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Abstract. This paper describes the problems with debugging tools for
answer set programming, a declarative programming paradigm. Current
approaches are difficult to use on most applications due to the consider-
able bottlenecks in communicating the reasons to the user. In this paper
we examine the reasons for this and suggest some possible future direc-
tions.

1 Introduction

One of the long term goals of computer science is creating efficient declarative
programming systems. In an ideal world, the user would create a description of
what the problem is and the programming system would work out how to solve
it, and return the answer. However, as any student of software engineering will
note, what the user wants and what the user asks for are often different. In the
context of declarative programming languages and other ‘intelligent’ systems,
this results in the user trying to understand why the system gave the answer it
did. Thus, most practical declarative programming systems rapidly develop tools
for explaining why they gave a particular answer. These are normally referred
to as ‘debugging’ tools; although they are only superficially related to most
procedural debugging tools. Given the strong formal semantics underpinning
most declarative programming systems, building a tool to compute (online or
offline) the formal argument behind an answer is relatively straight-forward.
Although the names vary with the problem domain; proof trees, refutations,
traces, arguments and so on, all follow a similar methodology of building a formal
structure to explain their answers based on the rules that give the semantics of
the language. This is, of course, widely known and implemented, what is much
rarely discussed is how to explain this formal, structured information to the
user. As the complexity of the declarative program rises, the resultant proof
structure grows, often polynomially but in some cases exponentially; resulting
in a considerable bottleneck in conveying this information to the user, which
often renders these tools unusable on anything more than toy examples.



This paper discusses the problems resulting from using these ‘explanations’
for declarative debugging in the context of Answer Set Programming (ASP); a
logical, model based, declarative programming paradigm. ASP is a particularly
strong example of these issues as the semantics make it easy to compute the
(formal) reasons for a given model, the syntax supports a number of natural
ways of outputting this information and the models in most typical applications
are large enough to make the obvious approaches to communicating explanations
impractical. Section 2 describes the logical language, AnsProlog, used in ASP,
Section 3 describes how it is used, Section 4 outlines the literature on debugging
tools and the computation of reasons and Section 5 discusses the practicalities of
using these, what the problems are and proposes possible approaches to creating
a solution.

2 Answer Set Semantics

Answer set semantics [13] is a model based semantics for logic programs. Pro-
grams written in AnsProlog! are unordered? sets of rules. Rules are made from
atoms, indivisible propositions which can either be known or not known, and
take the form of basic causal laws. For example:

a < b,not c.

is interpreted as “if b is known and ¢ is not known then a is known”. The atom
a is the head of the rule, denoted H(r) and {b,not c} is the body of the rule,
written B(r). The body is then divided into the negative body, B~ (r), the atoms
that are negated and the positive body, B¥(r), the normal atoms in the body. In
the preceding example B~ (r) = {c} and B*(r) = {b}. Rules with empty bodies
are referred to as facts.

The semantics of positive programs (programs IT which do not contain nega-
tion, i.e. Vr € IT . B~ (r) = (), are relatively straight-forward and uncontrover-
sial. Starting with the empty set, an immediate consequence operator is applied
until a fixed point is reached. This matches the intuition of starting with no
knowledge/assumptions and then only ‘learning’ information when the condi-
tions (body) of a rule are met. More formally, this is defined with the 7}, operator,
a generalisation of the principle of modus ponens.

Definition 1. Given a positive program II and the set of atoms it contains,
HB(II), the immediate consequence operator, T, : Z(HB(II)) — Z(HB(II)),
is defined as:

T,(A) = AU{H(r)|r € II, BT (r) C A} (1)

! Here we use the notation of [3].
2 This contrasts with Prolog and related operational semantics where the order of
rules and the ordering within rules affects the semantics.



The model of II is the fizpoint of applying T,, to 0.

For example, given the following positive program:

a«—b.
b—.
c<+— a,b.
d+—b,c.
e — f.

f e

the model is given by the computation:

Tp(0) = {b}
Tp({b}) = {b, a}
Tp({b;a}) = {b,a,¢}
T,({b,a,c}) = {b,a,c,d}
T,({b,a,c,d}) = {b,a,c,d}

note that e and f do not appear in the model. Although {a,b, ¢, d, e, f} would be
a model if the rules where interpreted as propositions in classical logic, e and f
are not included as there is no independent ‘reason’ why they should be regarded
as being known (to conclude e we have to know f but this is only known if e is
known).

Clearly, the model of a positive program can be visualised as a graph, with
nodes corresponding to atoms, and a directed link expressing inference. More
formally the node corresponding to a links to the node corresponding to b <=
Jr € II.H(r) = bya € B(r). These are referred to as a support graph, figure
1 shows the graph for the proceeding example. In this case the arc have been
labelled with the corresponding rules.

The natural mechanism for computing negation in logic programs in negation
by failure, which tends to be characterised as epistemic negation (“we do not
known this is true”), rather than classical negation (“we know that this is not
true”). This correspondence is motivated by the intuition that we should only
claim to know things that can be proven, thus anything that can not be proven
is not known. To extend the semantics to support this type of negation, the
Gelfond-Lifschitz reduct is used. This takes a set of proposed atoms and gives a
reduced, positive program by removing any rule which depends on the negation
of any atom in the set and dropping all other negative dependencies.

Definition 2. The Gelfond-Lifschitz reduct of an AnsProlog program II with
respect to a set A, written as IT* is given by:



Fig. 1. The support graph for a simple positive program

o4 = {H(r) — BT (r)|r € II,B~(r)N A = (} (2)

For example, if IT denotes the following program:

a < not b.

b < not a.

¢ < not d.

e < a,c,not b.
f < not g, e.

g < not f,e.
Thus the set {b,c} gives the reduced program 71>}

b«— .
Cc— .
f—e.

g<—e.

As all rules that depend on not b or not ¢ are ignored and the remaining nega-
tions are removed. This naturally leads to the definition of answer sets:

Definition 3. If II is an AnsProlog program, then A, a set of atoms is an
answer set of I < A is the model of the program IT.

So in the previous example, {b, ¢} is an answer set of II as it is clearly the least
fixpoint of T}, applied to the reduced program. {a,c, e, f} and {a, c, e, g} are also
answer sets of II. A simple but significant corollary of this definition is that



-'_.b - not a /a:- not b. - not d.

e:-a, c, notb.

..A'." ...VA_'.
Fig. 2. The support graph for {a,c, e, f}

given an answer set A and an atom d ¢ A, there are no rules with H(r) = d,
Bt(r) c Aand B~ (r)NA = 0, i.e. every rule that could conclude d has a reason
why it is not applicable (one of the positive dependencies is not met or one of
the negative dependencies is met).

There are a number of ways of displaying an answer set graphically. Clearly,
it can be displayed as a directed acyclic graph as in the case of positive pro-
grams. However to understand why certain rules are/are not applicable, it is
necessary to augment this with nodes corresponding to atoms not in the answer
set. Figure 2 shows such a graph for the preceding program and the answer set
{a,c,e, f}. Atoms that are not known and rules that are not applicable (some of
the conditions in the body are not met) are marked by the use of dotted lines.

A program will have zero or more answer sets. Critically, computing an an-
swer set of a program is an NP-complete task, which gives rise of a declarative
programming paradigm for solving NP and NP-complete problems.



3 Answer Set Programming

Answer Set Programming (ASP) is a methodology for solving NP and NP-
complete problems by representing the problem as an AnsProlog program, so
that the answer sets of the program correspond to the solutions of the problem.
It has been used to tackle a variety of problems, including planning and diagnosis
[18], modelling and rescheduling of the propulsion system of the Space Shuttle
[20], multi-agent systems [4, 8], semantic web and web-related technologies [22],
super-optimisation [5], reasoning about biological networks [15], voting theory
[17], and investigating the evolution of language [10].

The key advantages of answer set programming as a problem solving tech-
nique are that programs are very compact and fast to write, the programmer
can focus on describing the problem rather than having to design the search
algorithm and that the code can be ported to a variety of parallel architectures
by simply using alternative computation tools.

The modelling languages based on AnsProlog tend to include a number
of ‘syntactic sugar’ constructs to make it easier and cleaner to express certain
common concepts. The most important of these is the use of variables in the
bodies of atoms. These are handled at a theoretical level (and practically by the
current generation of solvers) via instantiation. The variables must be quantified
over a finite domain, allowing each rule to be translated to a set of rules with
each of the possible combinations of variable instantiations. In implementations
this is referred to as grounding. Less complex, but equally commonly used, most
modelling languages support constraints, which prevent sets of atoms appear
in any answer set and choice rules, which express a (non deterministic) choice
between a number of variables. Constraints are typically written as a rule with
no head atom, choice rules are written with a set (and often upper and lower
limits) of atoms instead of the head atom. Both of these can be handled by
polynomial, modular transforms on the ground program, although for reasons
of performance, some implementations, handle these directly.

Figure 3 shows a program describing the Japanese number puzzle Sudoku.
This is just a description of the rules of the puzzle, to solve a particular instance
of given dimensions, domains for numbers, row and col must be given and facts
giving the sameSubSquare relation and starting numbers must be added (Figure
4 on page 8 gives a simple example of this). The separation between the encoding
of the general problem and the particular instance is a common feature of answer
set programming. The first rule simply defines when two X,Y location pairs refer
to the same location. The second rule is a choice rule and says that for every
square (every row/column pair), exactly 1 (at least 1 and at most 1) number must
be assigned to that square. The remaining three rules are constraints, the first
saying that no two squares in the same row can be assigned the same number,
the second saying that no two squares in the same column may be assigned the
same number and the third saying that no two squares in the same subsquare
(3 by 3 squares in the conventional puzzle) may be assigned the same number.

A number of ‘off the shelf’ reasoning engines exist that can compute the
answer sets of an AnsProlog program. Most of these are divided into two com-



sameSquare (X,Y,X,Y) :- col(X), row(Y).
1 { assigned(X,Y,N) : number(N) } 1 :- col(X), row(Y).
:- assigned(X1,Y,N), assigned(X2,Y,N), not sameSquare(X1,Y,X2,Y).
:- assigned(X,Y1,N), assigned(X,Y2,N), not sameSquare(X,Y1,X,Y2).
:- assigned(X1,Y1,N), assigned(X2,Y2,N), not sameSquare(X1,Y1,X2,Y2),
sameSubSquare (X1,X2), sameSubSquare(Y1,Y2).

Fig. 3. A formalisation of Sudoku using AnsProlog

ponents, a grounder which handles the instantiation of rules containing variables
and removal of other ‘syntactic sugar’ constructs, and a solver which takes the
rules and computes the answer sets. Gringo[12] and 1parse[24] are the grounders
most commonly used and clasp[l1], smodels[19], cmodels[14] and d1lv[9] rep-
resent the state of the art of solver development. Platypus[16] is a solver that
supports both multi-threaded shared memory and distributed memory parallel
computation of answer sets.

4 Debugging AnsProlog Programs

Most of the work on explaining and illustrating the structure of answer sets has
been from the perspective of debugging. A distinction is normally made between
explaining why certain atoms occur in an answer set and explaining why no
answers sets (or no answer sets containing a given subset) have been computed.
In the former case, most of the techniques described compute the support graph
or some function of it. In the later case, the computation is normally focused on
creating refutations, effectively support graphs that show inconsistent support
for a given set of atoms.

In [6] it is suggested that approaches to debugging based on modification of
solver algorithms are unlikely to be effective and two procedural algorithms for
investigating the support and refutation graphs are presented. The first of these
attempts to provide an explanation for why a given set of atoms is contained
in an answer set, by generating the subgraph of nodes that support atoms in
the set. The second answers the converse question, why is a given set not in any
answer set (a sub-case of this is the common problem of the solver returning
no answer sets due to a contradiction arising from the basic facts), by inferring
outwards from the given set until a contradiction is given.

[25] focuses on non-consistent programs; those without answer sets, and com-
putes the (cardinality) minimal set of constraints that result in a contradiction.
These are referred to as a diagnosis. From these explanations (essentially refu-
tation trees) are built. The key innovation introduced by this work was the use
of ASP and meta-programming to find the diagnosis sets. By ‘abstracting’ the
rules it was possible to use an answer set solver to perform the searches required.

Focusing primarily on the reasons why a atoms appeared in an answer set,
[21] applied the concepts of justification to AnsProlog, and derived a formal



number(1..4).
row(1l..4).
col(l..4).
sameSubSquare(1,2) .
1 sameSubSquare(2,1) .
sameSubSquare(3,4) .
4(3 2 sameSubSquare (4,3)

assigned(1,1,1).
assigned(1,3,4).
assigned(2,3,3).
assigned(4,3,2).

Fig. 4. A 4x4 Sudoku and its representation in AnsProlog

framework for reasoning about the support graphs and refutation trees of pro-
grams. Procedural implementations for a number of the key questions where also
created, with the aim of producing a debugging interface.

Most recently, [7] has extended the use of meta-programming for program
analysis to create a generic framework in which debugging ‘questions’ can be
implemented as programs. This allows exploring the rules and atoms required to
support subsets of answer sets (essentially mapping out and exploring the sup-
port graph) and determining the reasons why certain sets result in inconsistency
(exploring the refutations).

All of this work has been primarily focused on computation of the reasons why
certain properties of the answer sets hold. A topic that has received little research
or implementation attention is the question of how to present the resultant mass
of symbolic information back to the user.

5 The Need for Explanation

Consider the 4 by 4 Sudoku puzzle given in Figure 4. Using the generic Sudoku
description given in Figure 3, this can be represented using the AnsProlog code
in Figure 4. This is probably about the smallest program that follows the same
style of programming used in most real applications. A naive instantiation will
produce 64 assigned atoms. Figure 5 gives a simplified and idealised version of
the support graph for one of the answer sets. Here only one ‘reason’ for each
atom is given, atoms not present in the answer set are omitted and the links are
abstracted a little from the rules so they do not require the omitted atoms. This
would be difficult, but possible to create automatically. A similar graph for a 3
by 3 Sudoku would contain 81 nodes. Most applications that are large enough
to actually need automated debugging/explanation tools will include tens, if not
hundreds of thousands of atoms and potentially millions of rules. Clearly any



interface that outputs the whole support graph as graphics or as any form of
text will not be usable for anything more than toy programs.

Fig. 5. An abstracted support graph for the program in figure 4

Thus any useful debugging/explanation interface will only output a section
of the support graph or refutation at any given time. This leaves the problem
of how to determine which section should be displayed. It is difficult to infer
a suitable section of the graph automatically as in many cases® the program is
semantically correct — just not what the programmer meant. Also, as the support
graph corresponds to the structure, rather than the semantics of the argument,
it is difficult to identify features of the graph that will correspond to ‘bugs’.

This leads to the approach of most existing systems which require the pro-
grammer to annotate the rules and atoms to identify which areas are of interest
and which areas can be ‘assumed’ to be correct. Although there is still scope for
improvement in the interfaces used, this approach has a fundamental problem
— providing useful annotation requires working out which rules and atoms are
correct and which are not, which is largely the same task as finding the bug by
hand.

Computing explanations and refutations for AnsProlog programs is easy, the
problem is that the resulting arguments are large, causing a significant bottleneck

3 Programs that can be shown to have no answer sets with minimal reasoning are
possibly the only exception to this.



in communicating the explanation to the user. Thus in almost all cases, when
the programs are large enough to need debugging support, it is faster to locate
the bugs manually. Given the ease of extracting these explanations and their
natural link with the syntax of the program, AnsProlog would seem an obvious
application for explanation aware computing, but there remains an open question
over how to build a suitable interface.

One possibility would be to integrate the explanation system into a devel-
opment environment[23]. This would allow the programmer to mark sections of
the program as ‘correct’ and thus have them ignored/assumed by all resultant
explanation. Some kind of interface for controlling the marking and interactively
exploring the graphs would also be needed. To reduce the cognitive load on the
programmer it would be useful to be able to abstract the explanation from the
ground instances of the rules in places where it would be meaningful for the
explanation to contain variables. A continuation of this idea would be to (where
possible) compute answer sets of the partial program during development, so
that a programmer could ask hypothetical questions such as ‘what would this
rule do if added to the program’. Taken to its logical conclusion this could lead
to an ‘explanation centric’ approach to development, where the central object of
development was the explanation, with adding rules as the way of manipulating
this until it became the explanation of the solution to the original problem.

An alternative to attempting to visualise the explanation/refutation graph
would be to build a natural language translation of the rules with the aim of
narrowing the gap between what the programmer intended and what the rules
express. This would be focusing on explaining the rules rather than explaining
the answer sets of the program. To make the text comprehensible it would proba-
bly be necessary to recognise some common idioms (transitive closure, assigning
n objects to m locations). Such a system could be supported by annotations to
the program to identify objects, state the correct way of expressing relations,
etc. Although this does raise the question of whether the input language should
be AnsProlog or a natural language subset that is translated to AnsProlog.
One possible issue is that it would be natural to add plain text assertions to the
program. For example, if the Sudoku description in figure 3 was converted to
the following description:

Every location (X,Y) contains one number.

— No two distinct locations in the same row contain the same number.

— No two distinct locations in the same column contain the same num-
ber.

— No two distinct locations in the same sub square contain the same

number.

It would be tempting to add (as documentation, explanation and assertions):
— Every row must contain each number exactly once.

— Every column must contain each number exactly once.
— Every subsquare must contain each number once.



This is potentially problematic as adding redundant choice rules or constraints
simply to encode these ideas would result in a larger and slower program and
having them as assertions about the program could be computationally expen-
sive.

6 Conclusion

Answer set programming is a declarative methodology for solving NP and NP-
complete search problems. In common with many declarative languages, expla-
nations are useful as the basis of debugging tools. Given the logical, declarative
basis of the syntax and semantics of AnsProlog, extracting these explanations
is a relatively simple matter. However, the existing methods of communicat-
ing to the user and exploring these explanations do not scale and result in the
paradoxical situation of manual debugging being faster than using the support
tools. This leaves an open question of how to partially work with large, regularly
structured explanations.
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