traceability in Emerging Forms of Software Engineering 2003.

20. Susanne Sherba, Kenneth Anderson and Faisal, M. A Framework for

Mapping Traceability Relationships. in 2nd International Workshop on

Traceability in Emerging Forms of Software Engineering 2003.

21. Jungpil Hahn and Kim, J. "Why Are Some Diagrams Easier to Work with?

Effects of Diagrammatic Representation on Cognitive Interation Process of

systems Analysis and Design." in ACM Transactions on Computer-Human

Interaction, 2000, 6(3).

22. Harel, D. "Statecharts: A Visual Formalism for Complex Systems." in

Science of Computer Programming, 1987, 8.

23. J. Magee, N. Pryce, D.Giannakopoulou and Kramer, J. Graphical Animation

of Behavior Models. in Proceedings of the 22nd International Conference on

Software Engineering, 2000.

24. Budinsky, F., Steinberg, D., Merks, E., Ellersick, R. and Grose, T. 2004.

Eclipse Modelling Framework. E. G. L. N. J. Wiegand, Addison-wesley.

25. Compuware. "OptimalJ MDA tool

(http://www.compuware.com/products/optimalj/)." Retrieved 08/2006

2006, from http://www.compuware.com/products/optimalj/.

26. Howse J. and Schuman, S. " Precise Visual Modelling: a case study." in

Software Systems Modelling, 2005, 4(3).

