
A Temporal Abductive Diagnostic Process for Runtime
Properties Violations

Theocharis Tsigkritis1 and George Spanoudakis1

1 Department of Computing, City University London, UK

{t7t, G.Spanoudakis}@soi.city.ac.uk

Abstract. Monitoring the operation of complex software systems at runtime
can detect violations of certain properties of interest but cannot always provide
diagnostic information which is significant for understanding the cause of the
violation and the adoption of appropriate countermeasures against it.. In this
paper, we describe a process for diagnosing runtime violations of security and
dependability properties that we have developed as part of a general runtime
monitoring framework that is based on Event Calculus. The diagnosis
generation process is based on a combination of abductive, temporal and
evidential reasoning over violations of system properties.

Keywords: Abductive reasoning, runtime monitoring, temporal reasoning,
Dempster Shafer theory of evidence, Event Calculus.

1 Introduction

Monitoring security and dependability properties of complex software systems at
runtime is widely accepted as a technique for increasing system resilience to
dependability failures and security attacks and several approaches have been
developed to support it (see [7] for a survey). Although basic monitoring provides
mechanisms for detecting violations of such properties, it cannot always provide the
information that is necessary in order to understand the reasons that underpin the
violation of a property and decide what would be an appropriate reaction to it.

To appreciate the problem, consider the case of an Air Traffic Management System
(ATMS), which consists of components (radars) that monitor the traffic in different
air spaces. By monitoring the operations of ATMS at runtime, the availability and
integrity of its components (e.g. radars) and the information exchanged between them
might be ensured. For instance, a property that could be monitored for ATMS might
state that if there are more than one radars covering a particular airspace and one of
these radars sends a signal indicating that an airplane is in the relevant airspace, every
other radar that covers the same space should also send a signal indicating the
presence of the plane in it and this should happen within a certain time period after
the receipt of the initial signal.

In cases where this property is violated, knowing about the occurrence of the
violation itself is not sufficient for establishing the reasons why some radar has sent a
signal but another has not. Clearly getting diagnostic information about these reasons

would be necessary for taking appropriate action as the violation may have been due
to different reasons, including the following:

• The radar that did not send the expected signal was malfunctioning.
• The communication link between the radar that did not send the expected signal

and the monitor was malfunctioning or an intruder captured the signal and
prevented it from reaching the monitor.

• The radar that sent the expected signal was malfunctioning or its identity was
faked by an intruder which sent a fake signal to the monitor.

Thus, identifying the reason for the violation is important for taking actions that could
restore the integrity of the operation of ATMS.

In this paper, we provide diagnostic information for violations of security and
dependability properties that are detected by the monitoring framework described in
[17]. This framework has been developed within the European integrated research
project SERENITY to support the monitoring of security and dependability properties
in distributed and dynamically evolving systems. Such properties are expressed by
monitoring rules specified in Event Calculus (EC) [16]. The provision of diagnostic
information is based on the generation of all the possible alternative explanations1 of
the events which are involved in the violations of rules, and the assessment of the
plausibility of these explanations by checking whether their expected effects
correspond to events recorded during the operation of the monitored system. The key
characteristic of our approach for the provision of diagnostic information is the use of
abductive reasoning [2][10][11] for the generation of explanations, and belief based
reasoning [15] for the assessment of explanation plausibility.

The rest of this paper is structured as follows. In Section 2, we provide a brief
overview of the monitoring framework. In Section 3, we describe the different stages
of the diagnostic process. In Section 4, we overview related work and, finally, in
Section 5, we present conclusions and directions for future work.

2 Monitoring framework

The core of the monitoring framework in [17] is a generic engine for checking

violations of properties expressed as EC rules of the form body ⇒ head. The meaning
of a rule is that if its body evaluates to true, its head must also evaluate to true. EC is a
first-order metric temporal logic language which can be used for representing and
reasoning about events and their effects on the state of a system over time. Our
monitoring framework rules are defined in terms of the standard EC predicates. These

include the predicates: (i) Happens(e,t,ℜ(lb,ub)) which denotes that an instantaneous

1 It should be noted that the term “explanation” in our work is used to denote the diagnostic

information that explains why a violation of a system property that has been detected at
runtime has occurred and is not a description of the reasoning of the monitor to a human
being.

event e occurs at some time t that is restricted to be within the time range ℜ(lb,ub)2,
(ii) HoldsAt(f,t) which denotes that a state (aka fluent) f holds at the start of the
execution of a system and at time t, (iii) Initiates(e,f,t) and Terminates(e,f,t) which
denote the initiation or termination of a fluent f by an event e at time t respectively,
and (iv) Initially(f) which denotes that a fluent holds at the start of the operation of a
system.

An example of an EC rule is:
Rule 1: Happens(signal(_r1, _a, _s),t1,R(t1,t1) ∧ HoldsAt(covers(_r1,_s),t1) ∧ HoldsAt(covers(_r2,_s),
t1) ∧ _r1 ≠ _r2 ⇒ Happens(signal(_r2,_a,_s), t2 ,R(t1, t1+5))

This rule expresses the condition about the radars of ATMS that we discussed in
the introduction. More specifically, Rule 1 states that for all the pairs of different
radars _r1 and _r2 if the first radar _r1 sends a signal event signal(_r1, _a, _s) at
some time point t1 to indicate the presence of the airplane denoted by the variable _a
in the airspace denoted by the variable _s and at the time point t1 it is known that both
_r1 and _r2 cover the airspace _s (as indicated by the predicates
HoldsAt(covers(_r1,_s),t1) and HoldsAt(covers(_r2,_s), t1) in the body of the rule,
respectively), the second radar _r2 should also send a separate signal indicating the
presence of _a in _s no later than 5 time units after the receipt of the original signal
as indicated by the predicate Happens(signal(_r2,_a,_s), t2 ,R(t1, t1+5)).3 Rule 1 will
be violated if there is a signal event from only one of the radars of ATMS which
cover a specific airspace but not the others.

3 Diagnostic process

As shown in Figure 1, the overall process of diagnosing the causes of rule violations
includes four stages, namely:

1. explanation generation in which all the possible explanations for the individual
events that were reported to the monitor and have caused the violation (referred
to as “violation observations” henceforth) are generated.

2. explanation effect identification in which the possible consequences (effects) of
the explanations of the violation observations are derived by deduction

3. plausibility assessment in which the effects of explanations are checked against
the event log of the monitor to see if there are events that match them and could
provide supportive evidence for the explanations

4. diagnosis generation in which an overall diagnosis for the violation is generated
from the individual explanations

2 The time range ℜ(lb,ub) expresses temporal constraints for the occurrence of an event e,

while t expresses the exact time of occurrence of an instance of e.
3 In Rule 1 and all the EC formulas in the rest of the paper, all the non time variables appear

with underscored names (_varName) and are assumed to be universally quantified unless
otherwise specified in a formula.

Fig. 1. Diagnostic process

The generation of explanations and their effects in stages (i) and (ii) above is based on
a (possibly) incomplete model of the behaviour of the monitored system that is
expressed in the form of EC formulas called assumptions. In the following, we
discuss the stages of the diagnostic process in detail.

3.1 Explanation generation

The generation of explanations for violation observations is based on abductive
reasoning. More specifically, given a set Ω of events and fluents that are involved in
the violation of a monitoring rule, this stage of the diagnostic process tries to find a
set of explanation formulas Φ which, in conjunction the set of the assumptions about
the system that is being monitored and the events that are known to the monitor at the
time when the explanation is required (collectively referred to as the theory TH in the
following), entail Ω. Formally, this is a search for a set of atomic formulas Φ that
satisfy the conditions:

(Cnd 1): TH ∪ Φ |- Ω, and
(Cnd 2): ∀ f in Φ: predicate (f) ∈ APreds

where predicate (f) is the predicate of formula f and APreds is a set of abducible
predicates whose truth value can be established only by abductive reasoning.

The search for explanations is based on a newly developed algorithm (see [18])
which starts from a violation observation P that needs to be explained and tries to find
all assumptions of the form a: B1 ∧ … ∧ Bn ⇒ H in TH whose head H can be unified
with P. When such an assumption is found, the algorithm checks if: (i) the unification
of P with H provides concrete values for all the non time variables of the predicates
B1, …, Bn in the body of a, and (ii) it is possible to derive concrete time ranges for the
time variables of all these predicates by using George Dantzig’s classic Simplex
method (see [5]). If these conditions are satisfied, the algorithm instantiates the
predicates B1, …, Bn and identifies which of the predicates B1,…,Bn are observable
(O-preds), deducible (D-preds) or abducible predicates (A-preds), assuming that these
are disjoint categories of predicates.

Then, the algorithm checks if each of the O-Preds and D-preds in the body of the
assumption a can be matched with some recorded event or derived from the events in
the monitor’s log and the known system assumptions, respectively. If there are O-
preds and D-preds that cannot be verified via this check, the algorithm tries to find an
abduced explanation for them recursively and, if such explanations are found, for all
the non verified O-preds and D-preds, these explanations, along with the A-preds
have been identified in the current step of the explanation process, are reported as the
possible explanation of the initial violation observation P. In cases, however, where
there are O-Preds or D-preds in the body of an assumption a that can neither be
verified nor explained by abduction, the explanation generation path using the
particular assumption fails.

Fig. 2. ATMS event log

As an example of explanation generation, consider a violation of Rule 1. More
specifically, this rule is violated by the event (E7) in the event log of Figure 2
(Happens(signal(R1,A1,S1),7,R(7,7)) and the predicates
¬Happens(signal(R2,A1,S1),t,R(7,12)), HoldsAt(covers(R1,S1),7) and
HoldsAt(covers(R2,S1),7) which can be derived from this log. In particular, the
predicate ¬Happens(signal(R2,A1,S1),t,R(7,12)), which denotes the absence of a
signal from radar R2 in the time range from T=7 to T=12, is deduced by the principle
of negation as failure (NF) from the events (E4) and (E8) in the log that were
received from radar R2 at T=1 and T=13, respectively. This deduction is possible as
soon as the monitor receives the (E8) event because no other event has been received
from R2 between T=1 and and T=13. Also the predicates HoldsAt(covers(R1,S1), 7)
and HoldsAt(covers(R2,S1), 7) can be deduced from the events (E1) and (E2) in
Figure 2, which denote that radars R1 and R2 cover the airspace S1 initially, and the
absence of any event signifying a repositioning of any of the two radars until the time
point T=7 when the monitor receives the signal for the presence of aircraft A1 in S1
from R1 (this deduction is based on the axioms of EC [12]).

To explain the violation, the predicates Happens(signal(R1,A1,S1),7,R(7,7)) and
¬Happens(signal(R2,A1,S1),t,R(7,12)) need to be explained individually.
Assuming that the following assumptions are known about the ATMS:

(A0) Initiates(_e1,_f),t1,R(t1,t1)) ∧ ¬∃_e2,t2: Terminates(_e2,_f),t2,R(t1,t2)) ⇒ HoldsAt(_f,t2)
(A1) Happens(inspace(_a,_s),t1,R(t1,t1)) ∧ HoldsAt(covers(_r,_s),t1) ⇒ Happens(signal(_r,_a,_s),t2,

 R(t1,t1+5))
(A2) Happens(inspace(_a,_s),t1, R(t1,t1)) ⇒ Happens(permissionRequest(_a,_s), t2, R(t1-20,t1-1))

the search for an explanation of Happens(signal(R1,A1,S1),7,R(7,7)) will detect that
this predicate can be unified with the predicate Happens(signal(_r,_a,_s), t2,
R(t1,t1+5)) in the head of assumption (A1). The unification of these two predicates
will be {_r/R1, _a/A1, _s/S1} and the linear constraint system generated for the time
variable t1 in (A1) will include the constraints t1 ≤ 7 and 7 ≤ t1 + 5. Thus, since the
non time variables in the body of (A1) are covered by the unification and the
constraints t1 ≤ 7 and 7 ≤ t1 + 5 determine the range [2,...,7] as a feasible time range
for t1, the conditions of the explanation generation process are satisfied and the
predicate Happens(inspace(A1,S1),t1,R(2,7)) will be generated as a possible
explanation of Happens(signal(R1,A1,S1),7,R(7,7)). Subsequently, assuming that
Happens(inspace(_a,_s),t1,R(t1,t1)) belongs to the set of the abducible predicates A-
preds, there will be no need for further elaboration of it.

It should be noted, however, that as Happens(inspace(A1,S1),t1,R(2,7)) has been
generated as an explanation from assumption (A1), it can be retained as an
explanation only if the other instantiated predicate in the body of (A1), i.e. the
predicate HoldsAt(covers(R1,S1),7), is True when t1 takes values in the range R(2,7).
The latter predicate, however, can be deduced from the log of Figure 2 and
assumption (A0). Thus, Happens(inspace(A1,S1),t1,R(2,7)) becomes a possible
explanation of Happens(signal(R1,A1,S1),7,R(7,7)).

3.2 Explanation effect identification

Following the generation of explanations, the next step in the diagnosis process is
the identification of the expected effects of these explanations. These consequences
are identified in order to assess the plausibility of explanations. The assessment of
plausibility is based on the hypothesis that if the expected effects of an explanation
match with events which have occurred and recorded during the operation of the
system that is being monitored, then there is supportive evidence for the explanation.
This is because the events that match its expected effects might also have been caused
by it.

The identification of the expected effects of an explanation is based on deductive
reasoning. Generally, for an explanation Exp=P1 ∧…∧ Pn formed as a conjunction of
abduced atomic predicates, the diagnosis process iterates over the predicates Pi that
constitute it and, for each of these predicates, finds the system assumptions B1 ∧ … ∧
Bn ⇒ H which have a predicate Bj in their body that can be unified with Pi and the rest
of the predicates in its body are also True. For such assumptions, if the predicate H in
the head of the assumption is fully instantiated and its time range is determined, H is
derived as a possible consequence of Pi.

Then, if H is an observable predicate, i.e., a predicate that can be matched with
recorded events, H is added to the possible effects of Exp. If H, however, is not an
observable predicate, the effect identification process tries to generate the
consequences of H recursively and, if it finds any such consequences that correspond
to observable events, it adds them to the set of the expected effects of Exp. In this
way, the diagnosis process computes the transitive closure of the effects of Exp.

As an example of identifying the consequences of explanations, consider again the
ATMS system and suppose that, in addition to assumptions (A1) and (A2), three more
assumptions are known for this system, namely:

(A3) Happens(inspace(_a,_s),t1,R(t1,t1)) ⇒ Initiates(inspace(_a,_s), inairspace(_a,_s),t1)
(A4) Initiates(inspace(_a,_s), inairspace(_a,_s),t1) ∧ HoldsAt(landing_airspace_for(_s,_arpX),t1) ⇒

Happens(landingRequest(_a, _arpX), t2, R(t1-10,t1))
(A5) Happens(changeOfLandingApproach(_arpX,_s),t1,R(t1,t1))⇒

Initiates(changeOfLandingApproach(_arpX,_s), landing_airspace_for(_s,_arpX),t1)

The formula (A3) above states that when an event inspace(_a,_s) that signifies the

entrance of an aircraft _a in an airspace _s becomes known a fluent called
inairspace(_a,_s) should be initiated to signify the presence of _a in _s unless this
fluent already holds. Formula (A4) states that when an aircraft _a enters an airspace
_s that is used as the final landing route for approaching an airport _arpX (see the
fluent landing_airspace_for(_s,_arpX)) then the aircraft _a must have made a landing
request for the particular airport within the last 10 time units before entering _s. Using
(A3) and (A4), it is possible to determine the expected effects of the predicate
Happens(inspace(A1,S1),t1,R(2,7))) that was generated as a possible explanation of
Happens(signal(R1,A1,S1),7,R(7,7)) earlier. Specifically, assuming that the airspace
S1 is the landing airspace of an airport AR-a then the entrance of the aircraft A1 into
S1 should be preceded some request from A1 to land in AR-a or, equivalently, that a
runtime event Happens(landingRequest(A1,AR-a), t2, R(0,6)) should have occurred.
Thus, the latter runtime event would be an expected effect of the explanation
Happens(inspace(A1,S1),t1,R(2,7)).

Formally, from Happens(inspace(A1,S1),t1,R(2,7))) and (A3) the predicate
Initiates(inspace(A1,S1), inairspace(A1,S1), t1) can be deduced for t1 in [2,…,7]. As
the latter predicate, however, is not an observable predicate, the diagnosis process will
try to identify whether it has any observable consequences of its own. Whilst
searching for such consequences, Initiates(inspace(A1,S1), inairspace(A1,S1), t1) can
be unified with the first predicate in the body of (A4). Furthermore, the other
predicate in the body of this assumption, namely the predicate
HoldsAt(landing_airspace_for(S2,AR-a), t) can also be deduced to be True for the
time range [2,…,7] (i.e., for t in [2,…,7]) from the event (E5) in Figure 2 and
assumptions (A5) and (A0). Thus, both predicates in the body of (A4) are True and,
therefore, the predicate Happens(landingRequest(A1,AR-a), t2, R(0,6)) in its head can
be derived from it. Assuming that landingRequest(_a, _arpX) is an observable event,
Happens(landingRequest(A1,AR-a), t2, R(0,6)) will be established as an expected
effect of the explanation Happens(inspace(A1,S1),t1,R(2,7))).

3.3 Assessment of explanation plausibility

After deriving the expected effects ΦC={C1,…,CL} of an explanation Φ, the
diagnosis process searches the event log of the monitor to find events that can match
these effects. In this search, a match between an event e in the log, which has been
produced by an event captor Captor(e) and has a timestamp te, and an effect Ck

(k=1,…,L) is detected only if: (i) e has been produced by the same event captor as the

captor that Ck is expected to be produced from, (ii) e can be unified with Ck , and (iii)
the timestamp of e falls within the time range of Ck.

It should be appreciated, however, that although the presence of a matching event
for an expected effect of an explanation confirms that the effect has indeed occurred,
the absence of a matching event for an effect at the time of the search does not
necessarily mean that such an event has not occurred and, therefore, cannot cast
negative evidence in the validity of the consequence. This is because there might be
cases where, although an event that satisfies the conditions (i)−(iii) above may have
occurred, this event might not have arrived yet at the event log of the monitoring
framework due to communication delays in the “channel” between the event captor
that captured the event and the monitoring framework. To cope with this problem, the
search for events that match an explanation effect Ck establishes that no such events
have occurred if at the time of the search there is no event e satisfying the conditions
(i)-(iii) above, and the last known value of the clock of Captor(Ck) (i.e., the timestamp
of the last event in the log that has arrived at the monitor from this captor) is greater
than the upper boundary of the time variable of Ck.

Furthermore, there is a possibility of having effects Ck for which, although no
matching event satisfying (i)-(iii) can be found at the time of the search, the last
received event from the relevant captor has a timestamp that is less than or equal to
the upper time boundary of Ck. Such effects cannot be confirmed or disconfirmed and,
therefore, cast positive or negative evidence for Φ. To cope with this uncertainty, we
use the Dempster Shafer (DS) theory of evidence [15] for the assessment of the
plausibility of an explanation, and define the function that gives the basic probability
assignment to the validity of an explanation as:
Definition 1: The basic probability of the validity of an explanation is computed by
the function:

mE(Valid(Φ)) = |Φ C+ | / |Φ C |
mE(¬Valid(Φ)) = |Φ C- | / |Φ C |
mE(Valid(Φ)∨¬Valid(Φ))=|Φ C − (Φ C+ ∪ Φ C-)| / |Φ C |

where
• ΦC+ is the set of confirmed effects of Φ, defined as Φ C+ = {Ck /Ck ∈ ΦC and

∃e. (e ∈ Log and Captor(e) = Captor(Ck) and tkLB≤te and te≤ tkUB and
unifier(e,Ck) ≠ ∅)}

• Φ C- is the set of a set of disconfirmed effects of Φ, defined as Φ C- = { Ck /Ck ∈
Φ C and ¬∃e. (e ∈ Log and Captor(e)=Captor(Ck) and tkLB≤te and te≤ tkUB

and unifier(e,Ck)≠ ∅) and lastTime(Captor(Ck))> tkUB}
• tkLB, tkUB are the lower and upper boundaries of the time range of Ck, te is the

timestamp of the event e, and lastTime(Captor(Ck)) is the timestamp of the
last event arrived from Captor(Ck) to the monitor.

According to this definition, the probability of the validity of an explanation Φ is
measured as the proportion of the effects of Φ that have been confirmed by events in
the event log at time t. Also the probability of an explanation Φ not being valid is
measured as the proportion of the effects of Φ that have been disconfirmed by events
in the event log. Note that, as in general Φ C+ ∪ Φ C- ⊆ Φ C, we will also have that
mE(Valid(Φ)) + mE(¬Valid(Φ))≤ 1 and, mE is not a classic probability function. As we
prove in [14], however, mE satisfies the axioms of basic probability assignments in the
DS theory of evidence and, can therefore, be interpreted as a function of this type.

Using mE, the basic probability of the explanation Happens(inspace(A1,S1),t1,R(2,7))
of the violation observation Happens(signal(R1,A1,S1),7,R(7,7)) of Rule-1 can be
computed as follows. As discussed in Section 3.2, an expected effect of this
explanation is Happens(landingRequest(A1,AR-a),t2,R(0,6)). Another expected effect
of the same explanation is the predicate Happens(permissionRequest(A1,S1), t2,
R(0,7)). The latter effect can be derived from assumption (A2), according to which an
aircraft which enters a particular airspace at some time point t1, must have requested
permission to enter the airspace before its entrance and no more than 20 time units
prior to it. Assuming then that the request for diagnosing the violation of Rule-1 is
made at T=15, a search in the event log of Figure 2 will identify that the event
Happens(permissionRequest(A1,S1),3,R(3,3)) provides confirmatory evidence for
Happens(permissionRequest(A1,S1),t2,R(0,7)) but there is no matching event for
Happens(landingRequest(A1,AR-a),t2,R(0,6)).

Furthermore, if Happens(landingRequest(A1,AR-a), t2, R(0,6)) refers to events
which are captured and transmitted by the event captor captor-AR-a then at the time
of the search (T=15), it will not be impossible to establish whether an event matching
Happens(landingRequest(A1,AR-a),t2,R(0,6)) has occurred. This is because, as shown
in Figure 2, the last event received from captor-AR-a until T=15 is
Happens(changeOfLandingApproach(AR-a,S1),2,R(2,2)) and, therefore, the latest
known time for this captor (lastTime(captor-AR-a))) is 2. Thus, the basic probabilities
in the validity of the explanation Φ=Happens(inspace(A1,S1),t1,R(2,7)) will be:
mE(Valid(Φ)) = 1/2 = 0.5, mE(¬Valid(Φ)) = 0/2 = 0 and mE(Valid(Φ) ∨ ¬Valid(Φ)) =
1/2 = 0.5.

3.4 Diagnosis generation

Having obtained the basic probability measures in the validity or not of individual
explanations, the next step in the diagnosis process is to construct an aggregate
explanation of the rule violation. The construction of such aggregate explanations is
based on assessing the overall belief in the genuineness of the events that are involved
in the violation. This assessment is based on the hypothesis that an event E, which is
involved in a violation of a rule, is genuine if and only if at least one of the
explanations that have been generated for it is valid. Based on this hypothesis, as we
show in [18], the belief in the genuineness of E (Gen(E)) is measured as:
Bel(Gen(E)) = Bel(∨i=1,…,n Valid(Φi))

 = ΣI⊆{1,…,n}and I≠∅(−1)|I|+1{Π i∈I mE(Valid(Φi))} (1)

Bel(¬Gen(E)) = Bel(∧i=1,…,n ¬Valid((Φi))
 = Π i=1,…,n mE(¬Valid(Φi)) (2)
whereby Φi (i=1,…,n) are the alternative explanations of E

The beliefs in the genuineness of E and its negation which are computed by the
above formulas are used to decide whether or not a violation observation is confirmed
by its available explanations. In particular, the computation of Bel(Gen(E)) and
Bel(¬Gen(E)) generates a belief range for the genuineness of E which, according to
the DS theory [15], is:

[Bel(Gen(E)),…, Pls(Gen(E))]

whereby: Pls(Gen(E)) = 1 − Bel(¬Gen(E)) (3)
 The lower bound of this range is the belief in the genuineness of E and the upper

bound of it is the maximum possible value that the belief in the genuineness of E can
take given the belief in the non genuineness of E. The upper bound for the belief in
the genuineness of E is called the “plausibility” of this proposition [15].

According to our approach, E is confirmed only if Bel(Gen(E)) > Bel(¬Gen(E))
and the final diagnosis of the violation consists of the confirmed and unconfirmed
events of it and their explanations. It should also be noted that if no explanation can
be generated for a violation observation, the diagnosis process attempts to find an
explanation of its negation and, if this is possible, the beliefs in the genuineness of the
event are calculated by using the (F4) formula and the following one:

Bel(¬Gen(E)) = Bel(Gen(¬E))) (4)
Due to (1)-(4), the beliefs in the genuineness of the predicates involved in the

violation of Rule-1 are calculated from the alternative explanations of the relevant
violation observations. Specifically, for the predicate
P1=Happens(signal(R1,A1,S1),7,R(7,7))) there is a single explanation
Φ11=Happens(inspace(A1,S1),t1,R(2,7)) with basic probabilities mE(Valid(Φ11))}=0.5
and mE (¬Valid(Φ11))}=0 , as we discussed earlier. Thus, Bel(Gen(P1))=mE
(Valid(Φ11))}=0.5 and Bel(¬Gen(P1))=mE(¬Valid(Φ11))}=0 . The predicates
P2=HoldsAt(covers(R1,S1),7) and P3=HoldsAt(covers(R2,S1),7) are also confirmed
without using belief measures, as they are both derived from the runtime events (E1)
and (E2) in Figure 2. Finally, P4= ¬Happens(signal(R2,A1,S1),t,R(7,12)) is a
negated predicate and, since no explanation of it can be generated from the
assumptions of ATMS, the diagnosis process generates explanations of its positive
form, i.e., Happens(signal(R2,A1,S1),t,R(7,12)). Following the same reasoning
process as in the case of P1, Φ41=Happens(inspace(A2,S1,t,R(7,17)) will be derived
as an explanation of ¬P4 with basic probabilities mE(Valid(Φ41))} = 0.5 and mE
(¬Valid(Φ41))} = 0. Thus, Bel(Gen(¬P4))=0.5 and Bel(¬Gen(¬P4))= 0 and, from (F4)
and (F5), Bel(¬Gen(P4))=0.5 and Bel(Gen(P4))= 0. Thus, P4 is reported as an
unconfirmed predicate and, finally, as the cause of the rule violation.

4 Related work

In the context of model-based diagnosis, diagnosis focuses on the detection of
system failures and typically involves the identification of traces of system events that
have led to a failure (problematic event) using automata that recognise faulty
behaviour [1][6][9][13][19]. In [6], diagnosis is carried through the synchronization
of automata modelling the expected behaviour of a monitored system and the events
captured from it. The approach in [9] is similar but decentralised as synchronisation is
first performed for individual system components and then is aggregated for the
global system. In [1][19], the problem of fault diagnosis, concerning time, has been
studied by using timed automata to model systems.

Our approach is different from the above, as our focus is not the detection of faulty
behaviours. Such faulty behaviours are detected by the core monitoring capability of
the framework described in [17] as violations of monitoring rules by the current trace

of runtime events. The focus of our approach, in this paper, is the provision of
possible explanations for the events that constitute the faulty behaviours and through
them the confirmation or not of the genuineness of these events. The provision of
such diagnostic information is necessary if the event traces which are taken into
account by the monitor cannot be assumed to be complete and/or consist of trusted
genuine events which have not been caused by malfunctioning system components or
are the results of attacks. Another difference between the work in model based
diagnosis and our approach is that to perform monitoring and the generation of
diagnostic explanations for violations of properties, we do not assume a complete
model of the system that is being monitored. Our approach can be based on a partial
model of this system that includes the properties that should be monitored expressed
as rules in Event Calculus, and assumptions about parts of the behaviour of the
monitored system which are also expressed as EC formulas.

The generation of abductive explanations considering temporal information is the
main focus of interest of the research work described in [2] and [14]. In [2], a
temporal abduction algorithm is described which makes use of temporal constraints
associated with the observations and the formulation of the underlying domain theory.
In [14], the time ranges of the generated explanations are calculated by the use of a
computation method based on linear constraint satisfaction, while the uncertainty of
explanations is treated through the use of probabilistic assessment scheme based on
Bayesian inference [8].

Our approach draws upon work on temporal abductive reasoning [2][3][11][16]
and its applications to diagnosis [3][10], but is based on a newly developed algorithm
for abductive search with EC which generates all the possible alternative explanations
of a formula (unlike [2][16]), treats the time constraint satisfaction problem as a linear
programming problem, and computes beliefs in explanations using the DS theory.
These beliefs are also used in order to rank explanations and select some of them as
the most plausible. The choice of the DS theory of evidence as the framework for
calculating the likelihoods of abduced explanations has been dictated by the need to
deal with uncertainty regarding the confirmation of the consequences of explanations
as we discussed in Section 3.3 and to reason in the presence of this uncertainty.

5 Conclusions and future work

In this paper, we have presented the extension of a framework supporting the
runtime monitoring of software systems which can provide diagnostic information for
violations of monitored properties. The provision of diagnostic information is based
on alternative explanations of events involved in violations of properties which are
generated by abductive reasoning using a model of the monitored properties
expressed in Event Calculus. Our approach supports also the computation of beliefs in
the plausibility of explanations based on evidence about their expected effects that is
gathered from the event log of the monitored system. A more detailed account of our
approach and its implementation is given in [18].

Currently, we are extending the scheme for the assessment of the plausibility of
explanations in order to take into account beliefs in the genuineness of events in the

monitor’s log, which are used in order to derive the expected consequences of
explanations of violation observations or match with these consequences and are,
therefore, used as confirmatory evidence for them. Since the genuineness of these
events may also be questioned, our approach may be extended to compute beliefs in it
and use these beliefs as a weighting factor when taking such events into account for
generating or confirming explanations. It should, however, be appreciated that
extending our approach in this direction requires the establishment of a time window
that will determine the event set, which should be taken into account in the process,
since looking at the entire event log is unlikely to be feasible in real applications.
Furthermore, we are currently performing an experimental evaluation of our approach
in the context of industrial case studies used in the SERENITY project.

Acknowledgements

This work has been partially funded by the European integrated research project
SERENITY (FP6-IST-2006-27587).

References
1. Bouyer P., Chevalier F. and D'Souza D.: “Fault Diagnosis using Timed Automata”. In

Proc. of FoSSaCS'05, LNCS 3441, 219--233, Springer (2005)
2. Console L. et al.: Local Reasoning and Knowledge Compilation for Efficient Temporal

Abduction. IEEE Trans. on Knowledge & Data Engineering 14(6): 1230--1248 (2002)
3. De Kleer J., Williams B.C.: Diagnosing Mulitple Faults. A. I.. 32(1): 97--130 (1987)
4. Denecker M. et al.: Temporal reasoning with abductive event calculus. 10th ECAI (1992)
5. Gale D.: “Linear programming and the simplex method”. AMS, 54(3):364--369 (2007)
6. Grastien A., Cordier M., Largouët C.: Incremental Diagnosis of Discrete-Event Systems,

15th Int. Work. On Principles of Diagnosis (DX05) (2005)
7. Lazarevic A., Kumar V., Srivastava J.: Intrusion detection: a survey. In Managing cyber-

threats: issues approaches & challenges, Springer (2005)
8. Pearl J.: Probabilistic Reasoning in Intelligent Systems, Morgan-Kaufmann (1988)
9. Pencolé Y., Cordier M.: A formal framework for the decentralised diagnosis of large scale

discrete event systems & its application to telecommunication networks. A.I. 164: 121--
180 (2005)

10. Poole D.: Explanation and prediction: An architecture for default and abductive reasoning.
Comp. Intell. 5(2): 97--110 (1989)

11. Ray O., Kakas A.: ProLogICA: a practical system for Abductive Logic Programming.
11th Int. Works. on Non-monotonic Reasoning, 304—312 (2006)

12. Reiter R.: A theory of diagnosis from first principles. Artif. Intell. 32(1): 57--96 (1987)
13. Sampath M et al.: Failure diagnosis using discrete-event models. IEEE Trans. on Control

Systems Technology, 4(2):105--124 (1996)
14. Santos E. Jr.: “Unifying time and uncertainty for diagnosis”. Journal of Experimental and

Theoretical Artificial Intelligence, 8, 75—94 (1996)
15. Shafer G.: A Mathematical Theory of Evidence. Princeton University Press (1975)
16. Shanahan M.: Abductive Event Calculus Planner. J. Logic Progr. 44: 207--239 (2000)
17. Spanoudakis G., Mahbub K.: Non intrusive monitoring of service based systems. Int. J. of

Coop. Infor. Sys., 15(3):325--358 (2006)
18. Spanoudakis G., Tsigkritis T.: v1 of diagnosis prototype. Deliverable A4.D5.1,

SERENITY Project, http://www.serenity-forum.org/ (2008)
19. Tripakis S.: Fault diagnosis for timed automata. In Proc. of FTRTFT’02, vol. 2469 of

LNCS, 205--224, Springer (2002)

