
A Janus-Faced Net Component for the

Prototyping of Open Systems

Matthias Wester-Ebbinghaus and Daniel Moldt

University of Hamburg, Department of Informatics
Vogt-Kölln-Straße 30, D-22527 Hamburg

http://www.informatik.uni-hamburg.de/TGI

Abstract. We introduce a Janus-faced reference net component that
presents the basis for the recursive composition of complex systems from
open system units. We particularly focus on the operational aspect of
relating different levels of action at different system levels.

1 Introduction

We have presented various aspects of our organization-oriented software engi-
neering approach Sonar/Organ [1–4] in previous contributions. Sonar (Self-
Organizing Net ARchitecture) focusses on an exact mathematical body of rules
and regulations for activities in an organizational position network. Orthgonally,
Organ (ORGanizational Architecture Nets) provides a qualitative comprehen-
sion model for distinguishing different system levels according to distinctions be-
tween the (collective) organizational units studied at each level. In this paper, we
focus on operationalizing the most central concept of Organ, namely building
systems in terms of modular Janus-faced system units. This may be regarded
as a prototypical basis that is open for incorporation of the Sonar rule set and
orchestration according to the Organ architectural guidelines.

Organ rests on the universal model of an open and controlled system unit
from Figure 1 that is applied at all system levels. We distinguish different internal
system units (that are again instances of the universal model from Figure 1).
Integration units together with operational units represent the “here and now”
of the system unit in focus. The operational units are so to say the intrinsic
units and carry out the system’s primary activities. They are dependent on the
integration units which offer a technical frame via intermediary, regulation, and
optimisation services in the course of integration processes. The governance units
represent the “there and then” of the system unit in focus. They offer a strategic
frame via goal/strategy setting, boundary management, and transmitting their
decisions to the other internal system units in the course of governance processes.

Each system unit is a Janus-faced entity. It “looks inwards” by embedding
other system units and at the same time “looks outwards” by being itself embed-
ded in other system units. Thus, besides the already mentioned internal (tech-
nical and strategic) frames, each system unit in focus is externally framed by
surrounding system units to which the system unit in focus relates via periph-
ery processes. To conclude, we take a recursive, self-similar nesting approach,



+

Governance

Operation

Integration offer/use
strategic

frame
addition

Governance Processes
+

+

+

Integration + Operation: "Here and now"

Governance: "Then and there"

Operation: Primary activities

Integration: Regulation, optimization

Governance: Goal/strategy setting, planning,
boundary management

System Unit

removal

offer/use
technical

frame
emergence

Integration Processes

disappearance

use frameentry

Peripheral Processes

leaving

Fig. 1. Universal Model of an Open and Controlled System Unit

borrowed from Koestler’s concept of a holon [5] that we extend with a generic
reference model for control structures at each level. Thus, we arrive at a modular
approach to comprehend systems of systems. Each system part may be regarded
under a platform perspective and under a corporate agency perspective. All in
all, this provides a conceptual basis to systematically study and implement dif-
ferent modes of coupling, both horizontally and vertically. In particular, we have
conceptualised a reference architecture for multi-organization systems that ex-
hibits four system levels: the departmental level, the organizational level, the
level of organizational fields and the societal level.

In our previous contributions we have stressed the underlying Petri net se-
mantics (specifically, reference net semantics [6]) of the model from Figure 1.
However, the model remains rather abstract and we have omitted any real oper-
ationalisation details so far. In this paper, we have a look at one particular aspect
of Petri net operationalisation in this context. We leave aside any details con-
cerning a qualitative distinction between different system units and processes,
how exactly system processes come into being and the addition, removal, migra-
tion or expansion of system units. Instead, we focus on one possible technical
realization of relating different levels of action at different system levels with each
other. We present a recursive approach that allows us to prototype open systems
in a modular way, namely by addressing each system level and system unit in
turn. Vertical as well as horizontal ties between system units are established via
their inclusion in system processes through customisable generic interfaces.

2 Janus-Faced Net Component

Figure 2 displays a reference net component that reduces the various concepts
from Figure 1 to internal system units, system processes and internal or periph-



eral actions of system units in the course of these processes. The component has
the already mentioned Janus-faced character: It “looks inwards” by providing a
platform for its embedded system units and at the same time “looks outwards”
by being itself embedded inside other enclosing system units.

Fig. 2. Janus-Faced Net Component

Each internal action takes place in the course of some system process (sp)
and is carried out by some internal system unit (su). It carries an action identifier
(actID) that is unique in the context of the associated process. The corresponding
system unit is identified by its address (addr) and is passed the identifier of the
process (pID) in whose course the action is carried out. Finally, each action is
associated with some data (data).

Peripheral actions are also carried out by internal system units. However,
from the perspective of surrounding system units, they are carried out by the
system unit in focus as a whole. Thus, we arrive at a technical understanding of
collective/corporate action. As an additional argument, peripheral actions are not
only associated with an internal system process but also with the corresponding
identifier of the system process of the surrounding system unit (pID2).

We first have a look at a simple production process in Figure 3 with only
internal actions. It can be read according to the common UML understanding:
Places and Transitions on a vertical line represent the life line of some role while
places and transitions on a horizontal line represent a message exchange between
different role players. As we do not look at process instantiation here, we assume
that the process net exists permanently (on the place system processes) and may
be used for multiple concrete production scenarios. System unit addresses are
associated with process roles and product identifiers dynamically at the first
transitions of the corresponding life lines.



Fig. 3. Simple Production Process

3 Open System Prototyping

We now take a look at open systems by extending our modelling from the pre-
vious subsection with an additional system level that brings with it a collective
level of action as can be seen in Figure 4. We have to decide, which are the atoms

Fig. 4. System with Different Levels of Action

of our system, those parts from which all other activities eventually stem. These
atoms are marked in Figure 4 as individuals. As they embed no internal system
units themselves, they are not built according to the Janus-faced system unit
from Figure 2.

We now have a look at how different levels of action interfere. As an example
we take a look at the manager from the production firm that acts in turn on the
market. Figure 5 displays how actions of the manager either only take place on



the level of the firm or are additionally transformed to collective level actions of
the firm itself on the market.

Fig. 5. Interplay between Different Levels of Action

– Step 1: The manager accepts a product order that occurs on the market.
The manager accepts on behalf of the firm. Consequently, it acts on two
system levels simultaneously: (1) at the firm level where a new production
activity is initiated and (2) at the market level where the manager’s action
is transformed into a collective level action of the firm.



– Steps 2 + 3: The simple production scenario from Figure 3 can be found
(slightly modified) as a substructure of the system process at the firm level
in Figure 5. It still contains only (firm-)internal actions and in steps 2 and
3 the manager delegates the market order to some producer of the firm and
afterwards receives the finished product.

– Step 4: The manager ships the finished product to the customer on the
market. Just like in step 1, the manager acts both on the firm level (itself)
and on the market level (its action transformed into a collective level one on
behalf of the firm).

4 Outlook

We have presented a reference net operationalisation for combining different
levels of action in complex systems that are hierarchically built up from open
system units. This addresses one particular aspect of our previously published
Organ-model for building software systems in the large as systems of systems.

Our operational approach rests on a generic Janus-faced net component that
allows to recursively nest system levels inside each other. The generic interface
of the component allows to regard each system unit without the need to bother
with internal details of lower-level system units. For instance, in the example
from Figure 5 it would easily be possible to expand the manager part into a
complex system unit containing multiple managers (e.g. a salesman for market
exchange management and a foreman for internal production management). This
move would have no effect on the current process definition at the firm level.
Consequently, our approach allows for the modular prototyping of hierarchically
organized systems of systems that are composed of open system units.

References

1. Wester-Ebbinghaus, M., Moldt, D.: Structure in threes: Modelling organization-
oriented software architectures built upon multi-agent systems. In: Proceedings of
the 7th International Conference an Autonomous Agents and Multi-Agent Systems
(AAMAS’2008). (2008) 1307–1311

2. Köhler, M.: A formal model of multi-agent organisations. Fundamenta Informaticae
79(3–4) (2006) 415–430

3. Köhler, M., Wester-Ebbinghaus, M.: Closing the gap between organizational models
and multi-agent system deployment. In: Multi-Agent Systems and Applications V.
Volume 4696 of Lecture Notes in Computer Science., Springer-Verlag (2007) 307–309

4. Wester-Ebbinghaus, M., Moldt, D., Köhler, M.: From multi-agent to multi-
organization systems: Utilizing middleware approaches. To appear, accepted paper
for the 9th International Workshop on Engineering Societies in the Agents World
(ESAW’2008) (2008)

5. Koestler, A.: The Ghost in the Machine. Henry Regnery Co. (1967)
6. Kummer, O.: Referenznetze. Logos Verlag, Berlin (2002)


