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Abstract. Without taking care of the semantics of messages, every message is an isolated
entity that can be created and sent at will. This leads to anomalies like a synthesized service
that sends a filled form before having received the empty form. In this paper we pick up
ideas from adapter synthesis for taking care of semantical constraints and develop them
into two directions. First, we show that the approach taken for adapter synthesis can be
applied to synthesis of services in general. Second, we argue that the taken approach is in
a certain sense complete.

1 Introduction

We synthesize service behavior for several purposes. First, we can show that it is possible to
interact correctly with a service by constructing a fitting service behavior [1–3]. This approach
can be used as a sanity check for given services. Second, we can try to exploit the canonicity
of the computed behavior and use it for characterizing all correctly interacting partners of a
service [4]. Third, we can transform the computed behavior into executable code that can be
executed as a particular partner of the service.

An instance of the latter approach is the synthesis of a behavioral adapter A between two
given services P and R. At first glance, A is not much more than a correctly interacting partner
of a disjoint composition of P and R. However, this general setting permits a number of anoma-
lies with arise from the fact that behavioral approaches typically abstract from the content of
exchanged messages. In plain language, messages are named a, b, c, . . . without taking care of
whether they denote the submission of a password, an address, a simple acknowledgement, a real
item (sold book), or anything else. This simplification leads to anomalies like the synthesis of an
adapter that can “invent” a password or forward two copies of a received (real!) book. Having
observed this, virtually all approaches to behavioral adapter synthesis [5–11] start with some kind
of specification that expresses appropriate constraints for the activities that can be performed
on certain messages. Although different in technical detail, the specifications all express more or
less the same class of constraints. This class of constraints can thus be considered as mature.

In this note, we demonstrate that the approach taken in adapter synthesis extends to the
synthesis of service behavior in general. That is, we can avoid semantic anomalies in any kind of
synthesis of services by taking into account an appropriate specification of semantical constraints.
For instance, we can suppress synthesis of a service that sends a message containing a session
identifier before having received this identifier. We can avoid sending a signed contract before
having received the unsigned version thereof. There are many other examples of constraints that
are imposed by the semantics of message contents.

As a second contribution, we argue about completeness of our approach. We claim that (under
a few technical limitations like boundedness) we can synthesize a correctly interacting partner
whenever one exists. To this end, we propose a definition for “arbitrary partner that respects
given semantical constraints” and then show our completeness result using this definition.

2 Services

We model services as open nets, i.e. as place/transition Petri nets with an initial marking, a
set of final markings, and a set of places serving as interface. Initial and final markings have no



tokens on interface places. We require further that final markings do not enable any transition
(although transition may become enabled by putting tokens on input places). The interface is
divided into input and output places and we require that no transition takes tokens from an
output place an no transitions puts tokens on an input place.

There exist translations from industrial languages like WS-BPEL into open nets [12] and vice
versa [13] which proves the suitability of open nets for modeling services. Open nets are composed
by merging equally named interface places (an input place of one service with an output place of
the other one). The merged places are then removed from the interface. Initial and final markings
are composed canonically (remember that we require them to have no tokens on interface places).
We denote the composition of two open nets P and R by P ⊕R.

Composition may lead to an open net with empty interface which we call closed net.
A closed net is deadlock-free iff all markings without enabled transitions are final. An open

net P is controllable iff there exists an open net R such that their composition P ⊕ R is a
deadlock-free closed net.

It is just one possibility to use deadlock freedom as the underlying property for controllabil-
ity. Other requirements could include livelock freedom or any other desired property. Deadlock
freedom is, however, the most prominent property discussed in the context of web services.

3 Synthesis of service behavior

Controllability of an open net P is decidable [1, 2] if two conditions are satisfied. First, the inner of
P (the net obtained by removing the interface of P ) must be bounded and second, we restrict the
set of considered partners to those R where the composition P⊕R yields k-bounded (now merged)
interface places, for some a priori given k. In effect, the composition of considered nets are finite
state systems. In absence of the first restriction, controllability becomes undecidable [14] even in
presence of the second one. If only the second condition is dropped, decidability of controllability
is unknown.

In presence of the mentioned conditions, controllability can be decided by synthesizing (the
state space of) a canonical R as required by the definition of controllability. The resulting state
space (a kind of automaton) can be transformed into a Petri net using standard approaches [15–
17] and further into languages like WS-BPEL [13]. In the resulting WS-BPEL process, transitions
of the Petri net appear as opaque activities. Refining these activities, one obtains an executable
WS-BPEL process. We skip details as they are not necessary for understanding the results in
this note.

The synthesized partner provides a communication skeleton for correct interaction with P and
is thus valuable beyond witnessing controllability. If one desires to invoke P , he can automatically
generate the corresponding code from the description of P . If one does not want to use P
arbitrarily, additional constraints may be applied using the techniques of [18].

A particular application of this approach is the automated synthesis of an adapter A between
two services P and R. If the composition of P and R is not deadlock-free, an intermediate
component may mediate the communication between the two and enforce deadlock freedom.
Formally, A is a service such that P ⊕ A ⊕ R is deadlock-free and can thus be synthesized as a
witness for controllability of P ⊕ R. More precisely, we need to rename interfaces of P and R
such that they become disjoint. This way, all communication between P and R will pass A.

4 Semantical constraints

As we synthesize behavior, we are not necessarily interested in the details of the semantics of
exchanged messages as such. We are only interested in the impact of semantics on behavioral
issues. Experience from adapter synthesis suggests that the main impact of semantical issues is
to constrain the ability of a service to manipulate message contents. The semantics determines



Table 1. Examples of semantical constraints in terms of transformation rules

Constraint Rule Example pro Example con

Create a 7→ a own password, foreign password
simple acknowledgement

Copy a a 7→ a, a address money transfer,
transaction number

Delete a a 7→ electronic message real item (e.g., book)

Transform a into b a 7→ b length in feet to zipcode to length
a 7→ a, b length in meters

Split a into b, c, d a 7→ b, c, d address to name, city, street the other way round
a 7→ a, b, c, d

Merge a, b, c into d a, b, c 7→ d name, city, street to address the other way round
a, b, c 7→ a, b, c, d

Recombine a, b to c, d, e a, b 7→ c, d, e
at reader’s discretion

a, b 7→ a, b, c, d, e

whether or not the content of a message can be generated, copied, deleted, or computed from
the content of other messages.

In [11], we proposed to specify semantical constraints as a set of transformation rules. Each
rule consists of two bags saying that the contents of the right hand side messages can be deter-
mined from the contents of the left hand side messages, thereby consuming the messages at left
hand side. Consumption of involved messages makes sense as real items may be involved while
non-consumption of a message may be modeled by re-generating it on the right hand side. For
convenience, the universe used for building bags is a set of semantical entities that contains but
is not restricted to the names of exchanged messages. This way, we have more freedom to model
dependencies.

Table 1 lists those semantical constraints which have been proposed in the context of adapter
synthesis, together with examples where they make sense as well as examples where they don’t
make sense. The examples show that the applicability of a rule indeed depends on the semantics of
the message contents and cannot be inferred from the service protocol. Consequently, we consider
a scenario where the constraint specification is part of the input to the synthesis problem.

There are various ways to generate a specification of semantical constraints. First, they may
be generated manually. Since the transformation rules are rather simple, this should not be a
problem. Second, they may be inferred using semantic web technology like ontology reasoning.
State of the art in this field is beyond the scope of this note. Third, they may become part of
the service construction process using some (may be intra-organizational) modeling standard.

5 Synthesis of service behavior in presence of semantical constraints

Our approach (already exercised in [11]) consists of the following steps. Given an open net P
and a specification C of semantical constraints, we transform C into an open net S that covers
the whole interface of P . S basically manages the message transfer from and to P as well as the
transformation of semantical entities according to C. Via a separate interface, it is possible to
trigger any activity in S and receive a notification of its execution. In a second step, we synthesize
a correctly interacting partner R for P ⊕ S using the traditional approach (i.e., not taking care
of semantics). Finally, we merge R with S into the final result which can be further optimised
using Petri net reduction rules and, if desired, transformed into WS-BPEL.

In this agenda, the construction of S is obviously the crucial part as all other steps rely on
existing technology. Consider some given service P and a set C of semantical constraints ranging
on a set E of semantical entities. Let I and O be the sets of input and output places of P .



We assume that I ∩ O = ∅ and I ∪ O ⊆ E. For simplicity of presentation, we assume that for
each rule in S, both sides are sets; the general case follows analogously using Petri nets with arc
multiplicities.

For defining the service S, we use names from the space (E ∪ C)× {e, n, c, r, s}, where e, n,
c, r, s denote characters instead of variables; hence we assume that these names do not occur in
the given service.

The interface of S consists of output places I, input placesO (i.e., the interface of P in opposite
orientation), and some input and output places specified below. For each entity e : e ∈ E, we
introduce in service S an internal place (e, c) (c for “copy”). In the initial and final markings,
the internal places are empty, although this can easily be generalized in future work.

Service S has three kinds of transitions. For every input place o : o ∈ O, there is a transition
(o, r) (r for “receive”) to move arriving messages from interface place o to their internal place
(o, c). For every transformation rule w : w ∈ C, there is a transition (w, c) to perform the actual
transformation in terms of the internal places. Finally, for every output place i : i ∈ I, there
is a transition (i, s) (s for “send”) to move messages from their internal place (i, c) to interface
place i.

Finally, we discuss the additional interface places for the controller. For every input place
o : o ∈ O, output place (o, n) (n for “notify”) notifies an arrived message o. For every trans-
formation rule w : w ∈ C, input place (w, e) (e for enable) enables transformation rule w, and
output place (w, n) notifies an execution of w. Finally, for every output place i : i ∈ I, input
place (i, e) enables the delivery of a message i (once available).

Definition 1 (Service S). Let I,O,E,C be as introduced before. The corresponding service S
is defined as an open net with the following constituents:

P = (E × {c}) ∪ Pi ∪ Po

Pi = O ∪ (C × {e}) ∪ (I × {e})
Po = I ∪ (C × {n}) ∪ (O × {n})
T = (O × {r}) ∪ (C × {c}) ∪ (I × {s})
F = Fr ∪ Fc ∪ Fs

Fr =
⋃

o∈O { [o, (o, r)], [(o, r), (o, n)], [(o, r), (o, c)] }
Fc =

⋃
w=X 7→Y ∈C ( {[(m, c), (w, c)] | m : m ∈ X} ∪
{[(w, e), (w, c)], [(w, c), (w, n)]} ∪ {[(w, c), (m, c)] | m : m ∈ Y } )

Fs =
⋃

i∈I { [(i, c), (i, s)], [(i, e), (i, s)], [(i, s), i] }
m0 = 0
Ω = {0}

We use 0 to denote the marking that is zero in every place. By construction, all outputs
to P have been obtained from the input of P using the transformation rules only. The actual
scheduling of rule applications and message deliveries is left to a controller using the remaining
interface.

The inner of S may be unbounded which would complicate further synthesis. For this reason,
we pragmatically introduce some capacity on the places of S that, if chosen sufficiently large,
should not restrict our results unduely.

Having generated S, it remains to synthesize a partner R of P ⊕ S which can be done using
the approach of [1, 2]. R basically schedules the application of available actions: it triggers the
application of transformations as well as the shipment of messages. Its decisions are based on
notifications about incoming messages and applied transformations.

A WS-BPEL process constructed from R ⊕ S would contain an opaque activity for each
transition, including those that represent the application of transformation rules. In several



situations, it is possible to complement the specification of semantical constraints with code
snippets that actually implement the specified transformation. In these cases, we may end up
with an executable WS-BPEL process that implements the whole interaction with P and is
correct by construction.

6 Obeying semantical constraints

In the next section, we wish to establish a result of the following kind: Given a service P and a
set C of semantical constraints, if there is any R such that R interacts correctly with P and R
obeys the semantical constraints, then P ⊕S is controllable. A result of that kind is only valuable
if the definition of “to obey the semantical constraints” is as liberal as possible. In this section,
we propose such a definition. For simplicity, we consider only nets where all arc multiplicities are
equal to one.

As a starting point, we assume that R has one place for each semantical entity occurring in
C. This may be seen as a restriction. Since, however, typical semantical entities are exchanged
messages for which there is anyway a representing place, this condition should not be too restric-
tive. Let PS be the set of places that represent semantical entities. Let FS be the set of edges
that have their source or sink node in PS .

The idea of our definition is to mark the application of transformation rules in the normal
control flow of an open net. To this end, we use some infinite set U . Each element of U represents
the application of a single rule in C. There may be several elements in U that represent the same
rule. Elements of U are assigned to those edges which are connected with PS , i.e. we consider
a mapping ψ : FS → U . This way, access to semantical entities is grouped. u represents a rule
X 7→ Y iff the source places of arcs labeled with umatchX, the sink places of arcs labeled umatch
Y , and each consumption activity causally precedes each production activity. Formally, the first
requirements amount to X = {p | [p, t] ∈ FS , ψ([p, t]) = u}, Y = {p | [t, p] ∈ FS , ψ([p, t]) = u}.
Causal precedence is difficult to formalize as we do not want to rule out open nets with cycles.
Therefore, we need to separate different instances of transitions which contribute to a rule. This
leads to the second restriction. We require that, for each u, every run of the inner of R can be
divided into sequentially arrangeable parts such that each part contains exactly one occurrence
of each transition contributing to u (i.e. there is a p such that ψ([p, t]) = u or ψ([t, p]) = u).
Within each part, we may now require that ψ([p, t]) = u and ψ([t, p]) = u implies that t causally
precedes or is equal to t′ which formalizes the idea that consumption precedes production.

We say that R obeys C iff a mapping ψ with the discussed properties exists.
It is easy to see that R⊕ S as computed in the previous section obeys C.

7 Completeness

With the definition of the previous section we are now ready to claim completeness of our
approach.

Theorem 1. Consider an open net P and a set C of semantical constraints. If P has a correctly
interacting partner that obeys C then P ⊕ S is controllable where S is the open net constructed
from C as described earlier in this note.

For proving this theorem, let R be a correctly interacting partner of P that obeys C. We
transform R into a correctly interacting partner of P ⊕ S using the following ideas.

– Rename input places p of R to (p, n) and output places to (p, e). This way, R talks to S
instead of P .

– For each used u ∈ U , introduce new places pu and qu. These places control the invocation of
rules.



– For each [p, t] with ψ([p, t]) = u, an arc [t, pu]; for each [t, p] with ψ([t, p]) = u, an arc [qu, t];
– For each u (where c=X 7→ Y is the rule represented by u), a transition that consumes |X|

tokens from pu and puts one token on (c, e) as well as a transition that consumes one token
from (c, n) and puts |Y | tokens on qu.
By this construction, a rule is invoked in S after having consumed the corresponding se-

mantical entities in R but before having produced any entity. By our requirements on causal
dependencies, the construction does not influence the behavior of R. Thus, the resulting partner
interacts correctly with P ⊕ S.

8 Conclusion

We have shown that the approach of [11] applies to partner synthesis in general. We have further
shown that, for a quite liberal definition of “obeying semantical constraints” our approach is
complete in the sense that we can synthesize a partner that obeys the constraints iff one exists.
This result is, of course, subject to the following shortcomings: First, we are restricted to finite
state partners with a given bound on the access of interface places. Second, we have artificially
limited the concurrent application of rules and intermediate storage of semantical entities in S
to make S finite state as well. Third, technicalities in the definition of “obey C” may be further
relaxed. Nevertheless, the completeness result should add confidence into our approach.
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