
Model Driven Performability Analysis of Service
Configurations with Reliable Messaging ?

László Gönczy, Zsolt Déri, and Dániel Varró

Budapest University of Technology and Economics
Department of Measurement and Information Systems

H-1117 Budapest, Magyar tudósok körútja 2.
{gonczy,varro}@mit.bme.hu, zsolt.deri@gmail.com

Abstract. Due to the rapid increase in the number of available web
services, more and more emphasis is put on their reliability, availability,
security, etc. These non-functional requirements are frequently captured
in service-level agreements between service requesters and providers. In
order to meet such non-functional requirements, a service needs to be
designed for reliability by making design decisions on a high, architec-
tural level. In the paper, we present a model-driven approach for the
precise analysis of service configurations with reliable messaging. Start-
ing from high-level UML models of service configurations captured by a
UML profile dedicated to service design, performability models are de-
rived by automated model transformations for the PEPA toolkit in order
to assess the cost of fault tolerance techniques in terms of performance.
Keywords: Model-driven Analysis, Service-Oriented Architecture, Per-
formability Analysis, Service Configuration

1 Introduction

Service-Oriented Architectures (SOA) provide a flexible and dynamic platform
for implementing business services. Due to the rapid increase in the number of
available services, more emphasis is put on their reliability, availability, security,
etc. In order to meet such non-functional requirements, a service needs to be
designed for reliability by making design decisions on an architectural level.

Recently, various non-functional parameters of services have been identified
by various XML-based web service standards such as WS-Reliability, WS-RM,
WS-Security, etc. While these properties are attached to business-level web ser-
vices, they, in fact, specify the configuration and behavior of the service in-
frastructure, i.e. services that are not part of a specific application, but play a
dedicated role in the underlying service middleware. A focal issue in the service
infrastructure is to provide reliable messaging between services where the deliv-
ery of a message can be transparently guaranteed by the underlying platform.

Unfortunately, service configurations are typically set up in a rather ad hoc
way. While non-functional requirements are precisely captured in service-level
? This work was partially supported by the SENSORIA European project (IST-3-

016004). The third author was also supported by the János Bolyai Scholarship.



agreements, there is no guarantee that the service configurations will actually
meet these requirements. One of the reasons for this is that “design for reliability”
is a complex task as performance and reliability requirements are contradicting:
an inappropriate setup of reliability attributes may cause significant decrease in
performance. As a consequence, performability analysis is necessitated to assess
the cost of using fault-tolerant techniques in terms of performance.

Fig. 1. Model-driven analysis of service configurations with reliable messaging

To tackle these problems, we propose a model-driven approach (illustrated
in Fig. 1) to efficiently design, analyze and deploy standards-compliant service
configurations with reliable messaging. Our approach is strictly in line with the
model-driven service engineering framework being developed within the SEN-
SORIA EU FP6 research project [17].

Modeling of service configurations. In order to raise the level of abstraction
for service engineers when designing the configuration of the service infrastruc-
ture, we rely on high-level UML models conforming to the UML4SOA profile
(developed within SENSORIA), which uses the standard extensibility mecha-
nism of UML for modeling service-oriented applications. This profile is closely
related to the core SOA metamodel presented in [2], but extended with various
(e.g. non-functional) aspects of service design. In this paper (Sec. 2), we special-
ize this general-purpose profile in order to capture service configurations with
reliable messaging based upon a metamodel developed in [9].

Model-based performability analysis. From such service configuration mod-
els, automated model transformations generate formal process models for the
PEPA framework (Performance Evaluation Process Algebra, [5]) to provide an
early performability evaluation and prediction for service configurations with
reliable messaging (Sec. 3). We identify the abstract behavior of core service
configuration elements, which incorporates reliable messaging semantics, but it
is independent of the business functionality of services. Then model transforma-



tions assemble the formal performability model from these elementary building
blocks based upon the actual service configuration model. These transformations
were implemented in the VIATRA2 framework [19, 20] by following an MDA ap-
proach with separated phases for PIM-to-PSM mappings and the generation of
the textual target descriptions. A brief insight to the actual transformations are
provided in Sec. 3.

Analysis models serve also as the basis of deployment code generation to
reliable messaging middleware (see Fig. 1). The basic method for this has already
been described in [7]. Currently, we support the (semi-)automated deployment
to IBM RAMP and Apache Axis2 platforms (in the latter case we also generate
security configurations).

2 Modeling SOA with Reliable Messaging

In the current section, we present how service configurations can be modeled
using a high-level UML model dedicated to service design by a corresponding
UML profile, which was designed as part of the SENSORIA project. This profile
is conceptual follow up of [2] where a semi-formal platform-independent and a
SOA-specific metamodel (ontology) was developed to capture service architec-
tures on various levels of abstraction in a model-driven development process for
business-level services. The UML4SOA profile includes means to capture non-
functional aspects of services on a high-level of abstraction (i.e. independently of
specific non-functional parameters such as availability or performance). In this
section, we briefly overview the core ideas behind this modeling language. More-
over, we specialize this general-purpose non-functional profile to capture service
configurations with reliable messaging based upon a metamodel developed in [9].

2.1 Running example

In this paper we will use the ”On Road Assistance” scenario developed in scope
of the Automotive Case Study [12] within the SENSORIA [17] project, which
describes a car-to-infrastructure application scenario. In this scenario:

1. The built-in diagnostic system of a car reports a severe failure of the engine.
2. This triggers the in-vehicle diagnostic system to perform an analysis of the

sensor values.
3. If the car is no longer drivable the system sends a message with the diagnostic

data and the GPS data of the vehicle to the car manufacturer or service
center.

4. Based on availability and the driver’s preferences, the service discovery sys-
tem identifies and selects the appropriate services in the area: repair shop
(garage), tow truck and rental car.

5. The selection of services takes into account personalized policies and prefer-
ences of the driver.

6. Upon confirmation, the owner of the car has to deposit a security payment
before being able to order services.



This scenario raises several non-functional requirements against the system,
as collected in [6]. In this paper, we concentrate on the accountability, which
means on the service architecture level that the effect of communication faults
have to be eliminated by the underlying middleware based upon appropriate
service configurations to guarantee the message delivery between components.

2.2 A core SOA metamodel and non-functional extensions

(a) Main concepts of UML4SOA (b) Metamodel of non-functional proper-
ties of services

Fig. 2. Metamodels for service modeling

The UML4SOA profile [13] was developed in the SENSORIA project to cap-
ture the abstract structural, behavioral and non-functional aspects of service-
oriented applications. The core concepts in the UML profile are describe in a
corresponding metamodel depicted in Fig. 2(a) (for core service concepts) and
Fig. 2(b) (for non-functional extensions). The profile is built in a modular way,
and thus here, we mainly focus on non-functional aspects, which are most rele-
vant for the current paper. These non-functional aspects were inspired by stan-
dard UML extensions (such as [14]).

On a very abstract level, we define Services which are provided by Compo-
nents. Each service defines two Interfaces, a provided interface and a required
interface. Each service defines a Protocol while each component has an Imple-
mentation.

Non-functional aspects are included in the UML4SOA profile by generalizing
Service Level Agreements. Attributes of a service are described by NFDimen-
sions which are collected to NFCharacteristics, which represent logical groups of
properties, such as security, performance or reliable communication. These char-
acteristics are contained within an NFSpecification.

During the operation lifecycle of services, provided and requested properties
of services are negotiated (which process is out of the scope of the current paper).
After the negotiation, a contract with an agreement of the agreed specification
is created. Fulfillment of the contract is monitored by a dedicated component.



Case study. An extract of the components of the “On Road Assistance” sce-
nario [12] is shown in Fig. 3(a). In the current paper, we focus on the the
Vehicle Communication Gateway component, which is responsible for the car-to-
infrastructure communication, i.e. it manages communication between external
service providers, like the Bank and the global positioning system (GPS). This
way, the Vehicle Communication Gateway acts as a communication mediator be-
tween a central service Orchestrator component and the actual external services.
For our initial investigations, we disregard from this Orchestrator, and focus only
on the other three components.

2.3 Reliable messaging standards for web services

(a) Core components of the OnRoadAs-
sistance scenario

(b) Extension of non-functionalconcepts
for reliable messaging

Fig. 3. Core components and modeling extensions

There are various industrial standards reflecting the emerging need for reli-
able Web services middleware from which we focus on reliable messaging stan-
dards (e.g., WS-Reliability and WS-ReliableMessaging) in this paper.

The main importance of these reliable messaging standards lies in the fact
that they are expected to replace the current mainstream messaging middleware
(such as Message Queuing servers or JMS) which are now used together with
SOAP to provide a reliable asynchronous communication service.

Reliable messaging in the fields traditional distributed systems is closely re-
lated to the guaranteed semantics of message delivery. Usual delivery classes are
the following:

1. At least once delivery. In the case of normal operation, every message is
transferred at least once, with the possibility of sending multiple instances
of the same message. This can only be allowed in systems where this does
not have an undesired side-effect.



2. At most once delivery guarantees that no message will be sent multiple times
to the receiver, but their successful transmission is not ensured.

3. Exactly once delivery is the strongest delivery semantics, guaranteeing both
the successful message delivery (usually acknowledgements are required for
each message) and the filtering of duplicate messages.

The following attributes are required for the configuration of reliable mes-
saging (besides messagingSemantics, which selects the messaging mode as
described earlier):

– inactivityTimeout: (integer, seconds), after this period of time if no ac-
knowledgment message has arrived, the connection is closed;

– exponentialBackoff : (boolean), if it is set to true, time amounts between
retransmissions are following an exponential distribution;

– acknowledgementInterval: (integer, seconds), amount of time elapsed be-
fore sending acknowledgement message;

– retransmissionInterval: (integer, seconds), after this time a request is re-
sent by client if no acknowledgement arrived.

As reliable messaging PIM, we use the metamodel of reliable messaging in
service configurations was created in [9] to incorporate reliable messaging at-
tributes of these standards.

We incorporate these attributes to the UML4SOA profile by prescribing that
the NFCharacteristic of an NFSpecification should contain an NFDimension specific
to reliable messaging ReliableMessaging (when reliable messaging is required by
a contract). The relationship between concepts is illustrated in Fig. 3(b).

Case study. We now demonstrate how the non-functional extensions of the
UML4SOA profile can be used to capture reliable messaging specifications in
Fig. 4(a) (for charging the bank account of the driver) and Fig. 4(b) (for the
Global Positioning System).

For instance, communicating with the bank requires both reliable and secure
message communication, of which here we concentrate on the first. Note that
here we are at the class level, a concrete instance of this system is shown later
in Fig. 8.

NFSpecifications are defined to describe the relevant properties of communi-
cation between GPSSystem and Vehicle Communication Gateway etc. These speci-
fication can contain different characteristics like availability, performance or reli-
able messaging. Certain parameters can be defined for non-functional attributes
(averageResponseTime, messageSemantics etc.) in course of modeling which can
be used for example for generation of configuration files as can be seen later.

In the current paper, we illustrate our approach by using the at-least-once
reliable messaging semantics as a communication model. However, using other
reliable messaging semantics would not cause significant complications for the
presented approach.



(a) Non-functional specification of the
bank service

(b) Non-functional specification of the
GPS service

Fig. 4. Example models

3 Model-based Performability Analysis of Services

As the main contribution, we present a model-driven technique for the performa-
bility analysis of service configurations with reliable messaging. Performability
refers to the behavior of the system in the presence of faults, in other words, the
cost of fault-handling (or fault-tolerant) techniques in terms of response time.
For our investigations, we use the PEPA (Performance Evaluation Process Al-
gebra) toolkit [5], which offers a formal language for capturing and powerful
stochastic analysis techniques for the evaluation of performance models.

Essentially, automatic model transformations derive PEPA processes from
the UML models of service configurations extended with reliable messaging at-
tributes. This transformation takes various inputs:

– Service configuration models, which only contain the architectural design, i.e.
the dependencies between services being relevant for performability analysis.
For performability analysis, we identify the main roles of service providers
and requesters potentially chained to incorporate third party services.

– Predefined library of component behavior, which captures the core, performa-
bility related behavior of reliable messaging for each party (e.g. service
provider, requester). This library should include technology-related behav-
ior, which is typically observable but not controllable (in case of a reliable
messaging middleware, the overhead of access to stored message content be-
fore generating new message instances).

– Reliable messaging parameters, which affect both the structure and the dy-
namic behavior of performability models. This includes quantitative charac-
teristics of faults of message transmission (encoded implicitly into rates of
transitions) to estimate the effect of unreliable communication layer.



3.1 The performability model

Fig. 5. PEPA process model of a service configuration with at-least-once messaging

For capturing the performability model of the basic components (in our case,
the client and the server), we use a visualized version of the process algebra nota-
tion of PEPA. Each process is visualized as an automaton. Rectangles represent
states, while transitions between states correspond to communication actions.
! stands for sending a message and ? means receiving a message. Sending and
receiving messages is carried out by synchronization between the two processes.
Internal actions without communication between processes are also distinguished
(e.g., timeout trigger events). The firing frequency of transition in PEPA are con-
sidered to follow an exponential distribution.

Fig. 5 shows the stochastic performability model created as a combination
of some core processes. The model represents the behavior of a service provider
(Bank) and a service requester Vehicle Communication Gateway when reliable
messaging is required between them.

The service provider (shortly, server) component is either processing a re-
quest or waiting for a new one, with the action of sending an acknowledgement
to the client once the message was successfully received.

The service requester (or shortly, client) is assumed to behave according
to the at-east-once semantics (with an upper limit of three on the number of
messages). The automaton of the service requester represents that after sending a
message, it waits for an acknowledgement until a timeout occurs. Then it resends
the request until the maximum number of retransmission is reached. This is
represented by the non-trivial multiplication of a basic automaton as many times
as the maximum number of allowed retransmissions. If an acknowledgement
arrives, the message transmission is considered successful.

It is worth pointing out that the handling of exactly-once delivery semantics
prescribing the filtering of duplicate messages is quite similar from a performa-
bility perspective. Furthermore, note that this process model is an abstraction



of the graph transformation system presented in [9] as formal semantics of the
middleware behavior.

3.2 Performability parameters for reliable messaging

Reliable messaging parameters have different impact on the structure of this
model. The number of service providers and requesters can be altered by chang-
ing the system equation (e.g. ClientIdle[3]). We used RAMP parameters of ser-
vices to derive send, resend, acknowledgement rates. These parameters has been
set between the two parties after negotiation process resulting in a NFContract.

Values of parameters inactivityTimeout, exponentialBackoff, acknowl-
edgementInterval and retransmissionInterval serve as a basis for deriving
the actual firing rates of the transitions in Fig. 5. Note that firing times follow
an exponential distribution specified by these rates, i.e. a larger rate means that
the corresponding operation will be executed faster. Below we describe how the
rates in the PEPA model were derived from the reliable messaging parameters
in Sec. 2.3.

– acknowledgement rate (rateAck): it depends on the acknowledgement in-
terval:

ack = 1/acknowledgementInterval,

On calculating this formula the prospective value of exponential distribution
with ack parameter will be equal to acknowledgementInterval.

– timeout rate (rateTimeout): Similar to the previous formula:

timeout = 1/retransmissionInterval,

but if exponentialBackoff is true the next timeout is:

timeout = timeout/2,

thus between resend messages exponential amount of time elapses;
– send rate (rateSend): it can be considered as an input parameter of sensitiv-

ity analysis so a service configuration can be tested under different workload.
Alternatively, it can be derived from maximum throughput parameter in a
service level agreement, which expresses the number of requests received
from the user.

– resend rate (rateResend): it should be a high value (compared to other
parameters) because when timeout occurs, resent message should be sent as
soon as possible.

– reset rate (rateReset): like resend rate, it gets a high value in order to model
the transition to ClientIdle state after successful transmission.

Note again that the number of allowed retransmissions (retransmission
number) changes the state space of the client automaton, i.e. additional retrans-
mission states are introduced (FailNx and SentNx). This number is determined



in the following way:

retransmissionNb =
⌊

inactivityT imeout

retransmissionInterval

⌋
This expresses that the clients tries to resend the request until the inactivity
timeout is exceeded.

3.3 Performability analysis objectives

The typical questions for the PEPA solvers investigate passage time (i.e., the
expected response time of the system as a function of stochastic parameters),
utilization of states (what percentage of total operating time is spent in a par-
ticular state). In addition, sensitivity analysis can also be performed to estimate
the effect of changing transition rates on system-level performability attributes.
The number of possible retransmissions is also an interesting parameter to inves-
tigate, however, this needs the modification of the structure of the performability
model (by re-executing the transformation), while tuning of other parameters
requires to modify only the rates in the generated PEPA model. Core examples
for using PEPA are available in [5, 21].

We can investigate the utilization of states in order to answer questions like
”What percentage of time is spent waiting for the answer of the request?” The
result obtained from executing PEPA is listed in the pie chart of Fig. 6.

With the parameter settings of our

Fig. 6. Utilization of states

running example (described in Fig. 5),
PEPA derives that in a steady state,
the system spends 23% of the time within
states MsgSentX and FailX, which are
exactly the states required for provid-
ing reliable messaging. In other terms,
the system spends 23% of the time with
fault handling.

Sensitivity analysis. Fig. 7 shows the (relative) change of failure rate as a
function of RAMP related parameters acknowledgement time and retransmission
interval based upon PEPA calculation. For the failure rate, utilization of Failure
state has been used. X-axis shows different values of acknowledgment time while
the different curves plot different timeout thresholds.

Our analysis results can be interpreted as early prediction of performability.
For instance, one can deduce from Fig. 7 that if the rateAck rate is increased
from 0.2 to 0.3 (namely acknowledgement interval decreases), then there is about
100% decrease in the frequency of errors. So it is worth improving performance
of the provider if its cost is linear. Decreasing rateTimeout rate (curves with
different colors) also leads to the improvement of failure rate.



Fig. 7. Effect of RAMP-related parameters on failure

3.4 Transitive invocation of third-party services

Now we extend our performability model to handle service configurations where
a service provider itself needs to call some other (third-party) service in order to
serve its own request. This intermediate (mediator) component acts as a server
and a client at the same time, thus we derive its behavior by combining the basic
elements of our performability model (exemplified in Fig. 5) by synchronizing
the core automata on send and ack messages.

For our investigations, we have

Fig. 8. Multiple parties

bounded such a transitive behavior by
a depth limitation of 3, while we as-
sume that potential cyclic service invo-
cation is filtered out by formal model
checking.

In the sample service configuration
of Fig. 8 Orchestrator invokes Vehicle
Communication Gateway (VCG) that acts
both as a service provider and service
requester. The worst performance is ob-
served when the VCG needs to call both
GPS and Bank components to fulfill a
request.

Sensitivity analysis. For this scenario, we carried out a sensitivity analysis
to measure the throughput of the acknowledgement action of the system. The
results are depicted in Fig. 9 where the rates rateSendVC and rateSendVG stand
for the sending rate between VCG - Bank and VCG - GPS components, respec-
tively. Increasing these rates results in a faster operation of the Bank and GPS
services. Observing the lower curve we can deduce that it is useless to increase
the performance of Bank component if the GPS operates slowly (0.2). However
the upper curve shows that it is worth increasing the speed of Bank service as



Fig. 9. Sensitivity analysis with multiple parties

it results in significant increase in acknowledgement rate, thus it decreases the
acknowledgement time of the system.

3.5 Transformation implementation

The translation of the UML model to PEPA code was implemented in multiple
steps shown in Fig. 10 using Model2Model and Model2Code transformations.
The input of the transformation chain is a UML model using UML4SOa for
modeling services and non-functional parameters of messaging. This model is
imported to the internal representation of the VIATRA2 tool.

First, uml2soa transformation takes out the relevant parts of the model. This
transformation is used to collect relevant information from the model representa-
tion and generates a compact model (which is semantically similar to a Domain
Specific Model). This model is also used in other work as a basis of configuration
generation for Web services [7].

Then uml2pepa is executed to transform relevant parts of this model (from
the performance aspect) to the concepts of the PEPA tool by taking the contracts
attached to the model and generating PEPA automaton. This transformation
also uses a ’parameter library’ (currently encoded as a set of constants) which
represent typical settings of the reliable middleware. These are also used to set
default values for parameters which were uninitialized in the high level model.
This transformation can be considered as a ”PIM-to-PSM mapping” following
the MDA conventions.

Finally, pepa2out is a syntactical transformation which generates textual code
from the PEPA model. Separating the syntax generation from the semantical
mapping enables to develop transformations which are easier to maintain; more-
over, the abstract performance model can also serve as the basis of creating input
to other stochastic analysis tools.

Fig. 10. Transformation chain



Model transformations are also captured in a textual way by using a com-
bination of (i) graph patterns for querying models, (ii) graph transformation
rules for elementary model manipulations, and (iii) abstract state machines for
assembling complex transformations from simple rules.

Creating transformation workflow The transformation workflow has also been
integrated to the SENSORIA Development Environment (SDE) (it will be avail-
able for public download soon). SDE is an Eclipse-based tool which integrates
SOA development and analysis tools in a ”SOA-style” [16].

Using our transformations and the SENSORIA tools, the developer can per-
form complex design tasks of SOA systems where analysis questions have to
be answered (for instance, whether it is worth using reliable messaging consid-
ering expected failure rate and performance constraints). All models and tools
can be managed within the same Eclipse environment. Extended with deploy-
ment transformations and references to component implementations, the service
configuration can directly generated to target execution environments.

4 Related work

A framework for automated WSDL generation from UML models is described
in [18], using the UML extensions of MIDAS [3]. In [10], Web service descrip-
tions are mapped to UML models, and (after using visual modeling techniques)
a composite service can be created for which the descriptor is automatically
generated. However, none of these works considers non-functional properties of
Web services.

Non-functional aspects of e-business applications are discussed among others
in [1], having some description of deployment optimization for J2EE applications,
but without discussing details of model-based deployment.

Integration of non-functional aspects in the development by model transfor-
mations is also investigated in [4, 15] and [11], focusing on parts of the engineering
process. However, none of these approaches address performability analysis in
the context of SOA.

In a service-oriented environment, PEPA has already been used to analyze
(application-specific) high-level UML models or workflow-like descriptions of ser-
vices with Service Level Agreement attributes [21]. In this approach, the authors
investigate performance parameters (compared to performability in our case).
However, the main essential difference is the (performance-related) behavior of
services needs to be modeled explicitly on the UML-level. In contrast, our tech-
nique relies only on architectural level UML models, and the core building blocks
of (business-independent) performability-related behavior are instantiated in ac-
cordance with the UML model of service configurations, which allows better
reusability.

Concerning previous work of the same authors, verification of the behavior of
the system (i.e., checking the conformance to requirements on reliable messag-
ing) was performed in [9], thus giving a formal semantics which can be checked



by using some basic verification techniques and tools. The process model used for
performability analysis in Sec. 3 is derived as an abstraction of this work, con-
centrating on quantitative measures. A high-level initial overview of the current
framework were introduced in [7]; however, the current paper contains signifi-
cantly more details, and the performability analysis is completely novel. [8] shares
some conceptually similar ideas in order to carry out a model-based performance
evaluation to analyze BPEL processes with SLA requirements by using DEEM.

5 Conclusions

In the paper, we presented an integrated model-driven framework for the design
and analysis of standards-compliant service configurations supporting reliable
messaging. Starting from high-level, platform independent service configuration
models (captured by service engineers using a UML Profile or a domain-specific
editor) performability analysis was carried out by generating stochastic process
models for the PEPA toolkit. We used an SLA-like description and (in contrary
to existing methods were the original source model had to be enriched by per-
formability parameters) we created a quantitative model which is the basis of
precise analysis, helping the designer to estimate the cost and benefit of using
reliable middleware.

Transformations were implemented using the VIATRA model transformation
framework [20]. As modeling front-end, the IBM Rational Software Architect v7
UML tool was used with appropriate model importers for VIATRA.

A thorough scalability analysis of our approach on a real-life example is
also part of our research activities. We will compare the provided performance
characteristics of the normal message communication and that of the reliable
messaging middleware. Here we anticipate that from the user point of view the
average response time will be increased because of the overhead of acknowledge-
ment and possible resending of messages, however, the number of failed messages
will obviously decrease.

We also plan to work on the back-annotation of the results to the engineering
model. Finally, the same model representation is used as the basis of deployment
transformations to standard-compliant platform, such as IBM RAMP, Apache
Axis2 extended with Sandesha module and SCA environments with implemen-
tations of the Policy framework.

References

1. A. Balogh, D. Varró, and A. Pataricza. Model-based optimization of enterprise
application and service deployment. In ISAS, pp. 84–98. 2005.

2. L. Baresi, R. Heckel, S. Thöne, and D. Varró. Style-based modeling and refinement
of service-oriented architectures. Software and Systems Modeling, vol. 5(2):pp. 187–
207, 2006.

3. P. Caceres, E. Marcos, and B. Vera. A MDA-based approach for web in-
formation system development. In Workshop in Software Model Engineering
(WiSME@UML2003). 2003.



4. V. Cortellessa, A. D. Marco, and P. Inverardi. Software performance model-driven
architecture. In SAC ’06: Proceedings of the 2006 ACM symposium on Applied
computing, pp. 1218–1223. ACM Press, New York, NY, USA, 2006.

5. S. Gilmore and M. Tribastone. Evaluating the Scalability of a Web Service-Based
Distributed e-Learning and Course Management System. In Workshop on Web
Services and Formal Methods (WS-FM 2006), Springer-Verlag. 2006.

6. S. Gnesi, M. ter Beek, H. Baumeister, M. Hoelzl, C. Moiso, N. Koch, A. Zobel,
and M. Alessandrini. D8.0: Case studies scenario description, 2006. SENSORIA
Deliverables Month 12.

7. L. Gönczy, J. Ávéd, and D. Varró. Model-based deployment of web services
to standards-compliant middleware. In I. J. M. Pedro Isaias, Miguel Bap-
tista Nunes (ed.), Proc. of the Iadis International Conference on WWW/Internet
2006(ICWI2006). Iadis Press, 2006.

8. L. Gönczy, S. Chiaradonna, F. D. Giandomenico, A. Pataricza, A. Bondavalli,
and T. Bartha. Dependability evaluation of web service-based processes. In
M. Telek (ed.), in Proceedings of European Performance Engineering Workshop
(EPEW 2006), Lecture Notes on Computer Science, pp. 166–180. Springer, Bu-
dapest, HUNGARY, 2006.

9. L. Gönczy, M. Kovács, and D. Varró. Modeling and verification of reliable mes-
saging by graph transformation systems. In Proc. of the Workshop on Graph
Transformation for Verification and Concurrency (ICGT2006). Elsevier, 2006.

10. R. Gronmo, D. Skogan, I. Solheim, and J. Oldevik. Model-driven web services
development. In Proc. of the IEEE International Conference on e-Technology, e-
Commerce and e-Servie (EEE’04), pp. 42–45. IEEE Computer Society, Los Alami-
tos, CA, USA, 2004.

11. H. Jonkers, M.-E. Iacob, M. M. Lankhorst, and P. Strating. Integration and analy-
sis of functional and non-functional aspects in model-driven e-service development.
In EDOC, pp. 229–238. 2005.

12. N. Koch and D. Brendl. D8.2.a: Requirements Modelling and Analysis of Selected
Scenarios - Automotive Case Study, 2007. SENSORIA Deliverables Month 24.

13. N. Koch, P. Mayer, R. Heckel, L. Gönczy, and C. Montangero. D1.4.a: UML for
Service-Oriented Systems, 2007. SENSORIA Deliverables Month 24.

14. Object Management Group. UML Profile for QoS and Fault Tolerance, 2006.
http://www.omg.org.

15. S. Röttger and S. Zschaler. Model-driven development for non-functional prop-
erties: Refinement through model transformation. In Proc. The Unified Modeling
Language (UML 2004), vol. 3273 of LNCS, pp. 275–289. Springer, 2004.

16. SENSORIA Development Environment home page, 2007. http://svn.pst.ifi.

lmu.de/trac/sct.
17. SENSORIA FP6 IST project, 2005. http://sensoria-ist.eu.
18. J. M. Vara, V. de Castro, and E. Marcos. WSDL Automatic Generation from UML

Models in a MDA Framework. In NWESP ’05: Proceedings of the International
Conference on Next Generation Web Services Practices, p. 319. IEEE Computer
Society, 2005.

19. D. Varró and A. Balogh. The model transformation language of the VIATRA2
framework. Science of Computer Programming, vol. 68(3):pp. 214–234, 2007.

20. VIATRA2 Framework at Eclipse GMT. http://www.eclipse.org/gmt/.
21. M. Wirsing, A. Clark, S. Gilmore, M. Hölzl, A. Knapp, N. Koch, and A. Schroeder.

Semantic-Based Development of Service-Oriented Systems. In E. N. et al. (ed.),
Proc. of FORTE’06, LNCS 4229, pp. 24–45. Springer-Verlag, 2006.


