

I-Y. Song, W.Rowen, C. Medsker, E. Ewen 6-1

An Analysis of Many-to-Many Relationships Between Fact and
Dimension Tables in Dimensional Modeling

Abstract

Star schema, which maintains one-to-many
relationships between dimensions and a fact table,
is widely accepted as the most viable data
representation for dimensional analysis. Real-
world DW schema, however, frequently includes
many-to-many relationships between a dimension
and a fact table. Having those relationships in a
dimensional model causes several difficult issues,
such as losing the simplicity of the star schema
structure, increasing complexity in forming
queries, and degrading query performance by
adding more joins. Therefore, it is desirable to
represent the many-to-many relationships with
correct semantics while still keeping the structure
of the star schema.

In this paper, we analyze many-to-many
relationships between a dimension table and a fact
table in dimensional modeling. We illustrate six
different approaches and show the advantages and
disadvantages of each. We propose two ad-hoc
methods that maintain a star schema structure by
denormalizing the dimensions to avoid many-to-
many relationships. This method allows quick
query processing by using a concatenated attribute
with minimal overhead. Other issues addressed
are data redundancy, weighting factors, storage
requirements, and performance concerns.

1. Introduction
The data warehouse (DW) is an integrated repository of

data, generated and used by an entire organization. The
data warehouse employs a suite of tools that transforms
raw data into meaningful business information. This
information depicts a view of a distinct business process to
identify trends and patterns and serves as a foundation for
decision-making.

The dimensional model is a logical representation of a

business process whose significant features are user
understandability, query performance, and resilience to
change. Dimensional modeling is widely accepted as the
viable technique for delivering data to end users in a data
warehouse [KRRT98, AM97, AV98, AS97, DSHB98,
MC98]. The main components of a dimensional model are
fact tables and dimension tables. A fact table contains
measurements of the business or records events. A
dimension table contains attributes used to constrain,
group, or browse the fact data. There are two primary
advantages of using a dimensional model in data
warehouse environments. First, a dimensional model
provides a multidimensional analysis space in relational
database environments; we are analyzing factual data using
dimensions. Second, a typical denormalized dimensional
model has a simple schema structure, which simplifies end-
user query processing and improves performance.

The dimension tables contain a large number of

attributes, reflecting the details of the business processes.
Browsing is a user activity that explores the relationships
between attributes in a dimension table. The attributes will
serve as row headers and constraints for these views. It is
common to have more than one hundred attributes in a real
world application. Dimension tables are considered wide
for this reason. Denormalization of dimension tables is an
acceptable practice in data warehousing. A dimensional
model with highly normalized dimension structure is called

William Rowen
College of Information Science and Technology

Drexel University
Philadelphia, PA 19104

msis@drexel.edu

Il -Yeol Song
College of Information Science and Technology

Drexel University
Philadelphia, PA 19104

 songiy@drexel.edu

Carl Medsker
Arynth, Inc.

Cinnaminson, NJ 08077
cmedsker@arynth.com

Edward Ewen, M.D
Christiana Care Health System

Wilmington, DE 19899
eewen@christianacare.org

The copyright of this paper belongs to the paper’s authors. Permission to copy
without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage.
Proceedings of the International Workshop on Design and
Management of Data Warehouses (DMDW'2001)
Interlaken, Switzerland, June 4, 2001
(D. Theodoratos, J. Hammer, M. Jeusfeld, M. Staudt, eds.)

http://sunsite.informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-39/

I-Y. Song, W.Rowen, C. Medsker, E. Ewen 6-2

a snowflake schema [KRRT98]. Any attempts to
normalize a dimension table into a series of tables could
reduce the browsing capabilities of the user, resulting in
more complex queries and increased retrieval time. Our
experiences with real-world data warehouse development
shows that browsing and group-by queries are the two
salient issues that drive the design of data warehouses.

The fact table is where the numerical measurements of

the business processes are stored. These measurements or
events are related to each dimension table by foreign keys.
The fact table contains thousands, or even millions of rows
of records. A typical query will compress or extract a large
number of records into a handful of rows using
aggregation. Therefore, the most useful facts are numeric,
continuously valued, and additive; Kimball calls this
premise the holy grail of dimensional database design
[Kimb96].

The grain of the fact table is a very important

characteristic. The grain is the level of detail at which
measurements or events are stored. It determines the
dimensionality of the data warehouse and dramatically
impacts the size and conversely the performance.

The goal in designing the data warehouse model is to

keep it simple to understand, simple to load with
operational data, and as fast as possible to query [Kimb96,
Kimb97, KRRT98, AM97, AV98]. We would like to have
neophyte and experienced business analysts creating
reports, so the logical model needs to be easy to
comprehend. Most business analysts frequently have a
difficult time finding data in both highly normalized
designs and abstract object designs. The flatter the
dimensional model, the better for end-users. The more
complex the model, the more complex will be the
extract/transform/load (ETL) routines to create and run.

Finally, queries against the database will run faster if a

minimal number of one-to-many relationships and joins are
present. To provide users with the views they need for
analysis, the one-to-many relationships between facts and
dimensions should be flattened into a series of views or
derived tables. For instance, the statistician may want to
create a regression model against diagnoses with the grain
of the analysis being a single visit to the hospital.
Therefore, each row must completely define a visit with
columns for specific diagnoses or columns that represent
groups of diagnoses. To meet the fundamental goal of
empowering end users to perform their own queries and
analyses, the design must balance elegance in conceptual
design with understandability, usability, and performance.

Design principles dictate that one should identify any

dimensional attribute that has a single value for an
individual fact table record. The designer can build
outward from the grain of the fact table and relate as many
dimensions as the business process demands. Therefore,

dimension tables are typically joined to the fact table with
a one-to-many relationship. When all the dimensions are
related by one-to-many relationships with the fact table, the
schema is called a star schema. However, real-world DW
schema frequently includes many-to-many relationships
between a dimension and a fact table [KRRT98, AS97].
Having those relationships in a dimensional model causes
several difficult issues, such as losing the star schema
structure, increasing complexity in forming queries, and
degrading query performance by adding more joins.
Therefore, it is desirable that we handle the many-to-many
relationships while still keeping the structure of the star
schema.

In this paper, we analyze many-to-many relationships

between a dimension table and a fact table in dimensional
modeling. Even though there are some previous studies on
how to represent a data warehouse conceptual schema
[GR98, SBHD98, TBC99] or how to derive/design a data
warehouse schema [AM97, KS97, TS98, LAW98, PJ99,
MK00, HLB00], the specific method of handling many-to-
many relationships is rarely addressed. Two sources we
found are books by Kimball et al. [KRRT98] and
Giovinazzo [Giov00]. Not being satisfied by those
approaches for our real-world project, we have performed
a thorough study on how to handle many-to-many
relationships. In this paper, we illustrate six different
approaches and show the advantages and disadvantages of
each. We propose two ad-hoc methods that maintain a star
schema structure by denormalizing the dimension to avoid
many-to-many relationships. These methods allow us to
quickly process queries. Other issues that will be addressed
include data redundancy, weighting factors, storage
requirements, and performance concerns.

The remainder of this paper is organized as follows:

Section 2 presents a motivation example. Section 3
presents six approaches and discusses the advantages and
disadvantages. Sections 4 presents a summary table and
Section 5 concludes our paper.

2. Motivational Example
In the healthcare billing process, there are usually

multiple diagnoses for each patient visit. A design problem
arises in modeling a diagnosis dimension that has a many-
to-many relationship with a fact table as shown in Figure 1.
We will explore specific data warehousing structures to
analyze this predicament. We will use, as an illustrated
example, the patient-billing situation throughout this paper
to compare and contrast the different solutions.

In Figure 1, the relationship between the diagnosis

dimension and the billable patient encounter fact table is
illustrated as a many-to-many. This considers the situation
where a patient has more than one diagnosis for each
billable encounter.

I-Y. Song, W.Rowen, C. Medsker, E. Ewen 6-3

There are inherent problems with many-to-many

relationships between a fact table and a dimension.
Querying for records to find a particular combination of
diagnoses requires multiple correlated subqueries.
Consider the query for retrieving 'billed to payer amount'
and 'patient key' for patients who have a combination of
diagnoses named 'heart' and 'cancer’ (for the remainder of
the discussion we will refer to the diagnosis dimension as
DD and the billable patient encounter fact table as BPE).

SELECT patient_key, billedtopayer_amount
FROM BPE
WHERE patient_key IN

(SELECT patient_key
 FROM DD, BPE
 WHERE diag_name = 'cancer'

AND DD.diagnosis_key =
BPE.diagnosis_key

 INTERSECT
 SELECT patient_key
 FROM DD, BPE

WHERE diag_name = 'heart'
AND DD.diagnosis_key =

BPE.diagnosis_key);

The subquery will select all patient numbers that have
both heart and cancer diagnosis names. Queries for finding
patients with N different diagnoses will need N-level
subqueries. Therefore, report generation is very complex
and slow; you must search a large number of records with
multiple correlated subqueries, increasing both the
processing time and the number of joins.

When one requests additive measurements through the
relationship, the user may receive incorrect results. It is
necessary to implement a weighting factor to give each
separate diagnosis its appropriate contribution to the total
bill [AV98].

An additional problem with this design is frequently a
user may not want all of the diagnoses. When an end-user
retrieves fewer than all the diagnoses then the weighting

factor will not directly add up (see Section 3.1.1 for the
issues of weighting factors in a many-to-many
relationship). You must guarantee by some other means
that the correct weight is applied for any subset of
diagnoses. Users must be protected from retrieving a
subset of data that aggregates incorrectly, which will occur
if no precautions are taken.

3. Methods for Handling Many-to-Many
Relationships

3.0. Assumptions
Based on our experience of building a real-world data

warehouse in a patient-billing domain, we have assumed
the following data for our analysis. The fact table contains
patient billing information and each bill is assigned one
primary diagnosis and one to many secondary diagnoses.
Although it is theoretically possible to have hundreds of
diagnoses, the maximum in practice is twenty or less.
Frequency distributions on an existing operational database
show that most bills have fewer than five secondary
diagnoses, with very few bills having more than 10. These
are entered into the operational system in no particular
order. There is no qualitative difference between secondary
1 and secondary 20. In addition, government and insurance
claim forms typically provide space for a maximum four or
eight secondary diagnoses, so the practical limit is fixed.
All have equal potential importance, depending on the
context of use or the type of information that is compiled.

Making a few assumptions can approximate the
estimated size of the dimension and fact tables.

• Fact table contains 1,000,000 records
• There are maximum 20 billable diagnoses for each

encounter.
• There are maximum 500 billable diagnoses.
• There are on the average five separate diagnoses for

each encounter
• All numerical field widths are an average four

bytes, names are eight bytes, and descriptions are
15 bytes.

3.1. Method A: The Bridge Table
Figure 2 depicts Kimball’s use of the bridge table to

connect multiple diagnoses to a fact table [KRRT98]. The
bridge table is an intersection table between a diagnosis
dimension table and the fact table. This table is similar to
an intersection table that is created for a many-to-many
relationship between two entities. However, what
distinguishes this bridge table in data warehouse modeling
from an intersection table in data modeling is the use of
weighting factors and a diagnosis group key. A diagnosis
group key is assigned to clusters of diagnosis codes and the
combinations are inserted into the bridge table.

Figure 1: Healthcare Billable Encounter Schema
[KRRT98]

diagnosis_key (PK)
diag_name
diag_description

Diagnosis Dimension
time_key (FK)
patient_key (FK)
provider_key (FK)
location_key (FK)
payer_key (FK)
procedure_key (FK)
diagnosis_key (FK)
billedtopayer_amount
billedtopatient_amount

Billable Patient
Encounter Fact Table

Note: only diagnosis dimension
is illustrated

I-Y. Song, W.Rowen, C. Medsker, E. Ewen 6-4

Figure 2: Solving Multiple Diagnoses with a Bridge

Table [KRRT98]

3.1.1. Weighting Factor
Observe the weighting factor attribute in Figure 2. The

weighting factor is a percentage that identifies the
contribution of the diagnosis to the specific encounter.
Within a diagnosis group, the sum of all the weighting
factors must equal one. The weighting factor is multiplied
by fact values, through the joining of the two tables with
the diagnosis group key. In this manner, the involvement of
each diagnosis in the diagnosis group is correctly
calculated. Conversely, the user can request an impact
analysis, ignoring the weighting factors [KRRT98]. Such
impact reports will erroneously aggregate the amounts. It
will produce a summation based on the impact each
diagnosis has in relation to total amounts associated with
that diagnosis. Consider the following example, which
shows only necessary attributes:

DD (Diagnosis Dimension)
diagnosis_key diag_name
DK1 Cancer
DK2 Heart
DK3 Lung

Query: Given Tables 1, 2, and 3, find the ‘billed to payer
amount’ contributed by each diagnosis.

Situation 1 Impact Report:

SELECT diag_name, SUM (billedtopayer_amount)
FROM DD,DGB,BPE
WHERE DD.diagnosis_key = DGB.diagnosis_key
AND DGB.diagnosis_group_key =
 BPE.diagnosis_group_key
GROUP BY diag_name;

Results:
diag_name billed_to_payer_amount
Cancer $ 3,000
Heart $ 3,000
Lung $ 2,000

The results clearly indicate the inherent problem in a
many-to-many situation where the aggregation is counted
for the total amount for each occurrence of a diagnosis in
the records (total amount billed is $8,000). Cancer
occurred in diagnosis group one and two, thus it was
counted twice ($1,000 from diagnosis group one and $
2,000 from diagnosis group two returning an impact total
of $ 3,000).

Situation 2 Weighting Factor Report:

SELECT diag_name,

SUM (billedtopayer_amount *weighting_factor)
FROM DD, DGB, BPE
WHERE DD.diagnosis_key = DGB.diagnosis_key
 AND DGB.diagnosis_group_key =

BPE.diagnosis_group_key
GROUP BY diag_name;

Results:
diag_name billed_to_payer_amount
Cancer $ 2,000
Heart $ 800
Lung $ 200

DGB
(Diagnosis Group Bridge)
Diagnosis
key

Diagnosis
group_key

Weighting
factor

DK1 DG1 0.8
DK2 DG1 0.2
DK1 DG2 0.6
DK2 DG2 0.3
DK3 DG2 0.1

Table 1:Diagnosis Dimension

Table 2: Diagnosis Group Bridge Table

diagnosis_key (PK)
diag_name
diag_description

Diagnosis
Dimension

time_key (FK)
patient-key (FK)
provider_key (FK)
location_key (FK)
payer_key (FK)
procedure_key (FK)
diagnosis_group_key (FK)
billedtopayer_amount
billedtopatient_amount

Billable Patient
Encounter Fact Table

diagnosis_key (PK)
diagnosis_group_key (PK)
weighting_factor

Diagnosis Group
Bridge Table

Note: only diagnosis dimension is illustrated

I-Y. Song, W.Rowen, C. Medsker, E. Ewen 6-5

BPE
(Billable Patient Encounter)
Patient
key

Diagnosis
group_key

billedtopayer
amount

P1 DG1 $ 1,000
P2 DG2 $ 2,000

The weighting factors produce a correct totaled report

($3,000). During the summation, the weighting factor for
each diagnosis key will be related to each bill through the
foreign key (diagnosis group key) found in the billable
patient encounter table.

The weighting factor is necessary when using a bridge

implementation to produce correct reports [KRRT98,
AV98]. However, it is not always possible to rationalize
the weighting factors for each diagnosis. In that case, it
would be possible to count the total diagnoses and produce
an average cost through additional design measures. One
method would be to add an additional attribute to the
bridge, call it number_of_diagnosis; thus, you could divide
your impact total by this value to produce an average cost
per diagnosis. This brute force method takes away from the
usefulness of your decision support based reports. Thus, it
is recommended to use this method only when the correct
calculation of the weighting factors is not necessary.

A major benefit of this design is there is no fixed upper

limit, other than total possible diagnoses. Although in this
study, we have set an upper limit of twenty diagnoses, to
meet the user requirements. The bridge method, as you can
observe, implements a compound primary key for the
bridge table comprised of diagnosis group key and
diagnosis key. It is possible to find a group of related
diagnoses because the diagnosis group value is repeated for
every member row in a set of diagnoses.

There may be other such many-to-many dimensions

related to the same fact table, and the load times and query
times can be expected to be lengthy. For instance, there are
many procedure codes and Diagnosis Related Group
(DRG) codes assigned to a single visit or patient bill. A
DRG is a classification of a hospital stay in terms of what
was wrong with and what was done for a patient. There are
approximately 500 DRG codes, which are determined by a
program based on diagnoses and procedures coded in a
standard International Classification of Disease (ICD-9)
format and on patient attributes such as age, sex, and
duration of treatment. The DRG frequently determines the
amount of reimbursements, regardless of the actually costs
incurred. A hospital visit is often coded by multiple
systems, such as Systematized Nomenclature of Medicine
(SNOMED), Current Procedural Terminology (CPT4), and
others, all of which share a many-to-many relationship with
the billable patient encounter fact table. Considering the
complexity of the healthcare billing system, the design and
performance using bridge tables will get quite complex.

The size of the bridge table would increase considerably
if one encounter has many related diagnoses. We used an
average of five diagnoses per encounter for this example;
this parameter produced a bridge table comparable to the
size of the fact table, as we will now demonstrate.

3.1.2. Database Sizing for the Bridge
Method.

Base fact: 1,000,000 records
Key fields = 7; Fact fields = 2; Total Fields = 9
Fact table size = 1,000,000 records * 9 fields * 4 bytes =
 36 MB
Diagnosis dimension: 500 records
Key fields = 1; Name field =1; Description field =1
Record size = 4+8+15 =27 bytes
Dimension table size = 500 records * 27 bytes =

 13,500 Bytes

Bridge table: 1,000,000 facts joined to 5 distinct diagnoses
in a diagnosis group = 5,000,000 records
Key fields = 2; Weighting factor = 1; Total fields = 3
Bridge table size=5,000,000 records * 3 fields * 4 bytes=

60 MB
Notice, if the average number of diagnosis is increased to
ten, our bridge table size will grow to 120 MB, nearly four
times the size of our fact table

Total disk space = 96.1MB

In summary, the bridge method can be considered a
logical solution for a many-to-many relationship with less
redundancy. There are, however, various disadvantages to
this method. Assigning weighting factors could prove to be
difficult or cumbersome in a real-world environment;
additionally, adding a new diagnosis requires recalculating
of the weighting factors. The logical structure would lose
the simplicity and understandability of the star schema.
More joins increase the overhead and query time. As
pointed out the size of the bridge table could increase
considerably based on the number of diagnosis assigned to
each diagnosis group.

3.2. Method B: Denormalizing the
Dimension Table by Positional-Flag
Attributes

Figure 3 illustrates denormalizing the diagnosis
dimension using the positional-attribute approach. By
positional we mean that the location of each attribute is
fixed. For example, the first attribute is cancer; the second
attribute is heart, etc. Thus, the same disease is always
indicated in the same column. In this method, each
diagnosis becomes a Boolean attribute being set to either
‘TRUE’ or ‘FALSE’. For brevity and clarity, only five
attributes have been included in Figure 3.

Table 3: Billable Patient Encounter Schema

I-Y. Song, W.Rowen, C. Medsker, E. Ewen 6-6

This technique requires a very large diagnosis

dimension table. N diagnoses require 2N records; for this
trivial example of five diagnoses, the table size is 32
records. Consider Table 4 that lists all the unique
diagnosis patterns.

If we were to extend our model to include 10 diagnoses,

the table would be 1024 records in length; 20 diagnoses
would require 1,048,576 records; 40 diagnoses would
require about one trillion records.

Additional disadvantages of this method include:

• adding a new diagnosis value would require to rebuild
the dimension table and the fact table. We need to use
Data Definition Language (DDL) to add a column and
reload the diagnosis dimension by adding (2N+1 - 2N)
rows and updating the diagnosis_key in the fact table;

• there are no approaches to handle a weighting
factor.

 However, a bitmap index scheme [OG95] can be

implemented on each positional attribute, which would
improve the query performance in this approach. It is clear
that this method would only be applicable when the
number of positional-attributes is limited and fixed.

3.2.1. Database Sizing for the Positional-Flag
Attribute Method

Number of base fact records: 1,000,000 records
Key fields = 7; Fact fields = 2; Total Fields = 9
Fact table size = 1,000,000 records * 9 fields *4 bytes =

 36MB
Consider the total size of the dimension for 40 diagnoses:
Diagnosis dimension: 240 records ≈ 1126.4 * 109 records
Number of key fields = 1; Number of attribute fields = 40;
Assuming 1 bit for each flag
Record size = 4+(1*40)/8= 9Bytes
Dimension table size ≈ 1126.4 * 109 records * 9 bytes ≈

 10.1TB

Total disk space = 10.1TB
(for 40 diagnoses)

3.3. Method C: Denormalizing the
Dimension Table by Non-Positional-
attributes & a Concatenated Field

In this approach, each attribute in the dimension will
store a different diagnosis value. By non-positional we
mean that each attribute can have a different value in
different records. Other than the primary diagnosis, there is
no difference between secondary 1 and secondary 20.

Table 4: Diagnosis Dimension with Five Positional-attributes

Figure 3: Denormalizing the Dimension Table
by Positional Flag attributes

diagnosis_key CancerFlag HeartFlag LungFlag LiverFlag KidneyFlag
001 FALSE FALSE FALSE FALSE FALSE
002 FALSE FALSE FALSE FALSE TRUE
003 FALSE FALSE FALSE TRUE FALSE
004 FALSE FALSE FALSE TRUE TRUE
005 FALSE FALSE TRUE FALSE FALSE
… … … … … …
031 TRUE TRUE TRUE TRUE FALSE
032 TRUE TRUE TRUE TRUE TRUE

diagnosis_key (PK) INT
CancerFlag BOOL
HeartFlag BOOL
LungFlag BOOL
LiverFlag BOOL
KidneyFlag BOOL

Diagnosis Dimension

time_key (FK)
patient-key (FK)
provider_key (FK)
location_key (FK)
payer_key (FK)
procedure_key (FK)
diagnosis_key (FK)
billedtopayer_amount
billedtopatient_amount

Billable Patient
Encounter Fact Table

Note: data types are displayed
in the diagnosis dimension to
illustate positional-attribute
concept in this example

I-Y. Song, W.Rowen, C. Medsker, E. Ewen 6-7

An example of this method is illustrated in Table 5. A

primary diagnosis and multiple secondary diagnoses can be
assigned. Here, we introduce the notion of a concatenated
field to support query processing. A concatenated field is
used to store the primary and all the secondary values of
the diagnoses using the variable character data type. For
example, VARCHAR2 type in Oracle would be able to
store 4,000 characters. The LIKE clause of SQL could be
employed to search for constrained information. The
concatenated value attributes will store diagnosis values in
a sorted order. One drawback is most bills have
approximately five diagnoses; therefore, there will be many
null values in secondary diagnoses. While queries across
diagnosis fields can be accomplished with multiple OR
clauses, the LIKE clause to the concatenated field will
simplify the search query.

However, we note that most commercial database

systems do not employ B-tree type index for searching
when LIKE clause begins with a wild character. Thus, an
efficient string indexing or string search mechanism will
enhance the query performance.

 In order to resolve the problem of LIKE clause, we can

enhance the non-positional model by incorporating the
benefits of positional flag attributes. Additional Boolean
attributes can be created for common or frequent
diagnoses. See Table 6 for an example. Bitmap indexes
[OG95, CI98] can be created for these Boolean attributes
to facilitate searching based on these common diagnoses.
Unusual or intriguing diagnoses could also be included for
specific business intelligence purposes. The hybrid method
allows both pattern matching with the LIKE command and
an index search through a limited number of Boolean
fields. The main advantage here would be to constrain the
size of the dimension while allowing fast and efficient
queries by maintaining the star schema. Consider Table 6
to observe the usefulness of this approach. Most users are
interested in a disease category or combination of
categories, not a single disease billing code. Multiple codes
can be assigned that all indicate the presence of a disease.
There may be as many as 20 codes that all indicate the
patient has some form of diabetes. The analyst, for
reporting or regression purposes, simply needs a field for
diabetes that contains "TRUE" or "FALSE". In On-line
Analytical Processing (OLAP) designs users can combine
(Boolean "AND") diseases by simply selecting "Yes"
across a series of OLAP categories. Pre-calculating and
storing these clusters makes it simpler for users to query
the database and for developers to create OLAP cubes.

Note: secondary diagnosis 4 - 19 omitted for brevity

Observe the field concatenated_diagnoses (CD), which

is a concatenation of the primary and all the secondary
diagnoses related to a patient fact record. The primary
diagnosis is included in the concatenated diagnosis to
enable the user to search for all assigned diagnoses for a
specific medical condition.

Although we normally avoid fields with patterns or lists,

an exception in this case is useful. There is no order or
weighting to the secondary diagnoses, except the order in
which they come to mind of the evaluating physician or the
order in which lab tests results become available, so when
this diagnosis dimension table is loaded, all the diagnoses
in a group are first sorted ascending and inserted across as
many diagnosis fields as required. This permits the use of a
“wild card” query rather than multiple OR statements, to
test whether a specific diagnosis was assigned to a patient
bill, regardless of its ordinal position. When searching for
a certain disease state, it usually does not matter if the
diagnosis is primary or secondary; the physician just wants
to ascertain if “any” diagnosis is for example “heart”.

Referring to Table 6:

SELECT Patient_key, BPE. billedtopayer_amount
FROM DD,BPE
WHERE DD.diagnosis_key = BPE.diagnosis_key
AND DD.concatenated_diagnoses
LIKE ‘%heart%’;

Table 5 Denormalized Non-Positional Diagnosis
Dimensional Table

Diagnosis Dimension

diagnosis_key (PK)
primary_diagnosis
secondary_diagnosis1
secondary_diagnosis2
secondary_diagnosis3

secondary_diagnosis20
concatenated_ diagnoses (CD)

I-Y. Song, W.Rowen, C. Medsker, E. Ewen 6-8

Diagnosis Dimension

DK PD SD1 SD2 … SD20 CD AsthmaFlag
(BOOL)

DiabetesFlag (BOOL)

1 heart lung asthma … null "asthma,heart,lung" TRUE FALSE

2 cancer diabetics null … null "cancer,diabetics" FALSE TRUE

3 liver heart null … null "heart,liver" FALSE FALSE

4 heart lung asthma … null "asthma,heart,lung" TRUE FALSE

…

Note: secondary diagnosis 3 - 19 omitted for brevity

The query is less difficult to write than a query with
multiple OR clauses. Adding flag columns for disease
groups can further enhance the design. For instance,
columns for diabetes and asthma can be used to tag all
rows having specific diagnosis codes. Columns for certain
DRG codes can be included, since the dimension can be as
wide as the designer desires to increase the usefulness to
the end user. Note that there is a one-to-many relationship
between a flag field and diagnosis codes. That is, the
presence of any one or more of a set of diagnosis codes
may indicate an overall condition of diabetes. Flag fields
are an elegant way for users to create simple queries that
ask broad disease questions, but the determination and
loading of these fields during the ETL process is complex
and usually requires a mapping table created by medical
experts. They can be simple TRUE/FALSE flags that
allow rapid queries such as:

SELECT *
FROM DD
WHERE Asthma = 'TRUE'
AND Diabetes = 'TRUE';

Note tuples one and four in Table 6. Both tuples have

the same primary and secondary diagnoses but have
different diagnosis keys. The designer must make a
decision, is this type of redundancy acceptable or should
measures be taken to search for existing diagnosis patterns
before issuing a new diagnosis key? It will be a trade-off
between more required memory space, or develop ad-hoc
stored procedures to handle this situation.

This method of using non-positional attributes can be
implemented in two different ways: by one-to-one or one-
to-many relationship between the diagnosis dimension and
the fact table, depending on the allowance of redundant
tuples.

This scheme described in this section allows the users to
only be concerned with a single join between the fact table
and dimension table.

3.3.1 Method C-1: One-to-One Relationship
between Dimension and Fact Tables

When each record in the diagnosis dimension can be
related to one fact record, there exists a one-to-one
relationship between the tables (Figure 4). That is, we are
creating one dimension record for each new billing
encounter. The drawbacks in this design are three. First,
most bills have fewer than 5 secondary diagnoses, so there
will be many null values. Second, queries across
secondary diagnosis fields will require multiple OR
clauses, which are complex to write and slow to run.
However, this disadvantage can be solved using the
concatenated attribute and LIKE clause as we explained in
the previous section. Third, it will take more storage.
However, the most significant advantage of this approach
is to maintain the simple star schema structure. Here,
design is simpler in most ways and easier for analysts not
trained in data modeling to understand at the expense of
significant storage.

A weighting factor could be added to the diagnosis
dimension, but will create a complexity in the actual usage
and is not recommended in this approach.

3.3.1.1. Database Sizing for Denormalized
Dimension Method C-1

Number of base fact: 1,000,000 records
Key fields =7; Number of fact fields =2; Total Fields = 9
Fact table size = 1,000,000 records * 9 fields * 4 bytes =

 36 MB
Diagnosis dimension: 1,000,000 records
Key fields =1; Primary diagnosis size = 8 +15 = 23 bytes
Average secondary diagnoses size = 5 * (8+15)= 115 bytes
Average Concatenated field size = 5*8 = 40 bytes
Number of Boolean Flag fields = 3 bits (1 bit each)
Record size = 4 + 23 + 115 + 40 + 1 = 183 bytes
Dimension table size = 1,000,000 records * 183 bytes =

 183 MB
Total disk space = 219 MB

Table 6: Denormalized (non-positional) Diagnosis Dimension Table with Positional-attributes

I

3.3

T
in a
diag

T
met
sort
crea
emp
exis
be
rela

In our project, we adopted this C-2 method. Many

medical centers will purchase or download all necessary
diagnosis codes and descriptions as flat files, then load this
data into a database table. We were able to create the
initial diagnosis dimension using historic legacy data. For
each billable encounter, a lookup is performed for the
diagnosis description in a lookup table, the results are
sorted, and a new record is inserted. For future claims
records, a maintenance function will query the diagnosis
dimension to see if the pattern already exists. If the pattern
does not exist, the lookup table is accessed for a
description and will update the dimension accordingly.

3.3.2.1. Database Sizing for Denormalized
Dimension Method C-2.

Number of base fact: 1,000,000 records
Key fields = 7; Fact fields = 2; Total Fields = 9

diagnosis_key (PK)
primary_diagnosis
primary_diagnosis_desc
secondary_diagnosis1
secondary_diagnosis1_desc
secondary_diagnosis2
secondary_diagnosis2_desc
secondary_diagnosis3
secondary_diagnosis3_desc
...
secondary_diagnosis20
secondary_ diagnosis20_desc
concatenated_diagnoses
SickleCellFlag
AsthmaFlag
DiabetesFlag

Diagnosis
Dimension

time_key (FK)
patient-key (FK)
provider_key (FK)
location_key (FK)
payer_key (FK)
procedure_key (FK)
diagnosis_key (FK)
billedtopayer_amount
billedtopatient_amount

Billable Patient
Encounter fact table

Note: secondary attributes 3 - 19
 omitted for brevity.

diag
prim
prim
seco
seco
seco
seco
seco
seco
...
seco
seco
con
Sick
Asth
Dia

Diag
Dim
Figure 4 Denormalized Non-Positional Diagnosis
Dimension Table with Flag Attributes: One-to-One
Relationship between Dimension and Fact Tables
.2. Method C-2: One-to-Many
Relationship between Dimension and
Fact Tables

he diagnosis dimension can be related to the fact table
 one-to-many relationship (Figure 5). Thus, the same
nosis pattern is associated with multiple encounters.
his method introduces many null values similar to

hod C-1, but the redundancy is largely reduced. A
ing/concatenation procedure similar to the one used to
te the dimension table explained in section 3.3 can be
loyed to search for the same diagnosis pattern from
ting records, however the insertion process will tend to
complex and slow. Due to the one-to-many

tionship, weighting factors cannot be exploited.

Fact table size =1,000,000 records * 9 fields * 4 bytes =
36 MB

Diagnosis dimension records: 200,000 records
(Assumed on the average one pattern is associated with
five encounters.)
Key fields =1;
Primary diagnosis size = 8 +15 = 23 bytes
Average secondary diagnoses size = 5 * (8+15)= 115 bytes
Average Concatenated field size = 5*8 = 40 bytes
Number of Boolean Flag fields = 3 bits (1 bit each)
Record size = 4 + 23 + 115 + 40 + 1 = 183 bytes
Dimension table size = 200,000 records * 183 bytes =

36.6 MB

Total disk space = 72.6 MB

3.4. Method D: Lowering the Grain of the
Fact Table

Method D will lower the grain of the fact table to the
dimension grain level (Figure 6). This method is briefly
discussed By Giovinazzo [Giov00]. For each event there
will be multiple fact records relating to that specific event.
An option is to add a diagnosis_group_key in the fact table
to group the multiple fact records. There is no need to
compute a weighting factor; each diagnosis can be directly
billed (see table 7). The star schema is retained in this
approach, giving the user a concise, clear logical view of
the business process, at the expense of increasing the size
of a fact table.

Since you can have many diagnoses for a singular event,
there is a need to calculate the aggregate of that instance.
The approach will be straightforward; sum the amounts of
each diagnosis for a specific date, grouping by
diagnosis_group_key. The size of the fact table will
increase depending upon how many diagnoses will be
stored in the fact table. There will also be redundant data
stored for other billing fields.

nosis_key (PK)
ary_diagnosis
ary_diagnosis_desc
ndary_diagnosis1
ndary_diagnosis1_desc
ndary_diagnosis2
ndary_diagnosis2_desc
ndary_diagnosis3
ndary_diagnosis3_desc

ndary_diagnosis20
ndary_ diagnosis20_desc

catenated_diagnoses
leCellFlag
maFlag

betesFlag

nosis
ension

time_key (FK)
patient-key (FK)
provider_key (FK)
location_key (FK)
payer_key (FK)
procedure_key (FK)
diagnosis_key (FK)
billedtopayer_amount
billedtopatient_amount

Billable Patient
Encounter fact table

Note: secondary attributes 3 - 19
 omitted for brevity.
Figure 5: Denormalized Non-Positional Diagnosis
Dimension Table with Flag Attributes: One-to-Many

Relationship between Dimension and Fact Tables
-Y. Song, W.Rowen, C. Medsker, E. Ewen 6-9

I-Y. Song, W.Rowen, C. Medsker, E. Ewen 6-10

BPE

Patient
key

Diagnosis
group_key

Diagnosis
key

Other
FK's

Billed to
payer

amount
P1 DG1 cancer . $ 1,000
P1 DG1 heart . $ 2,000
P2 DG2 cancer . $ 1,000
P2 DG2 heart . $ 2,000
P2 DG2 lung . $3,000

3.4.1. Database Sizing for Method D:
Modifying the Fact Table

Number of base fact records: 5,000,000 records (assume
five diagnoses on average).

Key fields =7; Number of fact fields =3; Total Fields=10
Fact table size =5,000,000 records * 10 fields * 4 bytes =

 200 MB
Diagnosis dimension: 500 records
Key fields = 1; Name field =1; Description field =1
Record size = 4+8+15 =27 bytes
Dimension table size = 500 records * 27 bytes =

13,500 Bytes

Total disk space = 200.1 MB

3.5. Method E: Lower the Grain of the Fact
Table: Separating Diagnosis from
Billing Data

Method E is similar to method D, but separates the
diagnosis data from the billing data by employing two fact
tables (Figure 7). Diagnosis data is recorded at individual
diagnosis grain in the Patient Medical Record fact table,
while a billing is recorded at each billing transaction grain.
Using this structure, allows us to use two fact tables in
different ways. When we perform diagnosis-related
analysis, the Patient Medical Record fact table can be used.
When we perform billing–related analysis, the Billing fact
table can be used. When we analyze billing related to
diagnosis, both fact tables will be used. A billing event is
joined to diagnosis through the billing key. A Weighting
factor can be used if necessary.

In this approach, the patient medical record would
contain redundant data about the patient due to the
granularity of the table, which is at the diagnosis level.
This method, however, causes less redundancy than
Method D because billing is recorded only once per event
in its own fact table. The size of the fact table will increase
depending upon how many diagnoses are stored in the fact
table. There will also be redundant data caused by the
foreign keys of an additional fact table.

We note that if Method E is simplified by removing all
foreign keys except diagnosis_key and billing_key in the
Patient Medical Record fact table, the structure is similar
to the method used with the Bridge table.

Figure 6: Method D: Lowering the Grain of the
Fact Table

Table 7: An Example of the Fact Table at
Individual Grain

time_key (FK)
patient-key (FK)
provider_key (FK)
location_key (FK)
payer_key (FK)
procedure_key (FK)
diagnosis_key (FK)
diagnosis_group_key
billedtopatient_amount
billedtopayer_amount

Billable Patient
Encounter Fact Table

diagnosis_key (PK)
diag_name
diagnosis_description

Diagnosis Dimension

time_key (FK)
patient-key (FK)
provider_key (FK)
location_key (FK)
procedure_key (FK)
diagnosis_key (FK)
billing_key (FK)
WeightingFactor

Patient Medical
Record FactTable

diagnosis_key (PK)
diag_name
diag_description

Diagnosis
Dimension

time_key (FK)
patient-key (FK)
provider_key (FK)
location_key (FK)
payer_key (FK)
procedure_key (FK)
billing_key (FK)
billedtopatient_amount
billedtopayer_amount

Billing
Fact Table

Figure 7: Method E: Lower the Grain of the Fact
Table and Separate Diagnosis/Billing Data

I-Y. Song, W.Rowen, C. Medsker, E. Ewen 6-11

Redundancy Name Weighting Factor Queries
Storage

Recommendation

Necessary

WF assignment can be
cumbersome

Slight
Ideal for dimension with no
upper limit in Many side and
WF can be easily calculated or
not needed.

Method A
Kimball’s Bridge

Adding new diagnoses
require recalculation.

Additional join
increases query time

96.1 MB A clean solution

Cannot handle a weighting
factor

Requires many OR
commands, slows
processing response

Dimension table
will list all
possible
combination, can
be extremely
large

Method B
Denormalizing
Dimensional
Table with
Positional-Flag
attributes Can use a primary

diagnosis flag

Bitmap index scheme
can speed up query
processing

10.1TB (for 40
diagnoses)

Because of enormous storage
requirement, only applicable
when the number of positional-
attributes is very small (less
than 10) and fixed

Can maintain star schema
structure for ease of
understanding and query
forming Can be very

large
Use when the number of
dimension values is small and
query performance is important

Method C
Denormalizing
Dimensional
Table with Non-
positional-
attributes &
Concatenated
field

Depends on relationship
between dimension and
fact table

Use of concatenated
attribute and LIKE
clause.

See C-1 and C-2
below. Creates many null values

LIKE command
disables indexing.

Can be very
large Method C-1

One-to-One

Can create a concatenated
weighting factor, but
cumbersome

Can use flags and
bitmap indexes for the
flags

219 MB

Use when a dimension pattern
appears in fact table only 1-2
times.

Like command
disables indexing.

Less redundancy
than Method C-1

Use when a dimension pattern
appears in fact table many
times. Method C-2

One-to-Many

Cannot use a weighting
factor because of one-to-
many nature Can use flags and

bitmap indexes for the
flags

72.6 MB
Requires complex logic to find
existing records before inserting
a new code.

No need for a WF
 View is on single table

Can cause
redundancy for
other FK's in fact
table

The fact table can become very
large

Need to calculate
aggregation.

Method D
Lower Grain of
Fact Table to Line
Item level Can use a primary

diagnosis flag. Fast queries
201.1 MB

Use only for a limited number
of attributes and line items per
transaction

View is on single table

Must deal with two
fact tables.

Can use a WF

Fast queries

Can cause
redundancy for
other FK's in fact
table

Method E
Lower Grain &
Separate Facts
into two tables

Can use a primary
diagnosis flag.

Need to calculate
aggregation 196.1 MB

Use when two fact tables can be
used separately.

Table 8: Summary of Six Methods

I-Y. Song, W.Rowen, C. Medsker, E. Ewen 6-12

3.5.1 Database Sizing for the Positional-
attribute Method E

Number of Patient Medical facts: 5,000,000 records
(Assume five diagnoses on average).
Key fields = 7; Fact fields = 1
Record size = 7*4 + 4 = 32 bytes
Fact table size = 5,000,000 records * 32 bytes =

160 MB
Diagnosis dimension: 500 records
Key fields = 1; Name field =1; Description field =1
Record size = 4+8+15 =27 bytes
Dimension table size = 500 records * 27 bytes =

13,500 Bytes
Number of billing fact: 1,000,000 records
Key fields =7; Number of fact fields =2; Total Fields =9
Fact table size = 1,000,000 records * 9 fields * 4 bytes =

 36 MB

Total disk space = 196.1 MB

4. Summary and Discussion
In this section, we present the summary of the six

methods discussed in the paper. The results are
summarized in Table 8.

Kimball's bridge method [KRRT98] produces an elegant
design for many situations. Redundancy is kept at a
minimum, with the added advantage of correct weighted
summaries. The cost is the size of the bridge table and
added joins can deteriorate the querying process. We note
that a weighting factor is needed when using a bridge. It is
not always needed when fact and dimension tables are
flattened. We recommend this solution as a clean and
maintainable solution when the cardinality of many-to-
many is not limited and weighting factors can be easily
calculated or are not needed.

Method B, positional flag attributes, seems a likely
solution when the number of positional-attributes is very
limited (say less than 10 or 12) and fixed. As the number of
attributes increases, the storage requirement becomes
explosive. We do not recommend this approach for most
situations.

Methods C-1 and C-2 use non-positional attributes with
a concatenated attribute and flags. . By maintaining the
star schema structure, these methods enhance
understandability of the model by non-professional
analysts and support easy query formation. However, the
designer must take into consideration the null values and
redundancy. In addition, Method C-2 requires an efficient
procedure to find an existing diagnosis key for each entry
of a fact table. We recommend Method C-1 when a
dimension pattern appears in the fact table only 1-2 times
and Method C-2 when a dimension pattern appears in the
fact table many times. We recommend these methods only
when the number of the dimension value is small and fixed.

Methods D and E offer still additional approaches that
will work well if the number of diagnoses is limited. The

designer must consider the size of the fact table and
redundancy in relation to the query processing times.

There are several distinct types of users of the
warehouse; the executive browser, the data analyst, and the
professional OLAP analysts. The executive browser will
see the data through interfaces designed by the warehouse
developers and the development will be simpler using
Method C-1 or C-2 because there are fewer joins in the
queries and no flattening views to create. Data analysts and
professional OLAP analysts such as statisticians will need
to extract data from the warehouse tables into reports
employing statistical and data mining programs. Therefore,
the understandability of the model becomes very important.
Data from a flatter, horizontal dimension is easier to query
into off-the-shelf application packages than data in a
vertically oriented table. There is also no concern that
analysts will forget to apply the weight factors to the facts.

Maintenance is not appreciably different from a
modeling and physical implementation perspective, which
are handled using a data-modeling tool. The extract,
transform, and load (ETL) routines may be more complex
and slow to run for the bridge method due to the multiple
tables that have to be tested and the need to use cursors and
procedural code to populate the bridge tables. Conversely,
the ETL plans for method C may be easier to write and
should run faster. It is also important to note, that some
fact tables will have multiple many-to-many relationships
with dimensions other than diagnosis. While theoretically,
this poses no problem; in practice, the load times and query
times may be excessive.

We finally note that the storage calculation in this paper
was based on our assumption. When the domain and
assumption changes, the storage requirement needs to be
recalculated.

5. Conclusion
While we were building a real-world patient-billing data

warehouse, we met a many-to-many relationship problem
between a fact table and a dimension table. A survey of
literature showed us two methods (Method A and Method
D). After a thorough study on the subject, we have
identified four additional methods. In this paper, we have
analyzed those six different approaches for handling many-
to-many relationships. We have illustrated and shown the
advantages and disadvantages of each solution.

Our preferred methods include two ad-hoc approaches

that maintain a star schema structure by denormalizing the
dimension to avoid many-to-many relationships. For our
project, we implemented Method C-2. For a new
encounter, we query the Diagnosis dimension to see if the
pattern already exists. If the pattern does not exist, the
lookup table is accessed for a description and will update
the dimension accordingly. We also note that Method C-2
uses the minimum storage. Our experience shows that the
Method C-2 proposed in this paper were easy to use and
efficient given our situation. However, we recommend
each data warehouse designer carefully evaluate each case

I-Y. Song, W.Rowen, C. Medsker, E. Ewen 6-13

to adopt the best method considering various options. Just
as database designers trade off normalization for query
response, a data warehouse designer must also resolve
many issues to solve this many-to-many dilemma.

Acknowledgements
The authors thank the many students at Drexel

University who participated in the discussion on the many-
to-many dilemma in data warehousing modeling. Their
insight has been invaluable in developing these solutions.

6. References

[AM97] Anahory, S. and Murray, D., Data
Warehousing in the Real World, Addison
Wesley, 1997

[AV98] Adamson, C. and Venerable, M., Data
 Warehouse Design Solutions, John Wiley, 1998.

[AS97] Axel, M. and Song, I. -Y., "Data Warehouse Design
 for Pharmaceutical Drug Discovery Research,"
 Proc. of 8th International Conference and
 Workshop on Database and Expert Systems
 Applications (DEXA97), September 1-5,
 1997, Toulouse, France, pp. 644-650.

[CI98] Chan, C.-Y. and Ioannidis, Y. , Bitmap Index
 Design and Evaluation, Proc. of 1998 SIGMOD
 Conference, pp. 355-366.

 [DSHB98] Dinter, B., Sapia, C., Hofling, G., and
 Blaschka, M., The OLAP Market: State of the
 Art and Research Issues, Proc. of Int’l
 Workshop on Data Warehousing and
 OLAP, Washington, D.C.,
 1998, pp. 22-27.

[Giov00] Giovinazzo, W.A., Object-Oriented Data
 Warehouse Design: Building a Star Schema,
 Prentice Hall, 2000.

[GR98] Golfarelli, M. and Rizzi, S., A
 Methodological Framework for Data
 Warehouse Design, Proc. of Int’l Workshop
 on Data Warehousing and OLAP,
 Washington, D.C., 1998, pp. 3-9.

[HLB00] Husemann, B., Lechtenborger, J., and
 Vossen, G., Conceptual Data Warehouse Design,
 Proc. Of Int’l Workshop on Design and Management
 of Data Warehouses, Stockholm, Sweden., 2000.

[Kimb96] Kimball, R. (1996). The Data Warehouse
 Toolkit. New York: John Wiley & Sons, Inc.

[Kimb97] Kimball, R., A Dimensional Manifesto, DBMS,
 August 1997, pp. 58-70.

[KRRT98] Kimball, R., Reeves, L., Ross, M., &
 Thornthwaite, W. (1998). The Data
 Warehouse Lifecycle Toolkit.
 New York: John Wiley & Sons, Inc.

[KS97] Krippendorf, M. and Song, I.-Y, "Translation of
 Star Schema into Entity-Relationship Diagrams," Proc.

of 8th International Conference and
 Workshop on Database and Expert Systems
 Applications (DEXA97), September 1-5, 1997,
 Toulouse, France, pp. 390-395.

[LAW98] Lehner, W., Albrecht, J., and Wedekind, H.,
 Normal Forms for Multidimensional Databases,
 Proc. SSDBM, 1998, pp. 63-72.

[MC98] Maier, D. and Cannon,C., Building a Better
 Data Warehouse, Prentice Hall, 1998.

[MK00] Moody, D. and Kortink, M.A.R., From
 Enterprise Models to Dimensional Models:
 A Methodology for Data Warehouse and Data
 Mart design, Proc. of Int’l Workshop on Design
 and Management of Data Warehouses,
 Stockholm, Sweden., 2000.

[OG95] O’Neil, P. and Graefe, G., Multi-table Joins
 Through Bitmapped Join Indices, SIGMOD Record,
 Vol. 24, No.3, Sept. 1995, pp. 8-11.

[PJ99] Pedersen, T.B. and Jensen, C.S.,
 Multidimensional Data Modeling for Complex
 Data, Proc. of 15th ICDE,
 Sidney, Australia, 1999, pp. 336-345.

[SBHD98] Sapia, C., Blaschka, M., Hofling, G., and
 Dinter, B., “Extending the E/R Model for the
 Multidimensional Paradigm,” Advances in
 Database Technologies (ER ’98 Workshop
 Proceedings), Springer-Verlag, pp. 105-116.

[TBC99] Tryfona, N., Busborg, F., and Christiansen,
 J.G.B., “starER: A Conceptual Model
 for Data Warehouse Design,” Proc. of Int’l
 Workshop on Data Warehousing and OLAP
 (DOLAP 99), Kansas City, MO., pp. 3-8.

[TS98] Theodoratos, D., and Sellis, T, Data
 Warehouse Schema and Instance Design, Proc.
 of 17th International Conf. On Conceptual
 Modeling (ER98), Singapore, Nov. 1998,
 pp.363-376.

