
A Comparative Analysis of Graph Transforma-
tion Engines for User Interface Development 

Juan Manuel González Calleros1, Adrian Stanciulescu1, Jean Vanderdonckt1, 
Jean-Pierre Delacre1, Marco Winckler1,2 

1Université catholique de Louvain, Louvain School of Management (LSM) 
Place des Doyens, 1 – B-1348 Louvain-la-Neuve (Belgium).  
E-mail: {juan.gonzalez@student, jean.vanderdonckt@, adrian.stanciulescu@}uclouvain.be   
Web: http://www.isys.ucl.ac.be/bchi/ - Tel: +32 1047 {8349, 8525} – Fax: +32 10 478324 
2LIIHS-IRIT, Université Paul Sabatier 
118 route de Narbonne, Toulouse  F-31062  (France)  
E-mail: winckler@isys.ucl.ac.be 

Abstract.  In software engineering, transformational development aims at devel-
oping software systems by transforming a coarse-grained specification to final 
code through a sequence of small transformation steps. This transformational de-
velopment method has followed a long tradition of establishing models and main-
taining mappings between them so as to create and maintain accurate specifica-
tions of a user interface. User Interface mappings are also relevant to web 
engineering. We have been working not just User Interface mappings for web-
based systems but as well for Information Systems in general. However, we have 
been confronted to the mapping problem as the use of an appropriate transforma-
tion tool it still an issue in our research group. Although several transformation 
engines support mappings a transformation engine capable of supporting a trans-
formational approach for ensuring model-driven engineering of user interfaces is 
still an open issue. This paper provides a comparative analysis of transformation 
engines ranging from publicly or commercially available engines to be adapted to 
the mapping problem to hand-coded transformation engines that we developed for 
the sole purpose of supporting the mapping problem. The results of the compari-
son let authors to identify the type of transformation engine that fits better to their 
skills, needs and preferences.  

1. Introduction 
Model engineering (i.e., a discipline that is concerned with the development 

of models) is part of the numerous solutions proposed to overcome with the in-
creasing complexity that developers must handle to produce software. Model-
driven development (MDD) is an OMG (www.omg.org) initiative that proposes to 
define a set of non-proprietary standards that will specify interoperable technolo-
gies with which to realize model-driven development with automated transforma-



2  

tions. It advocates that software development should be guided as much as possi-
ble by the construction, and refinement of software models at various levels of ab-
straction.  Four principles underlie the OMG’s view of MDD for User Interfaces 
(UIs): 
1. Models are expressed in a well-formed unified notation and form the corner-

stone to understanding software systems for enterprise scale information sys-
tems.  The semantics of the models are based on meta-models. 

2. A formal underpinning for describing models in a set of meta-models facili-
tates meaningful integration and transformation among models, and is the ba-
sis for automation through soft-ware. 

3. The building of software systems can be organized around a set of models by 
applying a series of transformations between models, organized into an ar-
chitectural framework of layers and transformations: model-to-model trans-
formations support any change between models while model-to-code trans-
formation are typically associated with code production, automated or not. 

4. Acceptance and adoption of this model-driven approach requires industry 
standards to provide openness to consumers, and foster competition among 
vendors 

Not all model-based UI development environments or development methods 
can pretend to be compliant with these principles [24]. If we apply OMG’s princi-
ples to the UI development life cycle, it means that models should be obtained 
during steps of development until providing source code, deployment and configu-
ration files. MDD has been applied to many kinds of business problems and inte-
grated with a wide array of other common computing technologies. Considering 
MDD of UIs [15] complexity related to the number of transformation needed to 
support this process has been found in the literature as a major issue [13]; In Fig. 1 
how graphs transformations area articulated when following MDD method. Each 
development path (for instance, forward engineering) is composed of development 
steps, the latter being decomposed into development sub-steps (for instance, from 
abstract to concrete models). A development sub-step is realized by one (and only 
one) transformation system and a transformation system is realized by a set of 
graph transformation rules.  

 

 
Fig. 1. Articulation of graph transformations with transformational development of UIs 

The amount of transformation rules of a rather simple system grows up to two 
hundred graph transformation rules. Then, usable systems are needed to encode 



3 

transformations rules. Also, provide facilities to extend existing sets of graph 
transformations. Recently, we have been working on this issue. On the one hand, 
trying to use existing tools to encode graph transformation rules applied to MDD 
of UIs. On the other hand, building from scratch customized tools [14, 23] ad-
dressing the same problem.  

In this paper the lesson learned from using graph transformation tools is dis-
cussed. Graph Transformation engines were compared and their benefits and con-
straints are presented to authors with the goal of helping in making decisions when 
confronted to selecting a graph transformation tool for MDD of UIs. Our analysis 
is based on three existing tools TransformiXML [14], AGG [7] and AToM³ [6]. A 
new tool called YATE (Yet Another Transformation Engine) recently developed 
for MDD of UIs is also compared with existing ones. The remainder of this paper 
is structured as follows: Section 2 describes YATE implementation. Then, in Sec-
tion 3 a case study is introduced to illustrate the different implementations in 
TransformiXML, AGG, YATE and AToM³. In Section 4, a comparative analysis 
is presented showing that this type of work remains unprecedented. The conclu-
sion summarizes the main benefits of the evaluation, while contrasting with poten-
tial shortcomings.        

2. Transformation engines for User Interface Development 
Several research has been conducted addressing the mapping problem for 

supporting MDD of UIs, UsiXML [24], ATL [11], TXL [4], 4DML [2], UIML's 
internal transformation capability [1], XSLT [12], GAC [8], RDL/TT [22], TEAL-
LACH [10], TERESA [17], and UI Pilot [20]. Some of these tools were compared 
in [18, 21]. The results shows that most of existing solutions support one-to-one 
mappings, which is a limitation in the context of MMD of UIs where the map-
pings are normally, not always, of the type one-to-many. When a tool support one-
to-many mappings implementation, sometimes, is very complex and other issues 
raised, such as: maintainability and usability.  

Table 1. Comparison of general transformation language features (Adapted from [21]).  

Feature ATL GT TXL 4DML XSLT GAC UIML RDL 
Declarative + + + + + - + - 
Imperative + - - - + + - + 
Model Transforma-
tion 

+ + (+) (+) (+) (+) (+) (+) 

XML Transformation - - (+) (+) + + - + 
Code Transformation - - + (+) - - - - 
Complex Mapping + + + + + + - + 
Extensible + - - - - - - + 
Parameterizable - - - - - + - + 

In Table 1 if a feature is supported, it is marked wit a “+”, if not it is marked 



4  

with “-”. If a supported feature is put in brackets, it means that it is in principle 
supported (maybe with some additional effort) but that the language is not specifi-
cally designed to support that property. From this review [21] they conclude that 
the effective tool depends on the approach selected. It was found that for purely 
MDD, graph transformations and ATL will be good choices [21]. From our ex-
perience, we found graph transformations a good option for MDD of UIs. The se-
lection of graphs transformation [13,14,15] were based on the fact that graph 
grammars:  

• are rather declarative and provide an appealing graphical syntax which does 
not exclude the use of a textual one 

• are based on a formally defined execution semantics based notably on pushout 
theory, for which many proofs have been provided (completeness; confluence) 

• allow to describe transformations with the same vocabulary as specification 
models in a very consistent manner and for all development steps 

• provide extensions (i.e., conditional graph rewriting, typed graph rewriting) to 
check important properties of the artifact that is produced after a transforma-
tion 

• offer modularity by allowing the fragmentation of complex transformation 
heuristics into small, independent chunks. The fact that graph rewritings have 
no-side effects facilitates this modularization.    

2.1 Case Study: Virtual Polling System 
Our method UsiXML [24] relies on the Cameleon Reference Framework [3]. 

The framework is composed of four development steps: create conceptual models 
(e.g. task model, data model, user model), create Abstract UI (AUI), create Con-
crete UI (CUI), and create Final UI (FUI). To detail the different techniques, to 
compare and assess them is beyond the scope of this paper for more details see 
[24]. In this section we use the virtual polling system case study to exemplify the 
transformational approach based on graph transformations.  

The development scenario is the following: a forward engineering path is ap-
plied from a definition of the task and domain viewpoint to produce both an ab-
stract user interface (AUI) and concrete user interface (CUI). For that purpose 
more than one hundred rules are applied. The transformation rules and the details 
of this example are fully described for multi-modal applications in [23] and for 
Three-Dimensional UIs in [9]. For this case study around 6O transformations are 
applied, but, for simplicity, just four rules are detailed here to illustrate how they 
were implemented in AToM³, AGG, TransformiXML and YATE. The scenario 
describes transformations from task model to AUI model (Fig. 2). The list of rules 
to perform the transformation is: 

1. For each task that has task children an abstract container (AC) will be created.  
For instance the root task participate to opinion pool has three task children 
(provide personal data, answer question and send the questionnaire) so an ab-
stract container (AC1) is created.  



5 

2. For each leaf task an abstract individual component (AIC) will be created. For 
instance for each leaf task, create name, create zip code, select sex, select age 
category, show questionnaire, select answer, send questionnaire an AIC will be 
created. 

3. For each parent task that has children tasks, If parent task is associated to an 
AC (called parent AC) and child task is associated to an AC  (called child AC), 
then, create an association relationship that will ensure the containment of the 
child AC into the parent AC. For instance the task participate to opinion pool 
associated to AC1 has two task children (provide personal data, answer ques-
tion) that are respectively associated to AC11 and AC12. An association rela-
tionship is created to ensure the containment of AC11 and AC12 into AC1.   

4.  For each parent task that has children tasks, If parent task is associated to a 
parent AC and child task is associated to a child AIC, then, create an associa-
tion relationship that will ensure the containment of the child AIC into the par-
ent AC. For instance the task answer question is associated to AC12 has two 
children (show questionnaire, select answer that are respectively associated to 
AIC121 and AIC 122). An association relationship is created to ensure the con-
tainment of AIC121 and AIC122 into AC12. 

AC1

AC11 AC12

AIC122AIC121

AIC13

AIC112AIC111 AIC113 AIC114

AC1

AC11 AC12

AIC122AIC121

AIC13

AIC112AIC111 AIC113 AIC114

 
Fig. 2. Mapping between the task model and the abstract model.  

2.2 YATE Implementation 
In this paper, the aim is to compare several transformation tools with respect 

to a selected set of criteria considered of importance for MDD UIs. For this reason 
we included the programming model, since it may be a premier choice for a de-
veloper being familiar with either declarative or imperative programming [21]. As 
already described a common case study is used to illustrate its implementation on 
the different tools. YATE transformation engine was developed in Java. In prac-
tice, see sequence diagram in Fig. 3, the main class uses as a UsiXML file (which 
is xml) and translates it into Java objects, then instantiates the rules class. The 
main class uses JAXB to internally represent with Java objects the UsiXML file. 
The Castor project is used to map a file containing two inputs: the specification of 



6  

UsiXML and the transformation rules described also is a XML format. After, the 
transformation rules are executed and the result is stored in the main class. Graph 
transformations are stored as methods in the rules class. The class ruleshelper 
contains methods to find objects using iterators. Finally, a rulesTree class contains 
the tree of the transformation rules. The current version of the tool supports just a 
small set of transformation rules for forward engineering for the polling system. If 
any new rules are needed then a lot of modifications are needed. The rules class, 
its corresponding helpers and the rules tree class need and update. Then maintain-
ability of the code became an issue as the number of transformation rules increase. 
Due to the fact that rules class defines all the methods for the transformation rules. 
As a consequence, there is a lost in performance coming from the fact that differ-
ent rules can apply on the same object and each one will have to do the search to 
find this object. A complete description of the rules can be accessed in [5]. 

 
 

 
Fig. 3. Sequence diagram of the application 

The graphical user interface of YATE (Fig. 4) was developed using Java 
Swing. It is composed of a very simple UI with big text areas used to show the 
source (1) and target files (2); the tree containing all the implemented transforma-
tion rules (3) each with a checkbox aside allowing the decision whether or not the 
rule will be executeThe code to map files corresponding to Abstract Container ob-
jects is as follows: the class usixml.po.AbstractContainer is mapped in the new 
XML file with the name abstractContainer. Then all attributes of the class Ab-
stractContainer are mapped into the new XML file, for each attribute the way it 
formatted (attribute or node) is specified. The last attribute is a list, with bind-
xml=element and auto-naming=deriveByClass, which means that the name of the 
attribute (in the new xml file) will be dynamically chosen by Castor, following the 
name of the class. For instance, an AioType can be an AbstractContainer, an Ab-
stractIndividualComponent or an Input (all extend AioType), so the name of the 
attribute can be one of these three. There is one method per transformation rule. 
Consequently, the performance of the tool is affected due to constant use of ob-



7 

jects to apply one rule at a time. Even thought, maintainability of the code is pos-
sible following this approach. The main difficulty encountered was the unavail-
ability of a dedicated pattern matching API, therefore, searching a LHS in the 
UsiXML file and replacing it with the RHS is not possible. The code shown here-
after corresponds to the transformation rule defining an abstract adjacency. The 
rule express the adjacency between sibling tasks executed in AIOs, as they are sib-
lings we can infer that they must be next to each other in the Final User Interface. 

 
Fig. 4. Graphical User Interface of UsiXML Transformation Engine. 

2.3 AToM³ Implementation 
The structure of UsiXML is represented as an oriented graph in AToM³ [6]. 

The implementation in AToM³ of UsiXML meta-models, see Fig. 6, presents 
some shortcomings, for instance the aggregation relationship expressing an AC is 
composed of AIC became two relationships: an AC contains AIC and AIC are con-
tained in AC. As UsiXML has around 60 aggregation relationships, this limitation 
increases the number of connecting arrows on the diagram just for this type of re-
lationship to 120. 

In Fig. 5 (1) correspond to tasks, (2) to ACs and (3) to AICs. The left hand 
side (LHS) of the transformation engine corresponds to the condition to search on 
the graph and the right hand side (RHS) part corresponds to the transformation re-
sult. Avoiding an infinite search cycle of the condition is done by the specification 
of preconditions, coded in Python. At least two actions most be performed to ap-
ply a rule. First, set a post-condition to the nodes visited and mark them as visited. 

1

2

3



8  

Second, define a precondition to check whether the node has been visited or not 
before applying the transformation. The designer must keep in mine these condi-
tions and code them when necessary.  

 

 
Rule 1 Creating abstract Containers 

 
Rule 2 Creating Abstract Individual Components 

 
Rule 3 Relating Abstract Containers 

 

 
Rule 4 Relating Abstract Containers and Abstract 

Individual Components 

Fig. 5. Rules transformation expressed in AToM³ 

 
Fig. 6. Task and abstract user interface meta-models expressed in AToM3 

2.4 AGG Implementation 
AGG [7] provides a GUI enabling the specification of the transformation 

rules and a customizable interpreter enabling their application through the API. 
One of the advantages that AGG provides is its capacity to graphically specify the 
negative application conditions (NAC) or preconditions, LHS and RHS. For the 
case study the rules (Fig. 7) were more easily encoded using the NAC rule editor. 

 



9 

AGG provides: (1) a programming language enabling the specification of graph 
grammars and (2) a customizable interpreter enabling graph transformations.  

AGG allows the graphical expression of directed, typed and attributed graphs 
(for expressing specifications and rules). It has a powerful library containing nota-
bly algorithms for graph transformation, critical pair analysis, consistency check-
ing, positive and negative application condition enforcement. Experiments showed 
that AGG is a rigorous environment for defining and applying rules. Unfortu-
nately, it shows poor in terms of usability for specifying large UI models. Indeed, 
it may appear somewhat abstract to the designer to describe a UI appearance with 
a set of nodes and relationships. The main components are summed up as follows: 

1. A design editor allows the creation and the consolidation of models exploited 
in the development process. A specific environment enables the design of UI 
appearance by direct manipulation of widgets.  

2. A design derivator enables model to model transformations. 
3. A rule editor enables the definition of new transformation rules. 
4. A rule validator enables the designer to identify conflicts within a set of rules. 

The critical pair analysis technique is used for this purpose. 
5. A design analyzer enables the verification of desirable properties of the ma-

nipulated artifacts such as basic consistency rules, type checking or even us-
ability properties (i.e., IFIP properties like reachability, browsability). 

Rule 1 Creating abstract Containers  Rule 2 Creating Abstract Individual Components 

Rule 3 Relating Abstract Containers 

 

 
Rule 4 Relating Abstract Containers and Ab‐

stract Individual Components
 

Fig. 7. Rules transformation expressed in AGG. 

2.5 TransformiXML Implementation 
TransformiXML [13] is an environment that addresses the mapping problem 



10  

(any type of structural mapping) by supporting a mathematical expression of the 
relationships (based on graph grammars) and allowing the definition and the ap-
plication of transformation rules. This environment is sub-divided into two com-
ponents: an Application Programming Interface (TransformiXML API) that can 
be used by any application to apply transformation rules in a batch-like way (non 
interactive) and a Graphical User Interface that serves as a front-end application to 
the API (TransformiXML GUI) in an interactive way. The second component can 
drive a transformation process involving several models in a UI development 
process. Both components share a generic requirement: to manipulate any UI 
model expressed in UsiXML and to apply transformation rules over them. Trans-
formiXML API relies on AGG API, consequently, transformation rules are ex-
pressed exactly as in AGG (Fig. 7). TransformiXML uses a catalog of predefined 
transformation rules, allows the execution of transformations in an interactive 
manner, and finally allows the association of development sub-steps with trans-
formation systems. The basic flow of tasks with TransformiXML GUI is the fol-
lowing: users choose an input file containing models to transform. Then, they 
choose a development path by selecting a starting point and a destination point 
(e.g., the viewpoint to obtain at the end of the process). Depending on the content 
of the input file some of the development paths may not be available. A tree al-
lows users to visualize the proposed development model (i.e., all the steps and 
sub-steps for a chosen path). Users can load another development model for the 
selected path. Now the task of the user consists in attaching one transformation 
system for each development sub-step. By clicking on a sub-step in the tree, a set 
of transformation systems realizing the chosen sub-step are displayed. A transfor-
mation system may be attached to the current sub-step by clicking “Attach to cur-
rent sub-step”. The user may also want to edit the rules either in an XML editor or 
in AGG environment. After attaching a transformation system for each rule in the 
development model, the user may apply the transformation either step by step or 
as a whole. The result of the transformation is then explicitly saved in a UsiXML 
file. 

3. Comparative Analysis of Transformation Engines 
In this section a comparative analysis to transformation engines is presented. 

This information can be relevant to HCI community while trying to tackle the 
mapping problem for UI development. The selected criteria, summarized in Table 
2, were chosen considering the key factors that are relevant for: (1) implementing 
of a transformation engine (implementation paradigm and required programming 
skills, code generation support, pattern matching API), (2) usability (rules organi-
zation, rules scheduling organization) and further use of the transformation en-
gines (maintainability and flexibility and completeness). The description of each 
criterion is as follows:   

• Implementation paradigm and required programming skills. First major differ-
ence between the transformation engines is whether they are imperative or de-



11 

clarative. Like all graph transformation tools, AToM³ and AGG are strictly de-
clarative while YATE and TransformiXML are imperative. Performance is a 
very important criteria and AToM³ posses a major disadvantage on this aspect. 
As AToM³ is entirely coded in Python and compiled at execution the execution 
is slower compared to precompiled Java code, YATE, AGG and Transfor-
miXML. Moreover, the fact that the transformations are graphically designed 
means that the user does not have the possibility to optimize how they are exe-
cuted, the engine is in charge of that. YATE and TransformiXML are fasters 
during execution. Not only because the compiled code is faster that the inter-
preted code of AToM³ but also the programmer chooses exactly how the trans-
formation will be executed. Redundancy can be eliminated as well by grouping 
transformation rules. While AToM³ needs programming skills, as there are a 
few things to code in Python, like conditions, actions, constraints and variables’ 
valuing, AGG requires programming skills to specify conditions on attributes. 
However most of the transformation are described graphically in AGG and 
AToM³, consequently they are more flexible because even GUI designers with 
(almost) no programming skills can use them, and also because maintaining the 
rules is simpler. Nevertheless, in AGG and AToM³, the transformation rules are 
specified for the meta-model that we have graphically created and a change to 
this meta-model will make the transformations not work anymore.  

Table 2. Comparison of transformation engines. 

 AToM³ TransformiXML YATE AGG 
Implementation paradigm  Declarative Declarative Imperative Declarative 
Required programming 
skills 

Medium, short 
learning period 

None High, long learning 
period 

Medium 

The model-to-model ap-
proach 

Graph transforma-
tion 

Graph transforma-
tion 

Hybrid Graph trans-
formation 

Code generation Not Supported Supported Supported via ex-
ternal tools 

Not supported 

Pattern matching Supported Supported Supported via ex-
ternal tools 

Supported 

Rules scheduling organiza-
tion 

Fixed order, no 
dynamic flow con-
trol 

Explicit flow 
control 

Explicit flow 
control 

Fixed order, no 
dynamic flow 
control 

Rules organization Distinct rules sets, 
no 
inheritance 

No limitations 
 

No limitations 
 

Distinct rules 
sets, no 
inheritance 

Flexibility   Very good Good Very poor Very good 
Maintainability Good Very poor Very poor Good 
Completeness Average Very Good Very Good Average 

 

• The model-to-model approach. TransformiXML, AGG and AToM³ use graph 



12  

transformations. The models are created graphically and so are the transforma-
tion rules. This is a very intuitive and easy to read and maintain. YATE uses 
another approach. Instead of transforming the model into a graph, it directly 
modifies it. In fact, the XML file is read and transformed into Java objects. 
These objects are then modified by the transformation rules and finally the Java 
objects are translated back into XML. In YATE, a method is created for each 
transformation rule. Comparing with the graphs the code is harder to read and 
maintain.  

• Code Generation. In YATE, code generation is feasible; the Castor API sup-
ports this process. On the contrary, AGG and AToM³ code generation is possi-
ble but it is poorly developed. To generate XML code for a model in AToM³, 
we should use transformation rules, with the “action” code writing XML code 
to a text file. This would be long and fastidious, if possible.  

• Pattern matching. This is a big difference among all the tools. While pattern 
matching is supported by TransformiXML, AGG and AToM³, YATE does not 
support it for the moment. Pattern matching is still usable in YATE, but with 
the help of external projects or at the price of a long a fastidious implementa-
tion. This is more complex to implement than in TransformiXML, AGG and 
AToM³.  

• Rules scheduling and organization. AGG and AToM³ only allow determining a 
fixed order on the rules. There is no possibility of explicit flow control on 
them. And there is not a “call” instruction for a rule to call another. In fact, pre-
conditions serve to decide whether or not the rule will be executed. In AToM³ 
it is possible to create distinct set of rules and execute one after another. How-
ever, there is no rule inheritance mechanism and import mechanism either. 
Therefore rule sets can not import a rule from another set and a rule can neither 
use another. Finally, TransformiXML and YATE, allow rules organization (for 
example one class for each rules set), and the flow control is of course explicit. 
In YATE it is possible even to call a rule in another, because each rule is a 
method in Java. 

• Flexibility and maintainability. The more readable the models the easiest to 
maintain them. AGG, AToM³ and TransformiXML offer a best capacity to 
modify and maintain meta-models, models and transformation rules. However, 
when modifying rules at least two issues must be taken into account: 1) if a 
meta-model is modified then transformation rules designed for that meta-model 
are potentially not working anymore (because they can apply on objects re-
moved or modified); 2) modifying rules is sometimes difficult, for instance in 
AToM³ modifications on rules leads to unexpected behavior. Finally, because 
of its fully programmatic approach and more complex syntax, YATE is the 
most difficult to maintain and modify, as it implies several modification in sev-
eral classes in addition to coding the transformation rules. So, flexibility is 
worse than for the two other three tools. 

• Completeness refers to the ability of the system to handle complex rules and 
generate code. As AToM³ allows programming in Python, it is able of execut-



13 

ing more complex rules than strict graph-transformation rules (with only NAC, 
LHS and RHS). Still, the lack of explicit flow control and the absence of im-
perative constructs limit it. Because the source and target model are not dis-
tinct, they both obviously can be navigated and modified. Finally, the lack of 
code generation makes AToM³ less complete. Finally, in YATE the limit is in 
fact the programming skills of the graphical interface designer. 

Finally, Fig. 8 shows variations between completeness/performance and 
maintainability/flexibility. While it is known that robust and complete software is 
desired, this is difficult to achieve. HCI is a discipline particular with constant 
changes so it can be said that incompleteness is intrinsic to HCI. However com-
pleteness on existing needs is still relevant and for UI development it seems that 
TransformiXML and YATE are more complete than AGG and ATOM3. On the 
other hand, the lack of maintainability and flexibility contrast with the other tools. 
Authors have to choose the equilibrium that fits better their particular needs. 

 
Fig. 8. Tools comparison with respect to performance and maintainability. 

4. Conclusion 
In this paper, we introduced a comparison of transformation engines to sup-

port UI development. Four tools were compared, including two developed in our 
lab, using a common case study. From our evaluation we noticed that it is difficult 
to find the perfect balance with the criteria. In particular, one of the goals of 
model-driven development of UIs is to support UI run-time adaptation based on 
transformation rules. Therefore, the performance is of concern. We conclude our 
report with a comparative analysis that could help authors to make the decision of 
the appropriate transformation engine to be used while confronting model-driven 
engineering of UIs. In this area, we can conclude that a systematic method is rec-
ommended to drive the development life cycle to guarantee some form of quality 
of the resulting software system. Not all of these technologies will directly con-
cern the transformation involved in MDA. MDA does not necessarily rely on the 



14  

UML, but, as a specialized kind of MDD (Model Driven Development), MDA 
necessarily involves the use of model(s) in development, which entails that at least 
one modeling language must be used. Any modeling language used in MDA must 
be described in terms of the MOF language to enable the metadata to be under-
stood in a standard manner, which is a precondition for any activity to perform 
automated transformation. 

Acknowledgments   We gratefully thank the support from the SIMILAR network of excellence, 
supported by the 6th Framework Program of the European Commission, under contract FP6-
IST1-2003-507609 (http://www.similar.cc), the Alban program (www. programalban.org) sup-
ported by European Commission, and the CONACYT (www.conacyt.mx) program supported by 
the Mexican government. All information regarding UsiXML is accessible through 
http://www.usixml.org. 

References 
1. Abrams, M. and Helms, J., User Interface Markup Language (UIML) Specifi-

cation, Working Draft 3.1. OASIS, 2004. 
2. Brown, S.S., Conversion of notations. Tech. Rep., Univ. of Cambridge, 2004. 
3. Calvary, G., Coutaz, J., Thevenin, D., Limbourg, Q., Bouillon, L. and Van-

derdonckt, J., A Unifying Reference Framework for Multi-Target User Inter-
faces. Interacting with Computers 15, 3 (2003), 289-308. 

4. Cordy, J.R., the TXL source transformation language. Science of Computer 
Programming, 61:190–210, August 2006. 

5. Delacre, J.-P., A Comparative Analysis of Transformation Engines for User 
Interface Development, M.Sc. thesis, UCL, Louvain-la-Neuve, 28 August 
2007. http://www.isys.ucl.ac.be/bchi/publications/2007/Delacre-MSc2007.pdf 

6. de Lara, J., Vangheluwe, H., AToM³: A tool for multi-formalism and meta-
modelling, in: FASE ’02: Proceedings of the 5th International Conference on 
Fundamental Approaches to Software Engineering (2002), pp. 174-188. 

7. Ermel, C., Rudolf, M. and Taentzer, G., The AGG-Approach: Language and 
Tool Environment. H. Ehrig, G. Engels, H.-J. Kreowski, G. Rozenberg (eds.). 
Handbook on Graph Grammars and Computing by Graph Transformation. 
Vol. 2: App., Languages and Tools.  pp. 551–603. World Scientific, 1999. 

8. Fiala, Z. and Houben, G.-J., A generic transcoding tool for making web appli-
cations adaptive. In Proc. of the CAiSE’05 Forum. CEUR Workshop Proceed-
ings, online CEUR-WS.org/Vol-161/FORUM 03.pdf, 2005. 

9. Gonzalez, J.M., Vanderdonckt, J., Arteaga, J.M., A Method for Developing 
3D User Interfaces of Information Systems, Proc. of CADUI'2006 (Bucharest, 
6-8 June 2006), Chapter 7, Springer-Verlag, Berlin, 2006, pp. 85-100. 

10. Griffiths T., Barclay, P.J., Paton, N.W., McKirdy, J., Kennedy, J.B., Gray, 
P.D., Cooper, R., Goble, C.A., da Silva, P.P. Teallach: A Model-based user 
interface development environment for object databases. Interacting with 
Computers 14, 1 (2001), 31–68. 

11. Jouault, F. and Kurtev, I., Transforming models with ATL. In Proc. of MoD-
ELS 2005 Workshops, LNCS, Vol. 3844, pp. 128–138. Springer, 2006. 



15 

12.  Kay, M., XSL Transformations (XSLT) Version 2.0, W3C Working Draft. 
W3C, April 2002. 

13. Limbourg, Q., Vanderdonckt, J., Addressing the Mapping Problem in User In-
terface Design with UsiXML, Proc. of 3rd Int. Workshop on Task Models and 
Diagrams for user interface design TAMODIA'2004, 2004, pp. 155-163. 

14. Limbourg, Q. and Vanderdonckt, J., Transformational Development of User 
Interface with Graph Transformations, Proc. of CADUI 04 (Funchal, 12-14 
January 2004), Kluwer Academics, Dordrecht, 2005. 

15. Limbourg, Q., Vanderdonckt, J.: UsiXML: A User Interface Description Lan-
guage Sup-Porting Multiple Levels of Independence. In: Matera, M., Comai, 
S. (eds.): Engineering Advanced Web Applications. Rinton Press, Paramus 
(2004), 325–338. 

16. Paternò, F., Santoro, C. A unified method for designing interactive systems 
adaptable to mobile and stationary platforms. Interacting with Computers 15, 
3 (2003) 349–366. 

17. Mori G., Paternò F., Santoro C. Design and development of multidevice user 
interfaces through multiple logical descriptions. IEEE Transactions on Soft-
ware Engineering 30, 8 (2004), 507–520. 

18. Pérez-Medina, J. L., Dupuy-Chessa, and Front, A., A Survey of Model Driven 
Engineering Tools for User Interface Design. In 6th International Workshop 
on TAsk Models and DIAgrams TAMODIA'2007, Toulouse, France, Novem-
bre 2007), LNCS 4849.    

19. Puerta, A. and Eisenstein, J., Towards a General Computational Framework 
for Model-Based Interface Development Systems Model-Based Interfaces, in 
Proc. of ACM International Conference on Intelligent User Interfaces IUI’99 
(Los Angeles, 5–8 January 1999), ACM Press, New York, 1999, pp. 171–178. 

20. Puerta, A., Micheletti, M., and Mak, A. The UI Pilot: A Model-Based Tool to 
Guide Early Interface Design. In Proc. of IUI'2005, ACM Press, New York, 
(2005), 215–222. 

21. Schaefer, R., A Survey on Transformation Tools for Model Based User Inter-
face Development, Proc. of 12th Int. Conf. on Human-Computer Interaction 
HCI International'2007 (Beijing, 22-27 July 2007), Part I, Lecture Notes in 
Computer Science, Vol. 4550, Springer-Verlag, Berlin, 2007, pp. 1178-1187. 

22. Schaefer, R., Mueller, W., Dangberg, A., RDL/TT – a description language 
for the profile-dependent transcoding of xml documents. In Proceedings of the 
first International ITEA Workshop on Virtual Home Environments, 2002. 

23. Stanciulescu, A., Limbourg, Q. Vanderdonckt, J., Michotte, B. and Montero, 
F.: A transformational approach for multimodal web user interfaces based on 
UsiXML. Proc. of 7th Int. Conf. on Multimodal Interfaces ICMI'2005 (Trento, 
4-6 October, 2005), ACM Press, New York, 2005, pp. 259-266. 

24. Vanderdonckt, J. A MDA-Compliant Environment for Developing User Inter-
faces of Information Systems. In Proc. of CAiSE'05, Springer-Verlag, Berlin 
(2005), 16–31. 


