
Leveraging Modes and UML2
for Service Brokering Specifications

Howard Foster, Sebastian Uchitel, Jeff Kramer, and Jeff Magee

Department of Computing, Imperial College London,
180 Queen’s Gate, London SW7 2BZ, UK
{hf1,su2,jk,jnm@doc.ic.ac.uk}

Abstract. A Service-Oriented Computing (SoC) architecture consists
of a number of collaborating services to achieve one or more goals. Tra-
ditionally, the focus of developing services (as components) has been
on the static binding of these services within a single context and con-
strained in an individual manner. As service architectures are designed
to more dynamic, where service binding and context changes with envi-
ronmental disturbance, the task of designing and analysing such archi-
tectures becomes more complex. UML2 introduces an extended notation
to define component binding interfaces, enhanced activity diagrams and
sequence diagrams. We propose the use of Modes to abstract a selected
set of services, their coordination and reconfiguration, and use models
constructed in UML2 to describe brokering requirements which can be
synthesised for input to service brokers. The approach is implemented
through the use of a Modes Browser, which allows service engineers to
view specifications to a prototype dynamic service brokering agent.

1 Introduction

The area of service-oriented computing is exploiting the increase in use of dis-
tributed component architectural patterns, descriptions and service offerings.
Describing such dynamic component configurations is complex, and tradition-
ally system design has presented a static view of designing such systems with the
expectation that the architecture does not evolve dynamically or can change due
to environmental disturbances. As services are the means by which components
interact, describing such changes is a highly important step in defining a ser-
vice engineering perspective to systems development and requires an enhanced
modelling notation to support such requirements. One such notation, Darwin,
is a declarative binding language which can be used to define hierarchic com-
positions of interconnected components. The central abstractions managed by
Darwin are components and service. In addition to its use in specifying the ar-
chitecture of a distributed system, Darwin has an operational semantics for the
elaboration of specifications such that they may be used at runtime to direct the
construction of the desired system. More recently, UML2 has also introduced
a number of closely related concepts to assist in describing the collaborative
and distributed nature of components, and in particular has added notations



for component architecture constraints, enhanced activity diagrams to model
workflow and enhanced sequence diagrams to address message invocation styles
and alternative behaviours. UML has become a widespread, common practiced
language to support software development and as such, is highly accessible by
system engineers.

In this paper we present an abstraction of dynamic systems using the concepts
of software modes, and we use UML2 elements to represent both the identifi-
cation of Modes from a services domain (leading to a UML2 Modes Profile),
the identification of self-management artifacts for operating these modes in a
service-oriented architecture, and extracting specifications for dynamic service
brokering requirements and capabilities. In section 2, we provide a background
to SoC and discuss self-management techniques for distributed component ar-
chitectures. In section 3 we illustrate a model-driven approach to engineering
modes for SoC. In section 4 we provide an overview of the concept of Modes and
also detail how modes are described in elements of the UML2 notation. Section 5
combines the concepts in a UML2 Extension Profile for modes, whilst in section 6
we detail how a Modes Model can be used to extract deployment artifacts for
Service Brokers in SoC. Finally, in sections 7 and 8 we discuss limitations and
provide an indication of future work direction.

2 Background

A mode, in the context of Service-Oriented Computing (SoC) abstracts a set of
services that collaborate towards a common goal [5]. A mode can be used to iden-
tify which services are required in a service composition, and assist in specifying
orchestration and choreography requirements through service component state
changes. As a practical example, modes can assist by describing the requirements
and capabilities for dynamic service brokers in an Service-Oriented Architecture
(SOA) by describing both required and provided service characteristics in a par-
ticular system state. Modes also define an operating environment by way of
architectural constraints and of component behaviour. They can specifically be
used towards addressing reconfiguration issues within a self-managed system.
Self-management typically is described as a combination of self-assembly, self-
healing and self-optimisation. Self-management of systems is not a new idea,
with ideas from both the cybernetics [16] and system theory [15] worlds. As
discussed in [14] however, one of the main problems in self-management is to
understand the relationship between the system and its subsystems: can we pre-
dict a system’s behavior and can we design a system with a desired behavior?
The need for such systems management is however more desired than ever before
as we rely on distributed networks of interrelated systems through the exten-
sive growth and increase in reliability of the internet. In SoC for example, a
dynamic service brokering solution needs to address issues like how to specify
the QoS requirements and capability, and how to select the most appropriate
service provider among several functionally-equivalent providers based on the
QoS offered. An example service broker engine is called Dino [11]. Dino provides



a runtime infrastructure consisting of a number of brokers. These brokers are
responsible for, among other things, service discovery and selection on behalf of
service requesters. Dino service requirements include both functional and QoS
requirements. Similarly, every service provider needs to define its service capabil-
ity (including both functional and QoS offerings) in the specification language
provided by Dino. A service requester forwards its requirements specification
document to a Dino broker at runtime, and thereby delegates the task of service
discovery and selection to the broker. A shared understanding of the semantics
of functional and QoS properties specified by service requesters and providers is
achieved by referring to common ontologies.

Another key part in the self-management of a dynamic SOA is the runtime
policy which specifies how and when reconfigurations occur. In [17], a policy set
for SOA is described as being part of one of four categories for either process
(the behaviour required), architecture (the configuration and reconfiguration of
service components), operational (non-functional properties such as QoS levels)
and relationship (trust and functional support). A policy for a system designed
for an SOA architecture should consider each of these. Although policies clearly
cover much more than QoS, in this paper we focus on the architecture con-
straints, and specifying QoS constraints on service operation and contracts for
dynamic service brokering.

2.1 Related Work

Related work falls in to several categories. Firstly self-management of SOA’s has
attracted both policy and technology management work. In [8] for example, the
authors describe a state-space modelling approach for system policies to facilitate
self-management of enterprise services. Although concentrating on an enterprise
model there is no running example of how this translates to a physical runtime
usage. Whilst in [1] they focus on low-level administration of service networks to
monitor service quality and react to notification events. Secondly, for modelling
requirements of services and SOA there is also IBM’s UML2 Profile for Software
Services [6]. This profile provides a set of stereotypes that represent features
for the service engineering life cycle, including a service specification (interface),
gateway (ports) and collaboration (behaviour specifications). In [2] the authors
present a profile aimed at specifying both architectural and behaviour aspects of
SOA in UML for both web and non-web deployment environments. A particular
difference in this work is that there is a focus on service messages and routing,
whilst also being able to specify registry and adapter elements. The SENSORIA
project has also extended UML for SoC specifications in [7], adding stereotypes
for functional and non-functional requirements, contracts and behavioural mod-
elling of services. Transformations of UML for SOA deployment artifacts has
been discussed in [9]. Here the authors present an approach to transform UML
use case diagrams to object diagrams for implementation (in further transfor-
mation approaches). Generally what is missing from these existing profile ap-
proaches is the ability to identify the requirements and capabilities of services
and then to elaborate on the dynamic changes anticipated for self-management.



Our work expands on the ideas presented in these profiles by considering the
more dynamic change of architectures, for self-management and brokering in a
dynamic SOA.

3 Approach

To assist in defining modes of a service-oriented architecture, we have formed an
approach known simply as ”SelfSoC”. SelfSoC comprises descriptions of archi-
tecture, behaviour and management, and we believe can be used to enhance the
engineering of service brokering, orchestrations and choreography requirements
whilst also describing the reconfiguration policies of service systems for runtime.

Fig. 1. Service Composition, Analysis and Deployment Artefacts in SelfSoC

Figure 1 illustrates the overall approach, and the areas considered in SelfSoC.
In this paper we specifically focus on the areas of mode component architectures,
service constraints and extracting broker requirements. Each area is considered
under a number of mode elements. Firstly, the service modes architecture is
specified as components and composite components defining the service capa-
bilities and relationships between them. Constraints are specified around these
relationships, as part of a runtime policy, as to when and how these bindings
can occur. The behaviour area of our approach considers the scenarios of service
usage (a mode can be referred to in one or many scenarios), and the interac-
tion sequences permissible in certain modes. Thirdly, the area of service mode
runtime policy considers the runtime management of services and reconfigura-
tion between different modes. The aim of the approach is to accept descriptions
of these three core specifications and generate appropriate models for analysis
and generation of deployment artifacts. As a first step towards providing this
approach, we concentrate on the service mode architecture description and gen-
erating broker requirements and capabilities without the specifications of mode
behaviour and a full runtime policy. Analysis of mode architectures and service
behaviour policy is left as a future work which is discussed in section 8.



3.1 Case Study

Our case study is based upon a set of requirements formed from those reported
as part of a European Union project called SENSORIA, our role is to support
the deployment and re-engineering aspects of this case study and in particular,
to provide a self-management approach. In this case study are a number of sce-
narios relating to a Vehicle Services Platform and the interactions, events and
constraints that are posed on this services architecture (illustrated in Figure 2).
One particular scenario focuses upon Driving Assistance, and a navigation sys-
tem which undertakes route planning and user-interface assistance to a vehicle
driver. Within this scenario are a number of events which change the operating
mode of the navigation systems. For example, two vehicles are configured where
one is a master and another is a slave. Events received by each vehicle service
platform, for example an accident happens between vehicles, requires that the
system adapts and changes mode to recover from the event. In a more complex
example, the vehicles get separated on the highway (because, say, one of the
drivers had to pull over), the master vehicle switches to planning mode and the
slave vehicle to convoy. However, if an accident occurs behind the master and
in front of the slave vehicle, meaning only the slave needs to detour it must
somehow re-join the master vehicle route planning. The slave navigation system
could firstly change to a detour mode (to avoid the accident), then switch to
planning mode (to reach a point in range of the master vehicle), and finally
switch to convoy mode when close enough the master vehicle. We now explore
how the mode specifications and scenarios are formed for the example in UML2.
An initial configuration view of the architecture components is illustrated in Fig-
ure 3, where an in-vehicle orchestrator component uses a reasoner component to
discover local and remote services for vehicle operations.

Fig. 2. Mode Scenarios for Vehicle and Remote Service Collaboration

4 Describing Modes in UML2

Our approach to modelling modes in UML2 considers a number of aspects of the
language, which we identified from previous work on Darwin+Modes. We utilise
the work reported in [5] which proposes modes for the Darwin [10] component



Fig. 3. Architecture for Vehicle Service Components

architecture notation. Firstly, regular component and composite component di-
agrams are used to describe the set of services in the architecture for the mode
domain, detailing the range of services involved in a particular (sub)system task,
and their configuration relationships respectively. Secondly, the behaviour (coor-
dination specification) of the architectural changes are described in one or more
sequence charts representing scenarios of component behaviour depending on the
mode state of the current system architecture configuration. Thirdly, the use of
constraints, as part of describing the necessary evaluation and conditions for
binding are used to describe architectural correctness. Table 1 lists the mapping
for Mode elements, to Darwin and to UML2. Note that those mode elements
which are highlighted with a * are proposed enhancements to Darwin+Modes.
In addition, Darwin does not describe a process or policy for runtime manage-
ment of service interactions, although some characteristics of constraints (such
as conditional service bindings) could be considered partial runtime management
responsibilities.

4.1 Components and Architecture

A high-level architecture configuration is given in UML2 to represent the com-
ponent specifications and their relationships. An example architecture is illus-
trated in Figure 3 for a Composite Vehicle Component consisting of a Orches-
trator, Reasoner, LocalDiscovery and VehicleCommGateway. Each component
will offer services to its clients, each such service is a component contract. A
component specification defines a contract between clients requiring services,
and implementers providing services. The contract is made up of two parts.
The static part, or usage contract, specifies what clients must know in order to
use provided services. The usage contract is defined by interfaces provided by a
component, and required interfaces that specify what the component needs in



ModeElem. Darwin +
Modes

UML2ObjectsUML2Notations SoCUsage

Components Component Component Component Service Realization

Contract Ports + Inter-
face

Ports, Inter-
faces

Composite Struc-
ture

Service Spec-
ifications (Re-
quired/Provided)

Relationship Bind + Inst Ports and
Connectors

Composite Struc-
ture

Service Composition

Constraints Binding (con-
ditional)

Constraint OCL, QoS Pro-
file*

Pre- and Post- Con-
ditions (Requests)

Behaviour Interactions* Messages and
Events

Sequence and
Communication

Orchestration and
Choreography

Process Interactions* Activity and
State

Activity and
State Machines

Orchestration and
Choreography

Policy Ponder2 Pol-
icy*

Behaviour Policy Profile* Runtime Policy

Table 1. Mapping Domains of Mode Elements, Darwin, UML2 and SoC Concepts

order to function. The interfaces contain the available operations, their input
and output parameters, exceptions they might raise, preconditions that must be
met before a client can invoke the operation, and post conditions that clients
can expect after invocation. These operations represent features and obligations
that constitute a coherent offered or required service. At this level, the compo-
nents are defined and connected in a static way, or in other words, the view of
the component architecture represents a complete description disregarding the
necessary state of collaboration for a given goal. Even if the designer wishes to
restrict the component diagram to only those components which do collaborate,
the necessary behaviour and constraints are not explicit to be able to determine
how, in a given situation, the components should interact.

4.2 Contract, Relationship and Constraints

UML2 supports frames (an distinguishable scenario) for which a certain set of
components are configured in a specific way to realise the provided and required
services in that situation. For example, when an InVehicleServicePlatform ser-
vice is in ”Convoy mode” the components are TaskController, ServiceCoordina-
tor and AnotherVehicle exhibit different roles to carry out the goal of assisting
the driver in such a situation. We represent these relationships in UML2 using
the composite structure diagram (CSD) notation. UML 2 composite structure
diagrams are used to explore run-time instances of interconnected instances col-
laborating over communications links. The usage contract is specified by the
collaboration roles acting as the participants in the collaboration. The types of
these roles, often service interfaces, specify what services any service provider
playing the role must provide. Connections between the roles indicate interaction
between roles and the ports through which they communicate. A collaboration
in UML2 may also contain an activity (workflow) or an interaction (sequence)
that specifies the realization contract. Note that UML2 provides both a com-



munication diagram and collaboration diagrams. The communication diagram
is an extended version of a collaborative diagram from version 1.x and the new
collaboration diagram is a composite structure diagram. The later form provides
a way to describe components and their roles for a given mode (a form much
closer to the meaning of a collaboration scenario).

A constraint in UML2 contains a ValueSpecification that specifies additional
semantics for one or more elements. A constraint is a condition (a Boolean ex-
pression) that restricts the extension of the associated element beyond what is
imposed by the other language constructs applied to that element. Constraint
contains an optional name, although they are commonly unnamed. Certain kinds
of constraints (such as an association constraint) are predefined in UML, oth-
ers may be user-defined. One predefined language for writing architectural con-
straints is the Object Constraint Language (OCL) [12]. OCL is a formal language
used to describe expressions on UML models. They are used to express invariant
conditions that must be held for the system being modeled. These are described
as pre- and post-conditions of the evaluation.

5 A Modes Profile

Using the concepts of UML2 and Modes discussed in sections 2 and 4 respec-
tively, we present here a UML2 Modes Profile (listed in table 2) which assists
Service Engineers in identifying mode collaborations, organised hierarchically
using Mode Packages. Note that this profile extends and depends on the SEN-
SORIA UML for SoC profile, described in [7], for common service stereotypes
(such as service, provider, requester etc).

Stereotype BaseClass Contraints Usage

Mode-
Package

Model,Package If ModeDefault applied,
then default mode

A Service Mode Model or
Package

Mode-
Binding

Connector Linked between Requesters
and Providers

Service Interface and Port
Bindings

Mode-
Collaboration

Collaboration in ModePackage A set of ModeInteractions
or ModeActivities

Mode-
Interaction

Interaction in Mode Collaboration The message behaviour se-
quences

Mode-
Activity

Activity in Mode Collaboration Process of mode changes

Mode-
Constraint

Constraint QoS Required or QoS Pro-
vided

A Mode Constraint (QoS,
Mode Change etc)

Table 2. Modes Profile for UML2

5.1 Models and ModePackage

A UML2 model is a package representing a (hierarchical) set of elements that
together describe the physical system being modeled. We define a ModePackage



stereotype as an extension of this definition with a stereotype to designate that
a package is being described for a system mode configuration. A ModePackage
is expected to have one ModePolicy and one or more elements of type Mod-
eCollaboration, ModeActivity, Events and Signals. A UML2 Model (for Modes)
may contain more than one nested package with the stereotype of ModePackage,
to provide a set of modes that the system may accommodate. As standard, a
UML2 package can import other packages, individual elements from these pack-
ages or all their member elements. Packages may also be merged, which also
serves a feature of combining modes together. In the case study described in sec-
tion 3.1 , we would stereotype each vehicle mode as a ”ModePackage”. At this
level of the model, a ModeActivity element in this package serves to describe
the ModeCollaboration transitions within the parent mode package.

5.2 ModeCollaboration and ModeBinding

A ModeCollaboration is a UML2 Collaboration containing a Composite Struc-
ture Diagram (CSD) to represent the collaborating service components relation-
ships in this mode, one or more ModeInteraction diagrams (sequence and com-
munication diagrams describing the expected message behaviour between the
service components) for this mode, and one or more ModeActivity diagrams to
represent the higher level ordering of the service interaction behaviour described
in the ModeInteraction diagrams. At this level of the package, the ModeActivity
serves as a higher-level Message Sequence Chart (hMSC) and the Interaction
Diagrams as Basic Message Sequence Charts (bMSCs). Within each CSD, the
UML2 element of Connector is stereotyped as a ModeBinding. A Connector
represents a (mode) relationship between service components in the collabora-
tion architecture. Also within each CSD, a connector represents a physical link
between service component ports, which also contain one or more service in-
terfaces (both required and provided types). Thus, a ModeBinding represents a
required connection (or instantiation) in order to carry out the mode behaviour
as described in a collaboration interaction set.

5.3 ModeInteraction and ModeActivity

A ModeInteraction contains a single interaction (sequence) diagram and op-
tionally a single communication diagram. The sequence diagram is a message
sequence chart describing the sequence of interactions between service compo-
nents in the mode collaboration. A communication diagram provides an alterna-
tive view of the sequence logic for the mode interactions, in a sense a ”bird’s eye”
view of the way the service components collaborate for a given configuration. A
ModeActivity is a UML2 Activity which describes a computational process, or
in the domain of SoC, a service composition process. The ModeActivity can be
specified at either the model level (as a representation of a process to transition
between mode collaborations) or at the ModeCollaboration level, to describe the
sequencing of ModeInteractions in a mode collaboration.



Fig. 4. Composite Structure Diagram (ModeCollaboration) for Slave (Convoy) Com-
ponent Configuration and alternatives for Planning and Detour Modes

5.4 ModeConstraint and ModePolicy

Constraining changes to architectue and service can be achieved in two ways.
Firstly, in a ModeCollaboration Composite Structure Diagram specification, a
ModeBinding can be constrained with a ModeConstraint, categorised by a fur-
ther constraint stereotype. For example, in the domain of Quality-Of-Service
(QoS) a QoS Profile can be used to describe the required QoS when connecting
a particular service partner (of a particular type). The profile used is based upon
a recommendation to the Object Management Group (OMG) in [4]. Addition-
ally, architectural constraints may be specified in OCL or another constraint
based language. The constraint language adopted becomes an implementation-
dependent aspect of analysing models in UML2. An example constraint applied
to a ModeCollaboration is illustrated in Figure 5.

Fig. 5. QoS Constraint for service mode brokering applied to Remote Discovery com-
ponent and OtherVehicle service

A ModePolicy is a more general specification of the constraints for when mode
changes occur at runtime. Whilst the ModeActivity at the model level describes
the computational process of a mode change, the policy describes when this
change can occur (for a given state of the system). The details of a ModePolicy



Fig. 6. UML Modes Model to Broker Services and Broker Specifications

are left as future work but can be described using a Distributed Management
Policy Language, such as Ponder2.

6 Extracting Modes for Service Brokering

Using the modes model package of mode configurations, exporting the model
in the UML XMI Interchange format and using the Dino Broker as an example
Brokering implementation, a series of dynamic service brokering requirements
and capability specifications can be generated. In this section we detail the steps
from a UML mode model to Broker Mode specifications, in preparation for
generating broker deployment artifacts. The mapping between model, broker
services and broker requirements is illustrated in Figure 6.

6.1 Services, Modes and Constraints

Extracting the capabilities and requirement specifications begins by identifying
the different mode packages in the source model. In the case of UML2 each mode
package is stereotyped with a ’ModePackage’ type, and this builds our first list
to reference each package in the model. Next, each mode package is analysed
for collaboration elements (stereotyped ’ModeCollaboration’). Each collabora-
tion refers to a series of UML Attributes of type ’uml:Property’, which link the
components used in a collaboration scenario to the package components defined
at a higher level. There is no restriction in UML2 to constrain components to
the main model or package level. Any component in a model may be referenced
in any other element (at any level). Therefore in building the representation
for a Service Broker requirements and capabilities the entire UML model must
be available to be referenced for any individual mode package or collaboration.
To refine our specification for specific Dino Broker services, we now have three
main lists: a set of mode packages, a set of mode collaborations and a set of mode
components (services). Further analysis identifies the type of service (required
or provided), the operations required or provided, the connectors in the model
(port and interface) and constraints. We detail each of these in the following
sections.



6.2 Service Components and Connectors

As described in section 2, the Dino broker considers two types of service re-
quirements; 1) required services for a given mode and 2) provided services to
announce capabilities that can be matched for a mode of operation. Identifying
the type of a service in the mode model relies on alternative properties. Firstly,
if the component has required interfaces or is stereotyped as a ’requestor’, then
the service is marked as a requestor service. Alternatively if the component has
a provided interface or is stereotyped as a ’provider’ then the service is marked
as a provider service. Both requester and provider stereotypes may be applied
either by an additional UML profile extension or by adding these keywords as
a direct extension to the property of the collaboration. Although we identify
requestor and provider types, the Dino requirements and capabilities only con-
sider providers. If a component in the mode collaboration has no interfaces or
stereotype, then it is excluded as a service from the broker specifications list.

A connector may or may not exist between a pair of requester and provider
type components. To evaluate this we firstly check whether a component has any
ports. If ports are located, then for each port a list of connectors for that port is
retrieved. The binding between a component refers to an Assembly Connector in
UML2. An assembly connector is referenced by a usage, linking the connector,
interface and port between components. Therefore, for each connector attached
to a port the ends are evaluated against any component in the mode model.
Any components located which match the requester component are ignored.
This leaves at least one provider component. For each provider component the
service operations are extracted as described in section 6.3.

6.3 Service Operations

Building the representation for operations of each type of service requires us
to refer to the interfaces of the component in a mode collaboration. Note that
operations are not just those which are advertised as offered by the service, but
also a list of operations required by a requester component type. Firstly the
capabilities of the Dino service are added to the service model in our transfor-
mation. If the component has a provided interface, then each operation type, id
and name is appended to the Dino Service representation as provided operations.
For a provider of operations, building the Dino Service operations is relatively
straightforward. However for a requester type service, the connector between
service requester and provider instances must be referenced.

6.4 Constraints

We also support extracting ModeConstraints for service bindings, or more specif-
ically a quality of service attribute applied to assembly connectors between two
or more components. A ModeConstraint is expected to be expressed in a particu-
lar format. For our case study we used the OMG recommendation for a QoS and
Fault Tolerance profile in UML [4]. In this example a QoSRequired constraint is



applied to the assembly connector between the remote discovery and other ve-
hicle services. The QoSRequired constraint consists of two key aspects. Firstly,
that it has applied the QoSRequired stereotype from the OMG QoS Profile, and
secondly that it specifies a Object Constraint Language (OCL) statement which
constraints the binding operation. The binding operation, in this case, will be
undertaken by the Dino broker. As a final step in building required and provided
Dino services, the extract routine traverses the service connectors for any applied
constraints. If a constraint is located, then a new QoS attribute is added to the
Dino service. The OCL statement is evaluated for object and value expressions,
and also added to the Dino service.

6.5 A Modes Browser for Dino

As a visual utility to complement our mechanical extract, we have built a tool
which allows the service engineer to navigate through different modes of opera-
tion, either by a view of service provision (capabilities of provided services) or
by requirements (capabilities of required services). Figure 7 illustrates a view
of the browser with the information from the case study. On the left-hand side
of the browser, below the specification perspective selection, a list of modes is
given. Selecting a mode lists the services in the current perspective of that mode
(i.e. all required services). Selecting a service in the list below this, generates
a selection of two service deployment artifacts. The first is an .owl document.
This document provides a functional description of the service. The functional-
ity of a required or provided service is defined using OWL-S [13], which is an
OWL-based ontology for Web services and is an emerging standard for the se-
mantic specification of the functionality of services. An OWL-S description of a
service has three parts: profile, process model and grounding. A profile describes
the capability of a service operation in terms of its input, output, preconditions
and effects; a process model describes details of service operations in terms of
atomic, simple and composite processes and a grounding describes details of how
to invoke a service operation, and is usually mapped to the service interface de-
scription of the service operation. Secondly, a .qos XML document is generated,
this provides details of the constraints for service brokering with a service iden-
tification, QoS attribute and value required or provided. The Modes Browser is
available as part of our service engineering tool suite, known as WS-Engineer [3].

7 Assumptions and Limitations

Our approach is currently limited as we do not consider service mode behaviour,
which is required for both Modes analysis and further use of ModeCollabora-
tions for service process synthesis (for example to the BPEL4WS or WS-CDL
specifications). Our approach is also dependent on the features of other profiles
(such as the UML for service-oriented systems from the SENSORIA project)
and the ability to describe particular service profiles so that semantic references
can be used in broker service matching. Our approach however is independent



Fig. 7. Dino Service Broker Browser using Vehicle UML Modes Specification

of the actual semantics used for this. We concentrate on allowing the engineer
to form the appropriate patterns of service architecture changes and to then
generate some useful specifications which can later be used for deployment and
execution.

8 Conclusions and Future Work

We believe that the notion of modes helps engineers abstract appropriate ele-
ments, behaviour and policy from the services domain, and can facilitate the
specification of appropriate control over both architectural change and service
behaviour. In this paper we have presented our approach to the modelling
of service-oriented computing component architectures using an abstraction of
modes to represent the changes in such an architecture. Our future work will
explore how these artifacts are more accurately built and analysed, and also on
how our approach can assist in the dynamic invocation of services given compo-
nent requirements and capabilities. We will also detail an approach to generating
an implementation layer for switching modes, perhaps through the synthesis of
service composition specifications in standards such as BPEL4WS and WS-CDL,
representing the tasks for reconfiguration and coordination of services in such an
architecture. This work has been partially sponsored by the EU funded project
SENSORIA (IST-2005-016004).



References

1. Claudia Baltes, Patrick Koppen, and Paul Muller. Self-management in heteroge-
nous networks using a service-oriented architecture. In Consumer Communications
and Networking Conference, 2007 (CCNC 2007), pages 420–424, Las Vegas, NV,
USA, 2007. IEEE Computer Society.

2. Vina Ermagan and Ingolf H. Krüger. A uml2 profile for service modeling. In
MoDELS, Lecture Notes in Computer Science, pages 360–374. Springer, 2007.

3. Howard Foster, Sebastian Uchitel, Jeff Magee, and Jeff Kramer. Ws-engineer:tool
support for model-based engineering of web service compositions and choreography.
In IEEE International Conference on Software Engineering (ICSE2006), Shanghai,
China, 2006. IEEE.

4. Object Management Group. Uml profile for modeling quality of service and fault
tolerance characteristics and mechanisms. Request For Proposal - AD/02-01/07,
2002.

5. D. Hirsch, J.Kramer, J.Magee, and S. Uchitel. Modes for software architectures.
In Third European Workshop on Software Architecture. Springer, 2006.

6. Simon Johnston. Uml 2.0 profile for software services. Available
at http://www-128.ibm.com/developerworks/rational/library/05/
419_soa, 2005.

7. Nora Koch, Philip Mayer, Reiko Heckel, Lszl Gnczy, and Carlo Montangero. D1.4b:
Uml for service-oriented systems. Technical report, October 2007.

8. Vibhore Kumar, Brian F. Cooper, Greg Eisenhauer, and Karsten Schwan. imanage:
Policy-driven self-management for enterprise-scale systems. In Renato Cerqueira
and Roy H. Campbell, editors, Middleware, volume 4834 of Lecture Notes in Com-
puter Science, pages 287–307. Springer, 2007.

9. Ricardo J. Machado, Joao M. Fernandes, Paula Monteiro, and Helena Rodrigues.
Transformation of uml models for service-oriented software architectures. In Pro-
ceedings of the 12th IEEE International Conference and Workshops on Engineering
of Computer-Based Systems, pages 173–182, Washington, DC, USA, 2005.

10. J. Magee, N. Dulay, S. Eisenbach, and J. Kramer. Specifying Distributed Software
Architectures. In W. Schafer and P. Botella, editors, Proc. 5th European Software
Engineering Conf. (ESEC 95), volume 989, pages 137–153, Sitges, Spain, 1995.
Springer-Verlag, Berlin.

11. Arun Mukhija, Andrew Dingwall-Smith, and David S. Rosenblum. Qos-aware ser-
vice composition in dino. In ECOWS ’07: Proceedings of the Fifth European Con-
ference on Web Services, pages 3–12, Washington, DC, USA, 2007. IEEE Computer
Society.

12. Object ManagementGroup (OMG). The object constraint language specification
2.0. Available at http://www.omg.org/docs, 2007.

13. OWL-S. Owl-based web service ontology. Web Resource, 2007.
14. Peter Van Roy. Self management and the future of software design. In Formal

Aspects of Component Software (FACS ’06), Prague, Czech Republic, 2006.
15. Ludwig Von Bertalanffy. General System Theory: Foundations, Development, Ap-

plications. george braziller, New York, NY, 1969.
16. Norbert Wiener. Cybernetics, or Control and Communication in the Animal and

the Machine. MIT press, Cambridge, MA, 1948.
17. Lawrence Wilkes. Policy driven practices for soa. Available at http:

//www.omg.org/news/meetings/workshops/SOA_MDA_WS_Workshop_
CD/02-3_Wilkes.pdf, 2006.


