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Abstract. Monitoring the operation of complex software sysseat runtime
can detect violations of certain properties of ies¢ but cannot always provide
diagnostic information which is significant for werdtanding the cause of the
violation and the adoption of appropriate countexrsuees against it.. In this
paper, we describe a process for diagnosing runtiolations of security and
dependability properties that we have developegaats of a general runtime
monitoring framework that is based on Event CalsulThe diagnosis
generation process is based on a combination ofictilvd, temporal and
evidential reasoning over violations of system prtips.
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1 Introduction

Monitoring security and dependability properties aifmplex software systems at
runtime is widely accepted as a technique for iasireg system resilience to
dependability failures and security attacks andessv approaches have been
developed to support it (see [7] for a survey).hbligh basic monitoring provides
mechanisms for detecting violations of such praeertit cannot always provide the
information that is necessary in order to undexbtdre reasons that underpin the
violation of a property and decide what would beappropriate reaction to it.

To appreciate the problem, consider the case @éfiafraffic Management System
(ATMS), which consists of components (radars) tmanitor the traffic in different
air spaces. By monitoring the operations of ATMSattime, the availability and
integrity of its components (e.g. radars) and tifierimation exchanged between them
might be ensured. For instance, a property thaldco@ monitored for ATMS might
state that if there are more than one radars aoyexiparticular airspace and one of
these radars sends a signal indicating that ataagps in the relevant airspace, every
other radar that covers the same space shouldsaisd a signal indicating the
presence of the plane in it and this should happémin a certain time period after
the receipt of the initial signal.

In cases where this property is violated, knowitgpd the occurrence of the
violation itself is not sufficient for establishintbe reasons why some radar has sent a
signal but another has not. Clearly getting diatinasformation about these reasons



would be necessary for taking appropriate actiothasviolation may have been due
to different reasons, including the following:

e The radar that did not send the expected signalmedinctioning.

« The communication link between the radar that ditisend the expected signal
and the monitor was malfunctioning or an intrudeptared the signal and
prevented it from reaching the monitor.

« The radar that sent the expected signal was maiéunmiicg or its identity was
faked by an intruder which sent a fake signal &ortionitor.

Thus, identifying the reason for the violationrisportant for taking actions that could
restore the integrity of the operation of ATMS.

In this paper, we provide diagnostic informationr fgolations of security and
dependability properties that are detected by tbaitoring framework described in
[17]. This framework has been developed within Eh@opean integrated research
project SERENITY to support the monitoring of setguand dependability properties
in distributed and dynamically evolving systemsclSyproperties are expressed by
monitoring rulesspecified in Event Calculus (EC) [16]. The pramisof diagnostic
information is based on the generation of all thesible alternativexplanation of
the events which are involved in the violationsrales, and the assessment of the
plausibility of these explanations by checking viegt their expected effects
correspond to events recorded during the operatidhe monitored system. The key
characteristic of our approach for the provisiomiafgnostic information is the use of
abductive reasoning [2][10][11] for the generatimhexplanations, and belief based
reasoning [15] for the assessment of explanatiangibility.

The rest of this paper is structured as followsSkttion 2, we provide a brief
overview of the monitoring framework. In Sectionvd describe the different stages
of the diagnostic process. In Section 4, we overvielated work and, finally, in
Section 5, we present conclusions and direction&utare work.

2 Monitoring framework

The core of the monitoring framework in [17] is angric engine for checking
violations of properties expressed as EC rules®formbody— head The meaning
of a rule is that if ithbodyevaluates to true, itieadmust also evaluate to true. EC is a
first-order metric temporal logic language whicmdae used for representing and
reasoning aboueventsand their effects on the state of a system ovee.ti@ur
monitoring framework rules are defined in termghaf standard EC predicates. These

include the predicates: (Happens(e, B (Ib,ub)) which denotes that an instantaneous

1 1t should be noted that the term “explanationbim work is used to denote the diagnostic
information that explains why a violation of a syst property that has been detected at
runtime has occurred and is not a description efrdasoning of the monitor to a human
being.



evente occurs at some timethat is restricted to be within the time rarfélb,uby,
(i) HoldsAt(f,t)y which denotes that a state (aka flueht)olds at the start of the
execution of a system and at tirge(iii) Initiates(e,f,t)and Terminates(e,f,tyvhich
denote the initiation or termination of a fludrity an event at timet respectively,
and (iv) Initially(f) which denotes that a fluent holds at the starhefdperation of a
system.

An example of an EC rule is:

Rule 1: Happens(signal(_r1, _a, _s),t1,R(t1,tD)HoldsAt(covers(_rl,_s),t1))HoldsAt(covers(_r2,_s),
t1) O_r1# _r2= Happens(signal(_r2,_a,_s), t2 ,R(t1, t1+5))

This rule expresses the condition about the rada/STMS that we discussed in
the introduction. More specifically\Rule 1states that for all the pairs of different
radars_rl and_r2 if the first radar_rl sends a signal evesignal(_rl, _a, _sat
some time pointl to indicate the presence of the airplane denoyeithé variable a
in the airspace denoted by the variabkd@nd at the time point it is known that both
_rl and _r2 cover the airspace _s (as indicated by the predica
HoldsAt(covers(_r1, s),tland HoldsAt(covers(_r2,_s), tlip the body of the rule,
respectively), the second rada2 should also send a separate signal indicating the
presence of ain _s no later than 5 time units after the receipthaf original signal
as indicated by the predicdtappens(signal(_r2, a,_s), t2 ,R(t1, t1+5¥Rule 1 will
be violated if there is aignal event from only one of the radars of ATMS which
cover a specific airspace but not the others.

3 Diagnostic process

As shown in Figure 1, the overall process of diaymp the causes of rule violations
includes four stages, namely:

1. explanation generatiom which all thepossible explanationfor the individual
events that were reported to the monitor and hawsed the violation (referred
to as “violation observations” henceforth) are gated.

2. explanation effect identificatioim which the possible consequences (effects) of
the explanations of the violation observationsdegved by deduction

3. plausibility assessmeim which the effects of explanations are checkeairesg
the event log of the monitor to see if there arentéw that match them and could
provide supportive evidence for the explanations

4. diagnosis generatiom which an overall diagnosis for the violatiorgisnerated
from the individual explanations

2 The time rangér (Ib,ub) expresses temporal constraints for the occurrefiem event,
while t expresses the exact time of occurrence of anricstafe.

3 In Rule 1land all the EC formulas in the rest of the papkithe non time variables appear
with underscored names (_varName) and are assuwnied tniversally quantified unless
otherwise specified in a formula.
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The generation of explanations and their effectstages (i) and (ii) above is based on
a (possibly) incomplete model of the behaviour lné tmonitored system that is
expressed in the form of EC formulas callassumptionsin the following, we
discuss the stages of the diagnostic process &il.det

3.1 Explanation generation

The generation of explanations for violation obs#ions is based on abductive
reasoning. More specifically, given a setof events and fluents that are involved in
the violation of a monitoring rule, this stage bétdiagnostic process tries to find a
set ofexplanation formula® which, in conjunction the set of tlessumptiongbout
the system that is being monitored and the evéiatsare known to the monitor at the
time when the explanation is required (collectivedferred to as the theomH in the
following), entail Q. Formally, this is a search for a set of atominrfolas® that
satisfy the conditions:

(Cnd 1): THO @ |- Q, and

(Cnd 2):0f in @: predicate (f)J APreds
where predicate (f)is the predicate of formuldand APredsis a set of abducible
predicates whose truth value can be establishgdbyrdibductive reasoning.

The search for explanations is based on a newlgldped algorithm (see [18])
which starts from a violation observatiBrthat needs to be explained and tries to find
all assumptions of the forax B1 /... //Bn = H in TH whose headH can be unified
with P. When such an assumption is found, the algorithecks if: (i) the unification
of P with H provides concrete values for all the non time \@€es of the predicates
B1, ..., Brin the body of, and (ii) it is possible to derive concrete tirmaeges for the
time variables of all these predicates by using rgedantzig’'s classiSimplex
method (see [5]). If these conditions are satisfigwe algorithm instantiates the
predicatesB1, ..., Bnand identifies which of the predicatBg,...,Bnare observable
(O-pred3, deducible D-predg or abducible predicates{preds, assuming that these
are disjoint categories of predicates.



Then, the algorithm checks if each of BePredsand D-predsin the body of the
assumptiora can be matched with some recorded event or defieed the events in
the monitor's log and the known system assumptioespectively. If there ar®-
predsandD-predsthat cannot be verified via this check, the aldwnittries to find an
abduced explanation for them recursively and, dhsexplanations are found, for all
the non verifiedO-predsand D-preds these explanations, along with thepreds
have been identified in the current step of thdangtion process, are reported as the
possible explanation of the initial violation obggtion P. In cases, however, where
there areO-Predsor D-predsin the body of an assumptiamthat can neither be
verified nor explained by abduction, the explamatigeneration path using the
particular assumption fails.

(E1) Initially(covers{R1,51),0) [captor-0]

(EZ2) Initially(covers{R2,51),0) [captor-0]

(E3) HappensichangeOfLandingspproach(AR-a,52),0,R(0,0))
[captor-AR-a]

(E4) Happensi(signal(R2,A2 52).1, R(1,1}), [captor-R2]

(E5) HappensichangeOfLandingspproach(AR-a.51),2,R(2,2))
[captor-AR-a]

(EG) Happens(permissionRequest{A1,51),3 R(3,2)) [captor-0]

(ET) Happens(signal(R1,41,51),7,R(7.7)} [captor-R1]

(E8) Happens(signal(R2,A5,51),13,R{13,13)) [captor-F.2]

Fig. 2. ATMS event log

As an example of explanation generation, consideioktion of Rule 1 More
specifically, this rule is violated by the event7§Ein the event log of Figure 2
(Happens(signal(R1,A1,S1),7,R(7,7)) and the predicates
-Happens(signal(R2,A1,51),t,R(7,1,2)) HoldsAt(covers(R1,S1),7) and
HoldsAt(covers(R2,S1),Avhich can be derived from this log. In particulding
predicate -Happens(signal(R2,A1,S1),t,R(7,12Which denotes the absence of a
signal from radaR2in the time range from T=7 to T=12, is deducedtzy principle
of negation as failure(NF) from the events (E4) and (E8) in the log thare
received from radaR2 at T=1 and T=13, respectively. This deduction isgilde as
soon as the monitor receives the (E8) event beaamsther event has been received
from R2 between T=1 and and T=13. Also the predicitekisAt(covers(R1,S1), 7)
and HoldsAt(covers(R2,S1), ®an be deduced from the events (E1l) and (E2) in
Figure 2, which denote that radars R1 and R2 cthesmirspace S1 initially, and the
absence of any event signifying a repositioningmof of the two radars until the time
point T=7 when the monitor receives the signaltfa presence of aircraft Al in S1
from R1 (this deduction is based on the axioms@fE2]).

To explain the violation, the predicateappens(signal(R1,A1,S1),7,R(7,and
-Happens(signal(R2,A1,S1),t,R(7,18ped to be explained individually.

Assuming that the following assumptions are knobout the ATMS:

(AO) Initiates(_e1,_f),t1,R(t1,t1))J -0 e2,t2:Terminates(_e2,_f),t2,R(t1,t2)}»> HoldsAt(_f,t2)

(A1) Happens(inspace(_a,_s),t1,R(t1,t1))HoldsAt(covers(_r,_s),t1}> Happens(signal(_r,_a,_s),t2,
R(t1,t1+5))

(A2) Happens(inspace(_a,_s),t1, R(t1,t5)}} Happens(permissionRequest(_a,_s), t2, R(t1-20,t1-1))



the search for an explanation leappens(signal(R1,A1,S1),7,R(7,Wil detect that
this predicate can be unified with the predicddappens(signal(_r,_a,_s), t2,
R(t1,t1+5))in the head of assumption (Al). The unificationtlése two predicates
will be {_/R1, _a/Al, _s/S1&nd the linear constraint system generated fotithe
variable t1 in (A1) will include the constraintst17 and 7< t1+ 5. Thus, since the
non time variables in the body of (Al) are covetwed the unification and the
constraints tk 7 and 7< t1 + 5 determine the range [2,...,7] as a feadibie range
for t1, the conditions of the explanation generatgrocess are satisfied and the
predicate Happens(inspace(A1,S1),t1,R(2,7)ill be generated as a possible
explanation of Happens(signal(R1,A1,S1),7,R(7,7Bubsequently, assuming that
Happens(inspace(_a,_s),t1,R(t1,thplongs to the set of the abducible predicétes
preds there will be no need for further elaboratioritof

It should be noted, however, that ldappens(inspace(Al1,S1),t1,R(2,/Ags been
generated as an explanation from assumption (Atl)can be retained as an
explanation only if the other instantiated predicat the body of (Al), i.e. the
predicateHoldsAt(covers(R1,S1), 7% Truewhen t1 takes values in the range R(2,7)
The latter predicate, however, can be deduced ftben log of Figure 2 and
assumption (A0). ThusHappens(inspace(A1,S1),t1,R(2,Mecomes a possible
explanation oHappens(signal(R1,A1,S1),7,R(7,7))

3.2 Explanation effect identification

Following the generation of explanations, the r&gp in the diagnosis process is
the identification of the expected effects of thegplanations. These consequences
are identified in order to assess the plausibibtyexplanations. The assessment of
plausibility is based on the hypothesis that if éxpected effects of an explanation
match with events which have occurred and recomigihg the operation of the
system that is being monitored, then there is stmeoevidence for the explanation.
This is because the events that match its expedfects might also have been caused
by it.

The identification of the expected effects of aplaration is based on deductive
reasoning. Generally, for an explanatiérp=P1 //../7Pnformed as a conjunction of
abduced atomic predicates, the diagnosis processds over the predicatBsthat
constitute it and, for each of these predicatesisfithe system assumptioBs/7/... /7
Bn = H which have a predica®g in their body that can be unified wihand the rest
of the predicates in its body are alBwe For such assumptions, if the predicten
the head of the assumption is fully instantiated iéstime range is determingd,is
derived as a possible consequenckiof

Then, ifH is an observable predicate, i.e., a predicate ¢hatbe matched with
recorded eventdd is added to the possible effectsEtp. If H, however, is not an
observable predicate, the effect identification cpss tries to generate the
consequences of recursively and, if it finds any such consequertbas correspond
to observable events, it adds them to the setefettpected effects &xp In this
way, the diagnosis process computes the trangitbgire of the effects d&xp.



As an example of identifying the consequences glagations, consider again the
ATMS system and suppose that, in addition to assiomp(Al) and (A2), three more
assumptions are known for this system, namely:

(A3) Happens(inspace(_a,_s),t1,R(t1,t13} Initiates(iinspace(_a,_s), inairspace(_a,_s),t1)

(A4) Initiates(inspace(_a,_s), inairspace(_a,_s)f1HoldsAt(landing_airspace_for(_s,_arpX),ttp
Happens(landingRequest(_a, _arpX), t2, R(t1-10,t1))

(A5) Happens(changeOfLandingApproach(_arpX,_s),t1,R(t1;t))
I nitiates(changeOfLandingApproach(_arpX,_s), landing_airspé&ar(_s,_arpX),tl)

The formula (A3) above states that when an eirsgace(_a,_shhat signifies the
entrance of an aircrafta in an airspace_s becomes known a fluent called
inairspace(_a,_syhould be initiated to signify the presence_afin _s unless this
fluent already holds. Formula (A4) states that wharaircraft_a enters an airspace
_sthat is used as the final landing route for apphoag an airport_arpX (see the
fluentlanding_airspace_for(_s,_arp)X)hen the aircraft amust have made a landing
request for the particular airport within the l&a6ttime units before entering Using
(A3) and (A4), it is possible to determine the eotpd effects of the predicate
Happens(inspace(A1,S1),t1,R(2,A)at was generated as a possible explanation of
Happens(signal(R1,A1,S1),7,R(7,8grlier. Specifically, assuming that the airspace
Slis the landing airspace of an airpéiR-athen the entrance of the aircréft into
Sl1should be preceded some request fidbto land inAR-aor, equivalently, that a
runtime eventHappens(landingRequest(Al,AR-a), t2, R(0sb)uld have occurred.
Thus, the latter runtime event would be an expectffidct of the explanation
Happens(inspace(A1,S1),t1,R(2,7))

Formally, from Happens(inspace(A1,S1),t1,R(2,7)3nd (A3) the predicate
Initiates(inspace(Al1,S1), inairspace(Al1,S1),dAh be deduced fat in [2,...,7]. As
the latter predicate, however, is not an observpl@dicate, the diagnosis process will
try to identify whether it has any observable capmmces of its own. Whilst
searching for such consequende#jates(inspace(Al1,S1), inairspace(Al1,S1),dAn
be unified with the first predicate in the body @4). Furthermore, the other
predicate in the body of this assumption, namelye thpredicate
HoldsAt(landing_airspace_for(S2,AR-a),dan also be deduced to Beue for the
time range [2,...,7] (i.e., for t in [2,...,7]) from e¢hevent (E5) in Figure 2 and
assumptions (A5) and (A0). Thus, both predicatethéinbody of (A4) ar8rue and,
therefore, the predicatéappens(landingRequest(A1,AR-a), t2, R(Gr6))s head can
be derived from it. Assuming thitndingRequest(_a, _arpX9 an observable event,
Happens(landingRequest(A1,AR-a), t2, R(0\6il) be established as an expected
effect of the explanatioHappens(inspace(A1,S1),t1,R(2,7)))

3.3 Assessment of explanation plausibility

After deriving the expected effeci®c={C4,...,G} of an explanation®, the
diagnosis process searches the event log of théaneoo find events that can match
these effects. In this search, a match betweervante in the log, which has been
produced by an event capt@aptor(e) and has a timestamp, tand an effect C
(k=1,...,L) is detected only if: (i¢ has been produced by the same event captor as the



captor thaitCkis expected to be produced from, @igan be unified withCk, and (iii)
the timestamp oé falls within the time range d«.

It should be appreciated, however, that althoughpitesence of a matching event
for an expected effect of an explanation confirtret the effect has indeed occurred,
the absence of a matching event for an effect attithe of the search does not
necessarily mean that such an event has not odcamd, therefore, cannot cast
negative evidence in the validity of the conseqeeftis is because there might be
cases where, although an event that satisfiesahditions (i)—(iii) above may have
occurred, this event might not have arrived yethat event log of the monitoring
framework due to communication delays in the “cl@hbetween the event captor
that captured the event and the monitoring fram&wbo cope with this problem, the
search for events that match an explanation e@eetstablishes that no such events
have occurred if at the time of the search thereigvente satisfying the conditions
(i)-(iii) above, and the last known value of thea# of Captor(Q) (i.e., the timestamp
of the last event in the log that has arrived atrifonitor from this captor) is greater
than the upper boundary of the time variabl€iof

Furthermore, there is a possibility of having ef$eC« for which, although no
matching event satisfying (i)-(iii) can be found the time of the search, the last
received event from the relevant captor has a temas that is less than or equal to
the upper time boundary okCSuch effects cannot be confirmed or disconfiraed,
therefore, cast positive or negative evidenceIfoifo cope with this uncertainty, we
use theDempster Shafer (DS) theory of eviderjgg] for the assessment of the
plausibility of an explanation, and define the fuoie that gives the basic probability
assignment to the validity of an explanation as:

Definition 1: The basic probability of the validity of an expéion is computed by
the function:

me(Valid(®)) = |@ |/ |D €|

me(-Valid(®)) = |0/ |®°|

me(Valid(®@)hValid(@))=| D¢ - (@< O 0 )|/ |D°|
where

* O®%is the set of confirmed effects &, defined asb “*= {Ck/Ck O ®c and
(k. (e 0 Log and Captor(e) = Captor(&) and txe<te and te< tkus and
unifier(e,G) # 0)}

* O®Cisthe set of a set of disconfirmed effectsbofdefined asb = { Ck/C«k[
® ¢ and -[k. (e0 Log and Captor(e)=Captor(@) and tke<te and te< tkus
and unifier(e,G)# [0) and lastTime(Captor(©)> tkus}

e tws, tusare the lower and upper boundaries of the timeaaix, teis the
timestamp of the ever, andlastTime(Captor(®) is the timestamp of the
last event arrived fror@aptor(CG) to the monitor.

According to this definition, the probability ofdghvalidity of an explanatio® is
measured as the proportion of the effectddhat have been confirmed by events in
the event log at timé Also the probability of an explanatiah not being valid is
measured as the proportion of the effect®dhat have been disconfirmed by events
in the event log. Note that, as in genebat* 0 @ < [0 @ ¢, we will also have that
me(Valid(®)) + me(-Valid(®))< 1 and,meis not a classic probability function. As we
prove in [14], howevenre satisfies the axioms dfasic probability assignmenits the
DS theory of evidence and, can therefore, be int¢ed as a function of this type.



Using me, the basic probability of the explanatiblappens(inspace(A1,S1),t1,R(2,7))
of the violation observatiotappens(signal(R1,A1,S1),7,R(7,9f) Rule-1 can be
computed as follows. As discussed in Section 312, eapected effect of this
explanation isHappens(landingRequest(Al1,AR-a),t2,R(0,8))other expected effect
of the same explanation is the predic&tappens(permissionRequest(Al,S1), t2,
R(0,7)) The latter effect can be derived from assumpfAi), according to which an
aircraft which enters a particular airspace at stime pointtl, must have requested
permission to enter the airspace before its entramzi no more than 20 time units
prior to it. Assuming then that the request forgdiesing the violation oRule-1is
made atT=15, a search in the event log of Figure 2 will idBntihat the event
Happens(permissionRequest(A1,S1),3,R(3@pvides confirmatory evidence for
Happens(permissionRequest(A1,S1),t2,R(0bT)) there is no matching event for
Happens(landingRequest(Al,AR-a),t2,R(0,6))

Furthermore, ifHappens(landingRequest(A1,AR-a), t2, R(Oj/@fers to events
which are captured and transmitted by the everntocapptor-AR-athen at the time
of the searchT=15), it will not be impossible to establish whetharevent matching
Happens(landingRequest(Al,AR-a),t2,R(0k@) occurred. This is because, as shown
in Figure 2, the last event received fromaptor-AR-a until T=15 s
Happens(changeOfLandingApproach(AR-a,S1),2,R(2:2)), therefore, the latest
known time for this captolgstTime(captor-AR-a))is 2. Thus, the basic probabilities
in the validity of the explanatio=Happens(inspace(A1,S1),t1,R(2,Ajll be:
me(Valid(®)) = 1/2 = 0.5 me(=Valid(®)) = 0/2 = 0 andme(Valid(®) O ~Valid(®)) =
1/2=0.5

3.4 Diagnosisgeneration

Having obtained the basic probability measuresienvalidity or not of individual
explanations, the next step in the diagnosis psoggsto construct an aggregate
explanation of the rule violation. The constructiminsuch aggregate explanations is
based on assessing the overall belief inggreuinenesef the events that are involved
in the violation. This assessment is based on ypethesis that an eveBt which is
involved in a violation of a rule, is genuine if caronly if at least one of the
explanations that have been generated for it isl.vBRsed on this hypothesis, as we
show in [18], the belief in the genuinenesEdfGen(E)) is measured as:

Bel(Gen(E)) = Bel({-=1,...nValid(®i))
= Bioga,....nand ¥ (=1) i+ {IT ior me(Valid (®i))} Q)

Bel(-Gen(E)) = Bel(d=1,...n=Valid((®i))
T i=1,...nme(-Valid(®i)) 2
whereby®i (i=1,...,n) are the alternative explanationgof
The beliefs in the genuineness®fand its negation which are computed by the

above formulas are used to decide whether or malation observation is confirmed
by its available explanations. In particular, themputation ofBel(Gen(E))and
Bel(-Gen(E))generates a belief range for the genuineneds which, according to
the DS theory [15], is:

[Bel(Gen(E))..., Pls(Gen(E))



whereby:Pls(Gen(E)) =1 — Bel(-Gen(E)) 3)

The lower bound of this range is the belief in geuineness dt and the upper
bound of it is the maximum possible value thatlibéef in the genuineness Bfcan
take given the belief in the non genuinenesg&.ofhe upper bound for the belief in
the genuineness &is called the “plausibility” of this proposition $1.

According to our approaclt, is confirmed only ifBel(Gen(E)) > BekGen(E))
and the final diagnosis of the violation consiststtee confirmed and unconfirmed
events of it and their explanations. It should dsonoted that if no explanation can
be generated for a violation observation, the diagnprocess attempts to find an
explanation of its negation and, if this is possilthe beliefs in the genuineness of the
event are calculated by using the (F4) formulataedollowing one:

Bel(-Gen(E)) = Bel(Ger{E))) 4

Due to (1)-(4), the beliefs in the genuinenesshaf predicates involved in the
violation of Rule-1 are calculated from the altéivea explanations of the relevant
violation observations. Specifically, for the prestie
P1=Happens(signal(R1,A1,S1),7,R(7,7)))there is a single explanation
@,,=Happens(inspace(Al1,S1),t1,R(2,With basic probabilitiesng(Valid(®;1))}=0.5
and mg (=Valid(®;7))}=0, as we discussed earlier. ThuBel(Gen(P1l))=ra
(Valid(®,1))}=0.5 and Bel(-Gen(P1))=m(-Valid(®,1))}=0. The predicates
P2=HoldsAt(covers(R1,S1),And P3=HoldsAt(covers(R2,S1),Are also confirmed
without using belief measures, as they are botlveléifrom the runtime events (E1)
and (E2) in Figure 2. FinallyP4= -Happens(signal(R2,A1,S1),t,R(7,12)}s a
negated predicate and, since no explanation ofait be generated from the
assumptions of ATMS, the diagnosis process geremtplanations of its positive
form, i.e., Happens(signal(R2,A1,S1),t,R(7,12)Following the same reasoning
process as in the case f, ®4,=Happens(inspace(A2,S1,t,R(7,1Will be derived
as an explanation of P4 with basic probabilitiesmE(Valid®,1))} = 0.5 and mg
(=Valid(®47))} = 0. Thus,Bel(GentP4))=0.5andBel(-Gen&P4))= 0and, from (F4)
and (F5), Bel(-Gen(P4))=0.5and Bel(Gen(P4))= 0 Thus, P4 is reported as an
unconfirmed predicate and, finally, as the causth@frule violation.

4 Reated work

In the context of model-based diagnosis, diagntmisises on the detection of
system failures and typically involves the idewtfion of traces of system events that
have led to a failure (problematic event) usingoendta that recognise faulty
behaviour [1][6][9][13][19]. In [6], diagnosis isatried through the synchronization
of automata modelling the expected behaviour ofoaitared system and the events
captured from it. The approach in [9] is similat becentralised as synchronisation is
first performed for individual system componentsd ahen is aggregated for the
global system. In [1][19], the problem of fault diesis, concerning time, has been
studied by using timed automata to model systems.

Our approach is different from the above, as oougds not the detection of faulty
behaviours. Such faulty behaviours are detectethéyore monitoring capability of
the framework described in [17] as violations ofmtoring rules by the current trace



of runtime events. The focus of our approach, iis thaper, is the provision of

possible explanations for the events that constitiu¢ faulty behaviours and through
them the confirmation or not of the genuinenessheke events. The provision of
such diagnostic information is necessary if thenéweaces which are taken into

account by the monitor cannot be assumed to be letenpnd/or consist of trusted

genuine events which have not been caused by naéilbamg system components or
are the results of attacks. Another difference betwthe work in model based
diagnosis and our approach is that to perform roong and the generation of

diagnostic explanations for violations of propesfieve do not assume a complete
model of the system that is being monitored. Oyreach can be based on a partial
model of this system that includes the propertied should be monitored expressed
as rules in Event Calculus, and assumptions abartts pf the behaviour of the

monitored system which are also expressed as Efufas.

The generation of abductive explanations considetémporal information is the
main focus of interest of the research work desctiin [2] and [14]. In [2], a
temporal abduction algorithm is described which esakse of temporal constraints
associated with the observations and the formulaifadhe underlying domain theory.
In [14], the time ranges of the generated explanatiare calculated by the use of a
computation method based on linear constraintfaatien, while the uncertainty of
explanations is treated through the use of proisticilassessment scheme based on
Bayesian inference [8].

Our approach draws upon work on temporal abduatdasoning [2][3][11][16]
and its applications to diagnosis [3][10], but &sbd on a newly developed algorithm
for abductive search with EC which generates a&llgbssible alternative explanations
of a formula (unlike [2][16]), treats the time cdoraént satisfaction problem as a linear
programming problem, and computes beliefs in exgilans using the DS theory.
These beliefs are also used in order to rank eafilams and select some of them as
the most plausible. The choice of the DS theorgwfience as the framework for
calculating the likelihoods of abduced explanatibas been dictated by the need to
deal with uncertainty regarding the confirmationttoé consequences of explanations
as we discussed in Section 3.3 and to reason iprdgence of this uncertainty.

5 Conclusions and future work

In this paper, we have presented the extension fsArmework supporting the
runtime monitoring of software systems which caovpde diagnostic information for
violations of monitored properties. The provisidndtagnostic information is based
on alternativeexplanationsof events involved in violations of properties winiare
generated by abductive reasoning using a model hef monitored properties
expressed in Event Calculus. Our approach supptststhe computation of beliefs in
the plausibility of explanations based on evideabeut their expected effects that is
gathered from the event log of the monitored syst&#mmore detailed account of our
approach and its implementation is given in [18].

Currently, we are extending the scheme for thesassent of the plausibility of
explanations in order to take into account beliafthe genuineness of events in the



monitor's log, which are used in order to derivee taxpected consequences of
explanations of violation observations or matchhwihese consequences and are,
therefore, used as confirmatory evidence for th8imce the genuineness of these
events may also be questioned, our approach maytbaded to compute beliefs in it

and use these beliefs as a weighting factor whiengesuch events into account for

generating or confirming explanations. It shouldywkver, be appreciated that

extending our approach in this direction requites éstablishment of a time window

that will determine the event set, which shouldtiddeen into account in the process,
since looking at the entire event log is unliketylte feasible in real applications.

Furthermore, we are currently performing an expernital evaluation of our approach

in the context of industrial case studies usethénSERENITY project.
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