
Visualization and Analysis of Student Interactions in an

Adaptive Exploratory Learning Environment

Dror Ben-Naim, Nadine Marcus, Mike Bain

School of Computer Science and Engineering
University of New South Wales, Sydney, Australia

Abstract. In this paper we describe research that applies educational data-
visualization and data mining techniques in an Adaptive Exploratory eLearning
Environment called the Adaptive eLearning Platform. Using a novel
visualization tool called the Solution Trace Graph, we were able to visualize
student interactions and thus gain insights that led to the refinement of the
intelligently adapted remediation in the system. An important observation we
make concerns the employment of a software design methodology which we
refer to as Virtual Apparatus Framework (VAF). By using VAF to develop
eLearning content, the process of developing intelligently adapted remediation
in an exploratory learning scenario, and subsequently the analysis of students’
behaviour, is greatly enhanced and simplified.

Key words: Adaptive e-Learning, Intelligent Tutoring Systems, Educational
Data-Mining, Virtual Apparatus Framework, Exploratory Learning
Environments

Introduction

Exploratory Learning Environments (ELE) have recently emerged as an alternative
to controlled and step-guided educational systems. ELE typically emphasise learning
by interaction and exploration of the environment via its interface.

In Exploratory Learning Environments, the discovery and self guided nature of the
activity plays a role in increasing students’ motivation, which may contribute towards
learning [1].

ELE are suitable for educational activities that involve simulations, where learners
can experiment with different aspects and parameters of a given phenomenon to
observe the effects these changes have on outcomes of the simulation. These types of
environments can often feature goal-free learning, which has been empirically
demonstrated by Sweller and colleagues to lead to improved learning [2].
Unconstrained exploration of a large problem-space may overwhelm learners in terms
of number of choices (see [2]) therefore, we suggest that effective learning in ELE
can be achieved using guided exploration.

2

In ELE, keeping track of learners’ interaction for the purpose of analysis of
student’s behaviour is difficult, as typically, these environments provide a rich user
interface for the student to explore. Monitoring students’ interactions and logging
their activity yields a high-bandwidth data set – a large set of attribute-values, per
each interaction. Making sense of this data, in order to improve the activity is a
difficult task and is subject to research efforts by many [3].

This paper focuses on the Adaptive eLearning Platform (AeLP) - a distributed
software architecture for the development and deployment of Adaptive eLearning
content. It has been argued by a number of researchers working on Adaptive
eLearning technologies that distributed, component-based architecture is the way to
introduce these technologies into the mainstream [4-6].

The motivation behind the Adaptive eLearning Platform is a desire to create an
Intelligent Virtual Exploratory Learning Environment. Research to date [7, 8]
suggests that students benefit from an interactive learning environment in which they
can have some control over their learning experience. Teachers also benefit from the
ability to track the students’ progress during a learning activity.

Virtual Apparatus Framework for Designing and Developing

eLearning Activities

Virtual apparatus framework for educational content development was described as
a content development paradigm that can promote reusability of Learning Objects
(LO) and reduce the effort required in developing educational content [9, 10]. With
Virtual Apparatus Framework we can approach the eLearning content development
process in the same way we approach developing (real world) teaching laboratory
activities. In the design of a lab activity the teacher is responsible for setting up the
experiment table and composing the experiment notes. The apparatus is built by third
party companies. VAF employs a similar separation of concerns: separation of
content and presentation. The development of the presentational software components
(called Virtual Apparatus) is delegated to the software engineers while the educational
(content) aspects of the activities are authored by the teacher. VAF adheres to the
Model View Control (MVC) design pattern in software engineering. In MVC, data, its
presentation and actions are all kept separate [11]. Essentially, VAF is an attempt to
increase separation of concerns in educational software engineering. It’s similar to
other design patterns that support componentization of the educational building
blocks that have been suggested in the past [12].

One important software engineering implication that stems from the choice of VAF
as a design pattern is that the Virtual Apparatus is developed such that its properties,
and its subcomponents’ properties, can be SET and GET by an external application
through an Application Programming Interface (API). With VA’s API in place,
authoring educational activities can be thought of as analogous to real lab content
authoring. In the real world, teachers set up an experiment and compose notes
explaining to students how to interact with the apparatus in order to achieve some
educational goal. During lab activity, demonstrators (intelligently) give students
remediation based on their problems and the state their apparatus is in. Similarly,

 3

developing content in VAF, we import VA into a virtual “experiment table” and
compose notes that instruct students through the activity. The Adaptive eLearning
Platform addresses how we define the correct answer or more specifically, how we
define the correct state the Virtual Apparatus should be brought to? And how do we
intelligently remediate students based on their problems?

The Adaptive eLearning Platform

The AeLP was originally designed to complement the laboratory component for
first year physics courses at the University of New South Wales (UNSW), by
providing virtual experiments and laboratory-like activities. Since 2004, first year
physics teaching at UNSW was reformed to incorporate “Exploratorial” sessions
which are described in [13]. Exploratorials aim to integrate observations, experiments,
calculations and theory, to offer the insight of a lecture and the student-led analysis of
a tutorial and the hands-on measurement of a lab.

Adaptation (in computer science) is an overly broad term that characterises any
software systems that can change some features based on some User Model. In
eLearning, adaptation is the subject of much research and development. Some
researchers are concerned with adaptive navigational support of education
hypermedia [14]. Other groups focus on adapting sequences of higher granularity
content such as lessons, syllabi and courses (e.g.[15]). The AeLP’s adaptivity focuses
on adapted remediation within an interaction task and adapted sequencing of low
granularity content such as a questions (for further discussion see [9]).

Authoring Adaptive Tutorials

Authoring an Adaptive Tutorial (AT) using the AeLP Author, consists of importing
prefabricated Virtual Apparatus into the system, setting it to some initial state (via its
API), and then composing notes that’ll direct the students through their interaction in
the environment. For each VA imported, we compose a set of questions that require
interaction and exploration of different forms from students (e.g. “set the apparatus to
such condition to maximize parameter x”). Using the AeLP Author, the teacher
defines the correct state the apparatus should be brought to (again, in terms of its
API), and possible error states. Those states are called trap-states and are defined by
conjunctions and disjunctions of conditions. To each trap-state, a remediation
(feedback, textual or not) is attached. The problem’s state-space is defined as the set
of all possible states the VA can get into.

Conditions are defined as triples of [targetName, operator, value]. For example a
condition might be:

VA.angleControl.value = 0

Where the targetName is “VA.angleControl.value”, the operator is ‘=’ and the
value is ‘0’.

4

The available targetNames for defining conditions come from the VA’s API. When
a VA is imported into the platform the platform creates an Object Model interface to
the VA’s properties that it can access [Figure 1].

The underlying assumption behind developing content using this paradigm is that
any question can be modelled as a task to bring some system from an initial state,
defined by some initial conditions, to some other correct state, defined by another set
of conditions, by interacting with it. A more formal definition for a question can be:

Let question Q, be defined as the process by which a state
machine M is manipulated by student S to change its internal
state from initial state I to correct state C. A transition between
I and C must exist.

When we develop the content this way, questions can be considered mini expert
systems. Rules in the AeLP are fired when the VA is in a particular state defined by
its set of conditions. Antecedents are defined as states the VA can get into: points or
regions in the state-space of the system. The state-space is vast if not infinite (e.g. a
state can be defined by a rule such that the student landed in a particular, other state,
twice). The question is then: how do you define all the possible states you want to
remediate? Using the AeLP author the teacher actually only needs to define some
states, those that support his hypothesis regarding what mistakes the students will
make, and what type of remediation is needed.

In our experience, VAF was found to be useful for the development of virtual

experiments and interaction based activities that are based on simulations and are thus
exploratory in nature.

Evaluation at the University of New South Wales

The Adaptive eLearning Platform is currently being deployed across three schools
at UNSW: Physics, Mechanical Engineering and Computer Science. The AeLP’s
adaptive content serves 600 students a year. For example, in the School of Physics,
we developed an AT for teaching first year physics students the concept of Faraday’s
Law [Figure 1]. The students were given a virtual coil rotating in magnetic field, a
virtual oscilloscope and were required to complete various tasks, such as maximizing
the magnetic flux, or calculating the electromotive force generated by the rotation of
the coil.

Data-Mining the AeLP Logs

The Adaptive Tutorial’s logs saved in the system contain massive amounts of
information. We store a complete snapshot of the entire system per each student’s
interaction. Each snapshot contains values of all the inspectable properties in Virtual
Apparatus and other runtime information. In this way we keep a complete log of what
students have done.

There are several motivations for our data analysis:

 5

1. We want to know how students interacted with the VA; in what ways they
manipulated the VA’s states

2. We want to know if our hypotheses about expected user problems fit
student’s behaviour

3. We’d like to get feedback on how effective our adapted predefined
remediation was

4. In case our remediation was not effective, we would like to be able to
drilldown and understand why

5. We would like to investigate what students’ misconceptions and mistakes we
did not anticipate when authoring the Adaptive Tutorial

6. We want to be able to pick up abnormalities in the system’s behaviour, and
possibly identify problems we did not anticipate in the authoring phase

7. We would like to be able to classify students based on their performance and
add this information to their student model

With these motivations in mind, we designed and developed the Adaptive Tutorial

Analyser [Figure 2] component of the AeLP.

Data-Visualization Strategy

As the students attempt to solve a task, they manipulate the UI controls of the VA
thus changing its state. During the authoring phase, we define trap-states on a
question’s available state-space. These represent the states we think the students
might erroneously bring the VA into. We are thus interested in understanding the way
students navigate through this state-space in order to arrive at the correct state.
Essentially we can think of the process a student takes in order to solve the task as a
trace through the problem’s state-space. Our first attempt with the Adaptive Tutorial

Figure.1. A Virtual Apparatus Setup (left) and its corresponding API (right) in the
AeLP Author. Using the API the teacher defines the init, correct and error trap-states.

6

Analyser was to try and visualize this process. For this purpose, we developed the
Solution Trace Graph [Figure 2]. The Solution Trace Graph (STG) shows student
progression per question as a transition between the question’s states. A student’s
solution trace can be visualized as a “multicolumn” graph, where each column
contains all question trap-states as nodes. There are as many columns in the STG as
the total number of attempts the student needed in order to get to the correct state. An
edge in the graph is a transition between two states. The graph’s horizontal direction
represents progression in time measured as discreet solution attempts.

To investigate multiple students’ behaviour, we superimpose their solution traces
on one STG. The number of columns in the STG is now the maximum number of
attempts it took any student to arrive at the correct state. In a superimposed STG, an
edge’s weight is defined as the number of students that have passed between two trap-
states between the same attempt numbers (e.g. moving between state A to B on the
second solution attempt) Edge Weights are noted by a label on the edge line, and are
also colour coded.

Inspecting the data in such a manner gives an immediate visual intuition about
students’ behaviour during the Adaptive Tutorial.

Assessing the Effectiveness of Adaptive Remediation

In the STG, the teacher can see a breakdown of how many students arrive at each
state (weights on incoming edges to a state-node) and, based on the remediation given
in this state, how many students moved to the correct state (outgoing edge leading to
‘correct’ state). Of particular interest are edges that connect the same states across
different columns. Such transitions imply either that the remediation given to the
students was ineffective - because the student “landed” on the same error state - or
that the error state was too general and students landed there given a broad set of
circumstances. Once we identify that our remediation was not effective, the next step
is to drilldown and to inspect what it is that the student has done, that we did not
anticipate. In essence, we want to know why our remediation wasn’t successful in
assisting students and we do that by inspecting what they have done after the
remediation was given. To enable this, we need a way to look at all the relevant edges
coming out of the desired state, and understand what is common between them, i.e.
what was the behaviour we missed when creating the adaptive remediation?

This is achieved by two means: teacher driven and data driven analysis. The
teacher driven approach enables the teacher to investigate patterns in students’
behaviour. The data driven approach uses various data-mining algorithms in order to
pick patterns in the data, but will not be discussed in this paper.

To enable teacher insight into the data, we organize the snapshot data in an easily
inspectable DataGrid [Figure 2]. Clicking on an edge, the STG populates the snapshot
DataGrid with the information corresponding to the interactions that resulted in the
transition between the edge’s states.

Each column in the DataGrid represents a dimension in the state-space (an
inspectable property of the VA or the runtime environment). Columns can be sorted
by clicking on their header. It is, therefore, easy to notice values of certain properties
that are recurring. In the example shown in Figure 2 we noticed that 3 students made

 7

the mistake of omitting the exponent part of the solution (instead of entering 1.13e-3
they entered 1.13). Although technically a mistake, we think this type of error should
be remediated in an adaptive way, and possibly incur a small score penalty. Using the
AeLP author an extra error trap-state can be created based on the condition:

questionPanel.userInput == “1.13”

and the adapted remediation can be for e.g.:

“Almost correct, have you got the significant figures
right?”

In this sense, the process of developing an Adaptive Tutorial is through a continual
refinement of the rule-base. In this way we are avoiding the expert system
“knowledge acquisition bottleneck” problem.

Specifying an Overly General Trap-State

An important feature that the STG allows us to investigate is the edges that lead to
the ‘defaultWrong’ trap-state. The defaultWrong trap-state is basically there to give
generic feedback to students if they have done something that we did not anticipate.
This state does not have any condition attached to it, and therefore its (empty) rule

Figure. 2. The Solution Trace Graph shows superimposed solution traces for a sub
group of students. Starting from the left, 13 students ‘landed’ in the ‘wrongSelected’
state. After being given the adaptive remediation, 4 students were able to get to the
‘correct’ state whilst 8 students continued to ‘wrongSelected’. This suggests that the
remediation might need to be revised. The DataGrid is populated with the snapshot
information representing the state the Virtual Apparatus was in when the student
attempted a solution. The grid allows for quick inspection of mistake patterns. In this
case we see students entered “1.13” instead of “1.13e-3”.

8

fires when all the other custom trap-states are not applicable. A sufficiently adaptive
activity should have no edges leading to the defaultWrong trap-state because all
possible errors were adaptively remediated for. However, in reality we sometimes
count on the defaultWrong remediation where the question/task at hand does not
involve manipulation of the apparatus (e.g. questions such as: multiple choice, free
input, true false) and we can count on the per-attempt custom feedback feature to
progressively expose students to the answer. In open tasks of either guided or
exploratory nature, the edges that lead to the defaultWrong are investigated in order to
understand what type of mistakes the students have made, and how we can adaptively
remediate for them.

Pattern Recognition

Recognizing what behaviour patterns are emerging in the data is the process by
which the teacher identifies what kind of mistakes the students are making.

One interesting pattern that the STG can easily reveal is state transitions that are
predictors of other state transitions. The STG can show us, for instance, that 90% of
students who landed in a trap-state A, continued, after being remediated to trap-state
B. A visual way to explore this is to project the entire STG to just two columns.

Data-mining could also be applied to discover these patterns automatically,
possibly as conditional probabilities in a Bayes Net or association rules.

Identifying Bugs and Abnormalities

As the horizontal dimension of the STG represents solution attempts, a long STG
means students were unsuccessful in getting to the correct state after a large number
of attempts. Investigating interactions leading to long STG’s, we occasionally found
that these resulted from bugs in the Virtual Apparatus, or the User’s system. Such
feedback is really useful with production environments.

Future work

Through our experience developing the STG, some interesting possibilities became
immediately apparent:
• Replaying Student’s Activities: The DataGrid contains snapshot information.

Using this information we can recreate the system’s state. In effect, we can replay
the student’s activity. Teachers using our system expressed the desire to “just click
and be able to replay the activity the way the students did it”, thus better enabling
understanding what has happened. Extending the Adaptive Tutorial Analyser by
developing the Activity player is a short-term goal of our R&D team.

• Live Monitoring: in order to support supervised, live learning scenarios, we are
investigating a Live-STG that is continuously updated with real-time data.

 9

• Labelling sequences: an interesting consequence of visually analysing data using
the STG is that it is possible to identify sub groups of users who behave in a
similar manner and label them for the purpose of user and group modelling. This
possibility will be investigated in the future.

• Collaboration – We are developing live-collaboration support into the AeLP so that
students can work on a VA simultaneously in groups of up to 5 students. Data
mining the group work is a challenge we are currently working on.

Conclusion

This paper presents a novel approach to support adaptivity in an exploratory
learning environment – the Solution Trace Graph (STG) - a tool that visualizes
student’s behaviour and provides visual feedback about the effectiveness of adaptive
remediation.

The STG models student behaviour in an exploratory environment, as a solution
trace between predefined trap-states. We found when using the STG to analyse
interaction data in the Adaptive eLearning Platform, teachers could clearly gain
valuable information about how students interacted with the exploratory environment
in a visual format, therefore, get feedback regarding the quality of their Adaptive
Tutorials. More importantly, by identifying what errors were not accounted for in the
adaptive remediation, and adding further trap-states into the Adaptive Tutorial, the
process of refining the educational activity becomes iterative and gradual. This
greatly eases the deployment of adaptive content as it facilitates the analysis and
refinement process. In this way, the AeLP addresses what is known as the
“knowledge acquisition bottleneck” problem of developing expert systems. Moreover,
based on the analysis of past performance, educational content can more easily be
developed to meet student’s needs. The personalised feedback of an individual
teacher can also be simulated.

We note that one precondition to all of this functionality is our definition of
eLearning activities as transitions between question states. The strength of this
paradigm stems from the fact that this definition is extremely flexible and can be
applied to most eLearning activities.

In this sense authoring an adaptive activity can be an incremental process that is
both teacher driven and data driven. Using the STG, the AeLP helps teachers enhance
their teaching practice, allowing them to develop content that can be customised to
students’ needs.

References:

1. Reiser, B., W. Copen, M. Ranney, A. Hamid, and D. Kimberg, Cognitive

and Motivational Consequences of Tutoring and Discovery Learning, in
Technical Report. 1994, The Institute for the Learning Sciences.

2. Sweller, J., Instructional Design In Technical Areas. 1999: ACER Press.

10

3. Cristóbal Romero, M.P., Toon Calders, Silvia R. Viola, International

Workshop on Applying Data Mining in e-Learning (ADML’07), in Second

European Conference on Technology Enhanced Learning (EC-TEL07).
2007, CEUR-WS.org: Crete, Greece.

4. Brusilovsky, P., S. Sosnovsky, and O. Shcherbinina, User Modeling in a

Distributed E-Learning Architecture, in User Modeling 2005. 2005. p. 387-
391.

5. Carmona, C. and R. Conejo, A Learner Model in a Distributed Environment,
in Adaptive Hypermedia and Adaptive Web-Based Systems. 2004. p. 353-
359.

6. Conlan, O., et al. An Architecture for integrating Adaptive Hypermedia

Services with Open Learning Environments. in World Conference on

Educational Multimedia, Hypermedia and Telecommunications 2002. 2002.
Denver, Colorado, USA: AACE.

7. Mayer, R.E., Chandler, P., When learning is just a click away: Does simple

user interaction foster deeper understanding of multimedia messages.
Journal of Educational Psychology, 2001. 93: p. 390-397.

8. Betrancourt, M., The Animation and Interactivity Principles in Multimedia

Learning, in The Cambridge Handbook of Multimedia learning, R.E. Mayer,
Editor. 2005, Cambridge University Press: Cambridge. p. 278-296.

9. Dror Ben-Naim, NadineMarcus, Michael Bain. Virtual Apparatus

Framework Approach to Constructing Adaptive Tutorials. in The 2007

International Conference on E-Learning, E-Business, Enterprise Information

Systems, and E-Government. 2007. Las Vegas, Nevada, USW: CSREA
Press.

10. Albert Ip, R.C., A Model for Authoring Virtual Experiments in Web-based

Courses, in Conference Australasian Society for Computers in Learning in

Tertiary Education 1996: Adelaide, Australia.
11. Reenskaug, T., The Model-View-Controller (MVC) Its Past and Present, in

JavaZONE. 2003, JAOO, Århus: Oslo, Norway.
12. Ch. Kynigos, M.K., Th. Hadzilacos, Mathematics with Component Oriented

Exploratory Software. International Journal of Computers in Mathematics
Education, 1998.

13. McAlpine i., C.M., Newbury R., Hatsidimitris G. Multimedia Enhanced

Active Learning Studio: a development in physics teaching. in Proceedings

of ED-MEDIA 2005 - World Conference on Educational Multimedia,

Hypermedia and Telecommunications. 2005. Montreal, Canada.
14. Brusilovsky, P., Adaptive Navigation Support, in The Adaptive Web. 2007. p.

263-290.
15. Santos, O.C., C. Barrera, and J.G. Boticario, An Overview of aLFanet: An

Adaptive iLMS Based on Standards, in Adaptive Hypermedia and Adaptive

Web-Based Systems. 2004. p. 429-432.

