
A. Tsois, N. Karayannidis, T. Sellis  5-1 

MAC: Conceptual Data Modeling for OLAP 
 

 
 
 

 
 

Abstract 
 

In this paper we address the issue of conceptual modeling 
of data used in multidimensional analysis. We view the 
problem from the end-user point of view and we describe 
a set of requirements for the conceptual modeling of real-
world OLAP scenarios. Based on those requirements we 
then define a new conceptual model that intends to 
capture the static properties of the involved information. 
In its definition we use a minimal set of well-understood 
OLAP concepts like dimensions, levels, hierarchies, 
measures and cubes. The central concept of the model is 
the Multidimensional Aggregation Cube (MAC), which 
gives a broad and flexible definition to the notion of a 
multidimensional cube. We evaluate our model against 
other existing multidimensional models and show that 
MAC offers a unique combination of modeling skills. Our 
main contribution is the definition of the basic concepts of 
our model; although the set of requirements and the 
evaluation of all related models against those 
requirements represent an additional result. 

 

1 Introduction 
In the last years On-Line Analytical Processing (OLAP) 
[Codd93] has become a major research area in the 
database community [ChDa97]. The OLAP research is 
tightly coupled with the research in data warehouses, 
which are considered to be the information sources based 
on which On-Line Analytical Processing is performed. 

The typical data flow path involves the gathering of data 
from various sources into data warehouse systems and 
then the usage of those data in the multidimensional 
analysis process through the use of OLAP applications. 
Multidimensional analysis mainly involves the 
computation of aggregated information using a large 
volume of detailed data. The information is analysed 
based on its detailed or derived properties (dimensions) 
using an almost static business model (hierarchies). The 
reader is referred to [ChDa97] [Inmo96] [Kimb97] 
[Olap97] for an overview of Data Warehousing and 
OLAP. In the following we will assume the reader to be 
familiar with the terminology used in those areas. 

A fundamental issue faced by vendors of OLAP 
applications as well as by researchers in the OLAP 
domain is the modeling of data. The well-studied 
conceptual and logical models used in other database 
areas, like the E/R model or the relational model, do not 
seam to be sufficient for the OLAP case 
([Kimb96][TBC99][S++98][Kimb97]). Vendors have 
adopted various models, while standardization bodies and 
researchers have developed and studied additional 
models. All those models share some common concepts 
like measures or hierarchies but there is still no formally 
defined and widely accepted (logical or conceptual) data 
model. As proved by the history of the relational model a 
common data model is the key for the collaboration and 
the rapid progress in an area.  

In this paper we address the problem of modeling real-
world OLAP scenarios at the conceptual level. The 
current common practice is to use the well-known E/R 
model  [BCN92] and then to annotate the schema with 
any additional OLAP specific information. Still, various 
authors argue that the E/R model is not appropriate for 
OLAP scenarios since concepts like dimensions, 
hierarchies and cubes can only be partially represented. 
As a result, two publications ([TBC99] and [S++98]) 
already proposed extensions to the E/R model for the 
multidimensional paradigm. Their approach is mainly 
suitable for the ODS (operational data store) part of data 
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warehouses as they concentrate on the representation of 
the source-detailed data.  

In this paper we consider a slightly different approach, 
where the information used in multidimensional analysis 
is the primary target of our modeling concepts. The 
information used in such an analysis process is mainly 
aggregated data at various aggregation levels, or 
combination of such levels. Furthermore, the dimensions, 
the particular aggregation levels as well as the various 
hierarchies defined on dimensions represent information 
used during the analysis. 

In order to define a useful conceptual model we first 
investigate a set of example queries and derive a list of 
modeling requirements. Based on those requirements we 
then define the concepts of our model and their semantics. 
The central concept of our model is the Multidimensional 
Aggregation Cube (MAC), which is equivalent to an n-
way relationship relating measure values to a set of 
dimension values. A careful definition of dimension 
values allows a single MAC to represent measure values 
of arbitrary aggregation levels. This is an essential 
difference with respect to the other conceptual models and 
can be used to simplify the schema of the various OLAP 
scenarios. An additional novelty of our model is the 
explicit modeling of analysis paths, a feature quite 
important for OLAP applications. 

Generally speaking, the concepts used in 
multidimensional analysis are mapped directly to 
corresponding concepts of the MAC model. As a result, 
the proposed MAC model allows OLAP scenarios to be 
modeled in a natural and straightforward way. 
Furthermore, its abilities to model complex dimensions 
and hierarchies and the broad definition of cubes makes it 
suitable for highly complicated OLAP applications. 

The remainder of this paper is structured as follows: 
section 2 provides a set of OLAP specific modeling 
requirements defined through examples. Section 3 defines 
the basic concepts of the proposed MAC model as well as 
their semantics. Section 4 provides an overview of related 
work and describes the results of evaluating 12 
multidimensional data models published in research 
papers. Finally, section 5 concludes the paper and 
presents our future work intensions. 

2 Requirements Through An Example 
In this section we will present a set of requirements that 
we believe to be of key importance for a conceptual 
model used in multidimensional analysis and OLAP 
applications. We will present those requirements through 
the use of an example scenario. The scenario is based on a 
real Data Warehousing / OLAP project in the 
development of which we have been involved.  

Assume the following example: A chain of stores selling 
electrical home appliances has built a data warehouse in 
order to analyze its sales data. The sales data are loaded 

into the data warehouse from the OLTP system. For each 
sales transaction the OLTP system records the following 
information: 

• The date of the transaction. 
• The cashier ID where the transaction took place. 
• The ID of the products being sold. 
• The customer ID. 
• The sales price for each product being sold. 

We assume that all the above information is somehow 
stored in the data warehouse. We are not going to talk 
about the design process of the data warehouse, neither 
about how data is loaded from the OLTP system since our 
model does not address those issues. The MAC model, 
which we propose, is mainly suitable for the users of the 
data warehouse, the persons that analyze the information 
through the use of an OLAP application. 

As described by a plethora of OLAP papers [Mendel], the 
multidimensional analysis is mainly based on drill-down, 
roll-up, slice and dice operations that are performed on a 
multidimensional view of data. Measures values are 
selected and aggregated using various predefined 
dimensions, dimension levels and hierarchies. The 
dimension levels, the aggregation paths defined by 
hierarchies, the dimensions and the measures are the main 
concepts used in the analysis. For our example scenario 
assume that the analysis is performed on the sales price 
(price of sold items) using the hierarchies defined in 
Figure 1. 

Figure 1: The analysis paths 

The paths shown in Figure 1 are grouped into four distinct 
dimensions. The most detailed level of each dimension 
corresponds to a basic property of a product’s sales price 
as recorded by the transactions of the OLTP system. For 
example the customer ID is used for the Customer level 
of the Client dimension. 
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Each path is constructed out of two or more levels and the 
grouping/classification relationships that link those levels. 
The paths represent sequences of valid roll-up and drill-
down operations that can be performed during the 
analysis. For example the products can be grouped by 
brand using the grouping/classification relationship 
defined by the path P8. This relationship links each 
product in the Product level to some brand in the Brand 
level. 

The designer or the OLAP application defines the schema 
of the dimensions and hierarchies mostly at design time 
but an ad-hoc query might need to define its own analysis 
path. The levels, the grouping/classification relationships 
and the paths are defined based on the needs of the 
analysis process. 

For example, one possible analysis path is to drill-down 
from Warehouse Area to Store level. This drill-down 
operation could reveal the stores supplied by warehouses 
of a particular area. The designer of the OLAP application 
has defined this path (P5) but has decided to leave 
Cashier level out of this path. This decision can mean that 
when doing roll-up and drill-down operations on this path 
it is not meaningful to drill-down to the Cashier level. 

From the above discussion one can realize that a 
conceptual data model suitable for multidimensional 
analysis should provide means to define: 
1. dimension levels, 
2. grouping/classification relationships (that link those 

levels) and 
3. analysis paths. 

Those first-class concepts of the multidimensional 
analysis must have an appropriate and straightforward 
representation within a conceptual model. Note that the 
dimension levels are in fact attributes that can 
characterize the measure being analyzed and the analysis 
paths are valid sequences of drill-down/roll-up operations. 

According to the first path (P1) of our example scenario, 
for each customer we have the residence address in the 
form of area, city, and region. Assume now that for some 
customers the city attribute is not set (perhaps because 
their residence area does not belong to any city). In this 
case the residence area of the customer will be linked by 
the grouping/classification relationship directly to a 
residence region and not to a residence city as it happens 
with most of the other residence areas. Generally 
speaking a grouping/classification relationship may 
involve more than two levels since a members of a level 
may drill-down to members of different levels. 

There are also some other aspects of the 
grouping/classification relationship that we found to be 
important. In some cases a member of a level is linked to 
more than one members of the next level. For example a 
member of the Product level will probably be linked to 
more than one members of the Advertising Method level 

since a product can be simultaneously advertised by 
various methods (newspapers, TV, radio, etc.). Also, 
some members of a level may have no links to the more 
detailed level. For example we may have a member of the 
Store Area level that is not linked to any members of the 
Store level. This would mean that at the given time there 
is no store in that area or that the system does not know or 
does not want to show which stores belong to this area. 

The above examples show that a natural model of 
grouping/classification relationships might involve n-way 
relationships among levels. Also those relationships might 
not reference all members of the involved levels. 

Let us now consider four queries that the analysts could 
ask. The first query is: 

Q1: Give me the sum of sales for the year 2000 per 
Month, Product Group, Product Class, Store City and 
Store Region. 

Note that the above question requires aggregation on 
several levels of the same path. For example it requires 
the sum of sales for each product group and also the sum 
of sales for each product class. The query result 
represented in a grid fashion could look like Figure 2. 

Figure 2: Example result for query Q1 

Now consider the case where the analyst uses two paths 
of the same dimension for the classification and grouping 
of sales data. 

Q2: Give me the sum of sales for year 2000 per 
customer Profession and Residence Region. 

The two levels used for grouping, Profession and 
Residence Region are in fact independent although they 
both belong to the same dimension. So, grouping on both 
of them at the same time defines a two-dimensional space. 
If the two levels where related, like Store City and Store 
Region are in the previous query, we would have a one-
dimensional space. 

The next query shows the necessity of supporting multiple 
measures defined over the same set of dimensions. 
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Q3: Give me the sum of sales, the maximum sale 
value and the number of sales per Store and Month 
for the year 2000. 

In most of the cases some of the measures will be 
functionally dependent on other more primitive measures. 
Generally speaking, a set of primitive and derived 
measures can simultaneously be required for an analysis 
process. Finally, we present a query with a somehow 
more complicated selection condition: 

Q4: Give me the sum of sales per Month, Store Area 
and Brand selecting only the store areas that have 
increased their total sales for the year 2000 by more 
than 10 percent from the previous year. 

This query requires calculation of the total sales value per 
store area for the years 2000 and 1999 and then the 
selection of the areas whose sum of sales value for the 
year 2000 greater than 110% of their sum of sales value 
for the year 1999. For those store areas the query requires 
the sum of sales calculated by Month and Brand. This is a 
typical query that performs selection based on aggregated 
data at a different level than the data required for its 
output. 

Our experience shows that all the above queries are 
common OLAP queries. We believe that a conceptual 
model suitable for multidimensional analysis should 
accommodate queries like the above. This means that the 
structure of the query result as well as the structure of any 
other information involved in the query definition must be 
easily represented by the concepts of the model. The 
above requirement comes as a result of our intention of 
having a conceptual model that can efficiently represent 
all kinds of information handled by OLAP applications 
and not only the raw (source - detailed) data. Since we are 
only talking about a conceptual data model we do not 
require the model to represent the functional aspects 
(operators and functions) of the queries but we limit our 
requirements to the static data involved in those 
computations. 

Based on our example queries we derive the following 
requirements: a good conceptual model should be able to 
define aggregations on arbitrary combination of levels (of 
different paths) even if those levels belong to the same 
dimension as well as aggregation on a set of levels 
belonging to a particular path. Furthermore, the model 
should allow multiple measures to be defined for a given 
set of dimensions and in some cases represent them in one 
concept, reflecting the fact that those measures are 
semantically linked. 

3 The Multidimensional Aggregation Cube 
(MAC) Data Model 

In this section we present the Multidimensional 
Aggregation Cube data model. MAC is a user-centric 
conceptual data model that attempts to cover the 
requirements described in the previous section in order to 

provide a highly expressive and intuitive modeling 
methodology for the information used in 
multidimensional analysis. 

The MAC model uses concepts that are close to the way 
OLAP users perceive the information. The model tries to 
be expressive providing the means to model complicated 
real-world scenarios while using a minimal set of 
concepts that remain as simple as possible. The MAC 
model describes data as dimension levels, drilling 
relationships, dimension paths, dimensions, cubes and 
attributes.  

Dimension levels represent classes of dimension members. 
Each dimension member represents some instance of a 
real-world property that an OLAP measure may have. 
Distinct dimension levels can be related by means of a 
drilling relationship. A drilling relationship indicates that 
there is a semantic relationship among the involved levels 
and describes how the dimension members of the children 
levels can be grouped into sets that correspond to 
dimension members of the parent level. 

A set of drilling relationships can form a dimension path 
if several structural requirements are met. A dimension 
path defines a meaningful composition of drilling 
relationships and is used to model a valid sequence of 
abstraction operations (drill-down/roll-up). One or more 
dimension paths that share common levels can form a 
dimension.  

Finally, we define multidimensional aggregation cubes 
(MACs) as a relationship among the domains of one or 
more dimensions. A MAC can have one or more 
measures.  Each one of those can be considered as a 
simple and atomic attribute of the relationship represented 
by the MAC. An instance of a MAC is called a MAC cell 
or simply a cell. We now give the complete definition of 
the above terms and provide examples on how they are 
used. In the following we will use the simple term cube to 
refer to a multidimensional aggregation cube 

3.1 Dimension Levels 

A dimension level is a set of dimension members. The 
dimension members are the most detailed modeling 
concepts of our model and represent instances of real-
world properties that OLAP measures may have. In our 
example scenario, the sale price is one measure of our 
multidimensional analysis. A property of this measure is 
the location where the sale took place – the cashier where 
the sale was recorded. For our example scenario we 
would define the dimension level Cashier in order to 
represent the cashiers where the sales transactions take 
place and each particular cashier of each store would be 
modeled as a dimension member of this level. 

Dimension levels can have one or more attributes. A 
subset of those attributes always form a key for the 
dimension level. In most of the cases a single attribute 
acts as the key but multi-attribute keys can also exist. This 
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is due to the set semantics of dimension levels. The set 
semantics guaranties that each dimension member 
represents a uniquely identifiable, within the level, 
property instance.  

Our example scenario requires several dimension levels to 
be defined. In fact all levels shown in Figure 1 will be 
modeled as dimension levels of the MAC model. The 
attributes of each level depend on the available data and 
the analysis requirements. For example the Residence 
City level could have the attributes ID, Name and 
Population where the attribute ID is the key of the level, 
Name is the real world name of the city and Population 
stores an estimation for the population of the city. 

3.2 Drilling Relationships 

A drilling relationship is a special kind of an n-way 
relationship that relates one dimension level (called the 
parent of the relationship) to N-1 dimension levels (called 
the children of the relationship). Formally speaking, a 
drilling relationship is an n-way relationship, which can 
relate a member of the parent level to one or more 
members of the children levels. This means that an 
instance of a drilling relationship cannot relate only 
members of the children levels without linking them to 
exactly one member of the parent level1. Furthermore, the 
parent dimension level of a drilling relationship cannot act 
as a child level of this relationship. The reasons for 
imposing the above restrictions will be explained next 
after defining the semantics of a drilling relationship. 

A drilling relationship is used to represent the way in 
which a member of one level can be decomposed into 
members of some other level. We will explain the 
semantics of the drilling relationship with a very simple 
example: assume that a drilling relationship 
Store_to_Cashier(Store, Cashier) relates the member 
Store007 of the parent level Store to the members 
Cashier00701 and Cashier00702 of the unique child level 
Cashier. The semantics of this relationship is that if we 
have a measure value characterized by property value 
Cashier00701 and another, similar measure value, 
characterized by the property value Cashier00702, we can 
then compute (by applying the proper aggregation 
function) the measure value with the property Store007. 
The word “similar” in the above definition means that 
apart from the Cashier00701 and Cashier00702 
properties, the two measure values are characterized by 
the same set of property values. 

Based on the above semantics of a drilling relationship, 
one can easily see that if the parent level is also a child 
level then we can end up with recursive calculations for 
measure values. Such a situation is meaningless in OLAP 
applications so we require that the parent level of a 
drilling relationship is always different from the children 

                                                           
1 Note that we do not require the relationship to be strict. 
Two parent-level members can be related to the same 
child-level member. 

level(s). It can be proved that this requirement does not 
restrict the modeling power but can only affect the way 
dimension members are grouped into dimension levels. 

Unlike dimension levels the drilling relationships cannot 
have attributes. This is due to the simple decomposition 
semantics of the drilling relationships. Drilling 
relationships should not be used to represent general 
relationships among dimension members and so attributes 
are not allowed. 

In our example scenario we would have a simple drilling 
relationship linking the level Cashier to the level Store. 
The Store level would be the parent level of the 
relationship and the level Cashier would be the only child 
level. Each member of the Store level would be related to 
one or more members of the Cashier level indicating the 
cashiers of each store. 

A more complicated example is the relationship among 
the levels Residence Region, Residence City and 
Residence Area. The level Residence Region contains as 
members all the geographical regions of interest. The 
level Residence City contains all the cities of those 
regions and the level Residence Area contains individual 
geographical areas in which cities and regions can be 
decomposed. Obviously the cities do not cover all the 
areas of the regions so some areas can only be linked 
directly to regions. In order to represent the above 
situation we define two drilling relationships. The first 
one has the Residence Region as the parent level and the 
Residence City and Residence Area as child levels. This 
relationship links to each region the appropriate cities and 
areas. The second drilling relationship has Residence City 
as parent level and Residence Area as child level and 
represents the decomposition of cities into areas.  

One can argue that drilling relationships could always be 
simpler and have only one child. In the above example, 
dummy cities could be used for grouping areas that are 
not within a real city. Still, if the cities where not directly 
related to areas but rather several levels existed among the 
Residence City and Residence Areas then we would need 
dummy members on each intermediate level. We believe 
that such a modeling solution is semantically wrong since 
we use dummy members that do not correspond to the 
real world. Furthermore, such a solution would result into 
unnatural and complicated drill-down operations. 

3.3 Dimension Paths 

A dimension path is a set of drilling relationships used to 
model a meaningful sequence of drill-down operations. In 
its simple form, a dimension path is a sequence of drilling 
relationships each having only one child level. In this 
chain each child level of a drilling relationship is also the 
parent level of the next drilling relationship, except for the 
last one. The child level of the last drilling relationship is 
called the detailed level [Vass98] of the dimension path.  
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The dimension paths are defined in order to model the 
paths on which the multidimensional analysis is usually 
performed. In the field of multidimensional analysis the 
drill-down and roll-up operations follow pre-designated 
paths rather than individual drilling relationships. This 
means that even if a level is a parent of multiple drilling 
relationships the drill-down operation will be performed 
based on only one of these relationships – the one that 
belongs to the dimension path on which the analysis is 
currently performed. 

In order to formally define a dimension path we will first 
define what is the graph of a set of drilling relationships. 
Given a set P of drilling relationships, the graph of P is a 
directed graph with the following properties: 
• Each node of the graph represents a level referenced 

by some member of P. Even if a level is referenced 
by many drilling relationships, as parent or child 
level, the graph will contain only one node that 
represents that particular dimension level. 

• For each drilling relationship in P and for each child 
level of this relationship, the graph contains a 
directed edge from the parent of the drilling 
relationship to the child level. 

We formally define a dimension path to be a non-empty 
set P of drilling relationships that have the following 
properties:  
1. In the graph of P exactly one node has no incoming 

edges. 
2. The graph of P has no circles – it is a DAG. 
3. There are no two drilling relationships in P having 

the same parent level. 

The first of the above properties requires that paths 
always have a unique detailed level. This is required in 
order to guaranty the aggregation semantics of paths. The 
detailed level of a path is considered to correspond to the 
source of information. Based on this detailed data all 
other aggregation levels can be computed. In other words, 
through the composition of drilling relationships of a path 
each member of any level (of this path) is finally linked to 
a uniquely identifiable set of detailed level members 
[CaTo98]. 

Note that, based on the above definition; a dimension path 
has no build-in support for aggregating all members of its 
detailed level although this is a very common operation in 
the multidimensional analysis. For example, our first 
example query requires aggregation for all customers and 
our second example query requires aggregation for all 
products. In order to achieve such an aggregation within a 
path, a special dimension level (usually called ALL 
[G++96]) containing a unique member (called all) must be 
defined. Furthermore, an artificial drilling relationship 
that will complete the link of all detailed level members to 
the unique member of the ALL level must also be defined. 
“Complete the link” means that either the members of the 
detailed level are directly related to the all member or 
indirectly related to it through a sequence of drilling 

relationships defined by the path. The ALL level is related 
to the highest available level of the path and not directly 
to the detailed level. 

For our example scenario we need to define several paths. 
In fact, each path described in Figure 1 will also be a 
dimension path of the MAC model. To almost each path 
of Figure 1 we would add the special dimension level 
ALL. Only for the path P7 we would not add the ALL level 
since it is not meaningful to aggregate the members of the 
advertising method. Recall that a product may be related 
to more than one advertising method. Figure 3 gives a 
graphical representation of the dimension levels, drilling 
relationships and dimension paths for the dimensions Item 
and Location of our example scenario. 

Figure 3: The dimensions Item and Location 

3.4 Dimensions 

A dimension is a concept used to define meaningful 
groups of dimension paths. This grouping is essential in 
order to model the semantic relationships that exist among 
the various paths and allows powerful OLAP modeling, 
as we will show in our examples to follow. 

The dimensions are complex concepts used in our model 
to represent the various properties of measures as well as 
assist the process of multidimensional analysis. With their 
complex structure, the dimensions can be considered to 
classify properties into various levels, define the 
relationship among properties of different levels and 
describe meaningful drilling paths.  

Formally speaking, a dimension is a non-empty set of 
paths. If a dimension contains more than one path then 
each path must have at least one common level with at 
least one other path of the dimension. The common levels 
must be assigned the same meaning in the various paths 
where they appear. For example, if we replace in our 
example both Residence City and Store City levels with a 
general City level then the paths P1 and P4 end up having 
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a common level. Those two paths, although they share a 
common level, cannot be combined into a dimension 
because they assign different meaning to their common 
level. The City level in P1 would represent the residence 
cities of customers while in P4 it would represent the 
cities in which stores are located. 

The reason for grouping dimension paths into dimensions 
is the semantic relationship that usually exists among 
various paths. For example, consider the paths P4 and P5 
of Figure 3. Both the above paths characterize the sales 
measures from the store point of view. For both paths, the 
level Store is used to represent the stores where the sales 
are recorded so it is meaninful to group these two paths 
and view them as one Location dimension of the sales 
measure. Generally speaking we can say that the number 
of paths involved to define a dimension depend on the 
content of the dimension and on the complexity of the 
scenario being modeled. We define the graph of a 
dimension to be the union of the individual graphs of its 
dimension paths. Recall that in the graph each dimension 
level is represented by a unique node so according to the 
above definitions any dimension graph is a connected 
graph. Figure 4 gives the graph of the dimension Client. 

Figure 4: The graph of the dimension Client 

The dimensions are of extreme importance in our model 
because they are used in the definition of cubes. Still, a 
cube definition does not involve dimensions as sets of 
paths but rather as sets of what we call dimension values2. 
A dimension value can either be a simple dimension 
member or it can be a set of dimension members. 
Formally speaking, we define a dimension value of a 
dimension D to be either a dimension member of a level 
of D or a set of two or more compatible dimension 
members belonging to distinct and non-related levels. 

Two or more dimension members are called 
“compatible” if it is possible to find - within any level of 
the dimension – at least one dimension member that can 
roll-up (using any combination of drilling relationships of 
the dimension) to each of these members. 

The term “distinct” means that from each level, at most 
one dimension member can participate in a dimension 
value. Furthermore, two or more levels participating in a 
dimension are called “non-related” if there is no path in 
the directed graph of the dimension linking any two of 
these levels. 

                                                           
2 Note the difference among the terms dimension value 
and dimension member  

Based on the above definition one can realize that the 
dimension values depend on both the structure of the 
dimension and on the particular instances of its levels and 
drilling relationships. The set of all possible dimension 
values defined for a dimension is called a dimension 
domain. Note that although the instance of the dimension 
domain depends on the instances of levels and drilling 
relationships, the schema of the dimension still 
determines the structure of the dimension domain by 
defining all possible combinations of non-related levels. 

Take as an example the dimension Client the graph of 
which is shown in Figure 4. Each member of the levels 
Customer, Residence Area, Residence City, Residence 
Region and Profession is a dimension value. If 
Athens_North, Athens_East are two members of the 
Residence Area level and doctor, teacher are two 
members of the Profession level then each of these 
members is a dimension value. Also, each combination of 
members: one from the Profession level and one from the 
Residence Area may be a valid dimension value. If the 
Customer level contains a member that rolls-up to both 
the doctor member and the Athens_North member then 
(and only then) the set {Athens_North, doctor} is a valid 
dimension value. This customer member would represent 
a doctor customer living in the North of Athens. Similar 
constrains must hold in order for the sets {Athens_North, 
teacher}, {Athens_East, doctor}, and {Athens_East, 
teacher} to be dimension values. The combination of 
members is possible only for non-related levels. This 
means that if Patra is a member of Residence City then 
the set {Athens_North, Patra} is definitely not a valid 
dimension value. Either Athens_North is an area of the 
city Patra and it is redundant to mention Patra or 
Athens_North is not within Patra and the combination of 
those members is meaningless. 

The intuition behind dimension domains is that the 
dimension values represent all possible properties that 
can be used for multidimensional analysis. For example a 
query may ask for customers living in Athens_North or it 
may ask for customers with the doctor profession that live 
in the Athens_North area. Still, it is not meaningful to ask 
for customers that live in the Athens_North area and in 
Patra city at the same time, since the latter does not 
include the former. Furthermore if the Customer level 
includes no members that are doctors living in the Athens 
East area then the dimension domain will not include such 
a combination of values making obvious the answer to 
any such queries. So, the structure and content of the 
dimension domains can be used as a valuable source of 
information in a semantic query optimization algorithm. 

3.5 Multidimensional Aggregation Cubes 

The Multidimensional Aggregation Cube (MAC) is the 
main and most complex concept of our model. All other 
concepts previously described are directly or indirectly 
used in the definition of a MAC. The dimension levels 
model properties of measures, the drilling relationships 
define relationships among levels, the dimension paths 
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group drilling relationships and the dimensions group 
paths. The MAC is the only concept that associates 
property values with actual measure values and stresses 
the complex hierarchical structure defined by dimensions. 

Formally speaking, a multidimensional aggregation cube 
is an n-way relationship relating N dimension domains. 
This relationship has one or more attributes which 
represent the measures of the MAC. Each instance of this 
relationship is called a cell and defines a relationship 
among one dimension value from each of the involved 
domains. The cell is annotated with the values of the cube 
attributes – the measure values. The N dimension values 
that a cell relates are called the coordinates of the cell. 
Obviously, the measures of a cube are functionally 
dependant on its coordinates. 

Assume the following example: The cube C1 is defined 
over the domains of the dimensions Location and Item 
(Figure 3) having only Sum of sales as its measure. C1 
contain the cells defined in Table 1 where S represents the 
Sum of sales measure:  

Coordinates M Cell 
name Item Location S 
cell_A Product =P_A Cashier =Cashier00701 10 
cell_B Product =P_B Cashier =Cashier00701 20 
cell_C Brand =B_1 Cashier= Cashier00701 30 

Table 1: The cells of the example cube C1 

The measure of cell_A represents the sum of sales done at 
the Cashier00701 for the product P_A. Likewise the 
measure of cell_B represents the sum of sales done at the 
Cashier00701 for the product P_B. Finally, cell_C 
represents the sum of sales done at the Cashier00701 for 
all products of the brand B_1. Assuming that P_A and 
P_B are the only products of the brand B_1, the cell_C 
then represents the aggregation of cell_A and cell_B. This 
means that the measure of cell_C must be equal to the 
sum of measures of cell_A and cell_B. 

The above example reveals the key property of the MAC 
model: the instances of a cube (the cells of a cube) can 
represent measure values of different granularities even if 
there is a functional dependency among them. In our 
example, cell_A refers to sales measured per Product and 
Cashier while cell_C refers to sales measured per Brand 
and Cashier. Those cells, although defined at different 
levels of granularity, can be part of the same cube. This is 
due to the definition of the dimension domain, which 
states that all members of all participating levels are valid 
dimension values. 

We believe that the above property of our cubes is crucial 
for the compact and intuitive representation of 
multidimensional data. As explained in the section 2, the 
OLAP users usually handle data defined over various 
levels of granularity. Queries may impose selection 
conditions on various dimension levels and may require 

their result at a completely different granularity. 
Furthermore, even the granularity of source data may 
vary. For example, a store may change for a time period 
the way it records its sales. The store could record only 
the sum of sales per product for all its cashiers and not per 
product and cashier as it used to do before. Another 
example is when a cube contains predicted and actual 
sales. The predicted values may not be computable at the 
lowest detail level but only at some higher levels. A final 
example is when for security reasons the detailed data 
may not be available for stores of a particular area. 

If we had only single-granularity cubes than each time we 
needed a new combination of levels we would have to add 
a new cube to the schema. The schema would get 
complicated and so would the queries. The schema would 
not only have to include the dimensions and the cubes but 
also the functional dependencies among the existing 
cubes. The queries would have to be aware of the 
available cubes as well as their functional dependencies. 
They would have to select which ones to use and probably 
join some of them before defining one or more grouping 
operations on parts of those cubes. 

Our approach allows a single cube to include data of all 
meaningful granularities. By doing so we simplify the 
schema making it usable by the users. Also, this approach 
allows queries to be expressed in a very elegant and 
straightforward way avoiding any declaration of joins.  

Consider the following example: Let C2 be a cube 
defined over the domain of the dimensions Time, 
Location, Item, and Client. The structure of those 
dimensions is illustrated in Figure 1 with the addition of 
the special level ALL as described earlier. Assume 
SumOfS is the unique measure of C2 and it represents the 
sum of sales. Using this schema the query Q4, described 
in section 2, can be expressed in a very simple manner. 
We use a QBE notation style and define the query Q4 in 
Table 2. The P. notation defines which coordinates and 
measures to be returned in the result set. 

Time Location Item Client SumOfS 
P.Month P.Store_Area._x P.Brand ALL P. 
Year.2000 Store_Area._x ALL ALL >_s*1.1 
Year.1999 Store_Area._x ALL ALL _s 

Table 2: The query Q4 

An additional advantage of our approach is that the most 
typical OLAP operations: drill-down, roll-up, slice and 
dice are translated to simple selection queries on the cube. 
For example, a drill-down on the results of Q4 to the 
Product level can be expressed by simply replacing Brand 
with Product at the Item coordinate of Table 2. 

Nevertheless, there is an important argument against this 
modeling approach. The cube can represent cells with 
measures that are functionally dependent but it cannot 
guaranty their consistency. The measure of cell_C could 
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have been 50 in Table 1 without violating in any way the 
definition of the cube C1. Still, from a semantically point 
of view this value would be inconsistent with the values 
of cell_A and cell_B. This inability to guaranty 
consistency comes from total absence of the involved 
aggregation functions. Each measure of a cube is 
semantically related to some aggregation. In the above 
examples the measure Sum of sales is obviously related 
to the SUM aggregation function. Still, the cube definition 
does not include this relationship making impossible any 
consistency checking. 

We have intentionally chosen not to include the 
aggregation functions in the MAC model for a number of 
reasons. We decided not to define operations, not to 
include aggregation functions and not to cover any other 
functional aspects of data in the current model because 
those aspects are orthogonal to the defined concepts. The 
model can be extended to include aggregation functions, 
consistency-checking algorithms and operations without 
changing any of the existing MAC concepts. Furthermore, 
a separate functional model can cover those needs. It 
seams that a separate functional model is more suitable 
because each application domain requires its own specific 
aggregation functions, operations and consistency 
semantics. 

For example in some applications it might be acceptable 
to view and analyze data that includes inconsistent parts 
(maybe due to missing, incomplete or wrong 
information). A separate functional model can be tailored 
to cope with operations on such data. By forcing 
consistency at the data modeling level we would make 
our model inappropriate for those applications. 

4 Related Work 
Modeling multidimensional data is not an OLAP specific 
issue. In the database community, several research areas 
like statistical databases, scientific databases, 
geographical databases and temporal databases deal with 
multidimensional data. Still, each of these areas has 
particular modeling needs and has developed specialized 
multidimensional data models. The area closest to data 
warehouses and OLAP is the statistical database area 
[Shos97] where several multidimensional models have 
been proposed [OOM85], [RR91]. In fact those models 
where proposed long before the appearance of the term 
“OLAP” [Codd93]. 

In the data warehouse and OLAP area the first 
multidimensional data models where developed by 
product vendors as the research in the OLAP domain has 
followed the evolution of industrial products. Vendors as 
still using and developing their own data models. Also, 
various standardization bodies have defined their own 
models [Meta97] [Olap97] [TPC99]. Due to space 
limitations we are not going to discuss any of the 
previously referenced models but refer the reader to 
[VaSe99] for an overview and comparison of those 
models. 

During the last few years a plethora of multidimensional 
data models for data warehouses and OLAP have been 
proposed. A comparison of some of them can be found in 
[VaSe99] and [SBH99]. We are currently aware of 12 
models that have been published in research papers. Most 
of them are logical data models and only few ([TBC99] 
[S++98]) can be considered as purely conceptual. Each of 
those models has taken a somehow different modeling 
approach ranging from a simple global table to 
sophisticated object classes. 

In order to demonstrate that our model is not ‘yet another’ 
multidimensional model we evaluated all 12 published 
models against the requirements described in section 2. 
This may not be fair for the purely logical models since 
the requirements represent conceptual modeling needs. 
Still, the evaluation is done only to demonstrate that none 
of the models published so far has the expressive power 
of MAC. In fact the evaluation shows that one 
requirement is not satisfied by any of the models and even 
for the remaining requirements there is no model 
satisfying all of them. Since our model can satisfy all the 
requirements of the evaluation we argue that our proposal 
is an improvement to the existing status. 

The requirements of our evaluation are presented in the 
following list. Each requirement states what the model 
should be capable of representing within a schema. 
1. Levels within dimension (even in the form of simple 

attributes). 
2. Grouping/classification relationships among levels. 
3. Many-to-many type of grouping/classification 

relationships. 
4. N-way grouping/classification relationships that 

relate n dimension levels. 
5. Grouping/classification relationships that do not 

require total participation of the involved levels. 
6. Analysis paths. 
7. Multiple measures as part of one concept. 
8. Measures defined at any granularity level – for each 

involved dimension. 
9. Measure values defined over various granularity 

levels as part of one concept. 
10. Measure values characterized, for some of its 

dimensions, by more than one dimension level 
members. 

Note that the aggregation level of a measure value is the 
lowest dimension level that can be used to characterize 
this value. Also, an analysis path is a lattice of 
grouping/classification relationships defined on a set of 
levels. This lattice prevents the user from performing a 
meaningless (according to the schema designer) drill-
down or roll-up operation to an arbitrary -outside the 
lattice- level of the dimension. 
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 1 2 3 4 5 6 7 8 9 10 
[AGS97]       9 9   
[CaTo98] 9 9      9  9 
[DaTh97] 9      9 9   
[GoRi98] 9 9   9  9 9  9 
[GyLa97] 9      9 9 9 9 
[Lehn98] 9      9 9  9 
[LiWa96] 9       9 9 9 
[PeJe99] 9 9 9 9 9   9 9 9 
[S++98] 9 9 9  9  9    
[TBC99] 9 9 9 9 9  9    
[Truj99] 9      9 9   
[Vass98] 9 9      9   
MAC 9 9 9 9 9 9 9 9 9 9 

Table 3: Evaluation of multidimensional models 

The result of our evaluation is shown in Table 3. Note that 
some of the models ([GyLa97], [Truj99], [AGS97]) 
represent relationships among levels using user-defined 
functions, which are then used in operations. Also, other 
models ([LiWa96], [Lehn98], [DaTh97]) leave the 
relationships to be defined by the particular data instances 
and provide no schema definition for them. In both cases 
we considered that the requirements 2,3,4,5 involving 
grouping/classification relationships as part of the schema 
are not met. 

The requirement not met by any of the models is the 
concept of an analysis path. We believe that this 
information is an important structural part of the 
dimension design and it should be represented at the 
conceptual level. 

Although our model seams to be able to model a broader 
range of OLAP scenario than other proposed models, 
there are a few requirements mentioned in several papers 
([Codd93], [PeJe99], [TBC99] [GyLa97]), which are not 
satisfied by MAC. In our opinion, the most important of 
such requirements is the support for correct aggregation 
of data. As described in [LeSh97] the measures cannot 
always be consistently aggregated by an arbitrary 
aggregation function. In order to provide support for 
correct aggregations the model must include additional 
information regarding measures and 
grouping/classification relationships. Our model does not 
include such additional information since we believe that 
this kind of information, as well as information about 
aggregation functions and derived measures, can be 
described by an independent functional model which will 
supplement MAC. 

A second important requirement stated by various papers 
([GyLa97], [PeJe99], [AGS97]) is the need for symmetric 
treatment of dimensions and measures. It is important to 
note that what the authors finally mean by symmetric 
treatment is the ability to transform a measure into a 
dimension and the other way around. All models claiming 
to support this requirement ([GyLa97], [PeJe99], 

[AGS97]) do so by providing the appropriate 
transformation operations. So, this requirement does not 
mean that dimensions and measures are represented in the 
same manner by the model. We believe that our model 
can easily support this requirement through the definition 
of the proper transformation operations (initially called 
Push and Pull by [AGS97]). 

5 Conclusions 
In this paper we addressed the problem of conceptual 
modeling of data used in multidimensional analysis. We 
presented a set of modeling requirements through the use 
of examples and with those requirements in mind we 
defined a new conceptual data model, named MAC. The 
proposed model uses concepts familiar to OLAP users, 
like dimensions, levels, paths, measures and cubes. Those 
concepts are properly defined in order to allow modeling 
of complicated real-world scenarios. Our evaluation and 
comparison to previously published models showed that 
MAC offers a unique combination of modeling skills. Our 
model is the first user-centric conceptual model to define 
cubes as multi-granularity relationships making both 
schemas and queries much more simple and intuitive. The 
model defines dimension levels, drilling relationships, 
dimension paths and dimensions as first-class and 
standalone concepts, making it possible to share those 
concepts among multiple cubes. Furthermore, the 
complexity of drilling relationships and the usage of 
analysis paths in the definition of dimensions are 
additional novelties of our model taking a step beyond the 
classical multiple hierarchies. Finally, note that the 
definition of dimension domains implicitly represents a 
straightforward method for semantic query optimization 
at both the schema and the instance level.   

Future work includes the definition of MAC as an 
extension to the E/R model and the research of a suitable 
logical model on which concepts of our model can be 
mapped. We also plan to define a functional model that 
will include aggregation functions, derived measures, and 
operations and will define the summarizability [LeSh97] 
of measures as well as other consistency rules.  
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