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Abstract. Monitoring the operation of complex software systems at runtime 
can detect violations of certain properties of interest but cannot always provide 
diagnostic information which is significant for understanding the cause of the 
violation and the adoption of appropriate countermeasures against it.. In this 
paper, we describe a process for diagnosing runtime violations of security and 
dependability properties that we have developed as part of a general runtime 
monitoring framework that is based on Event Calculus. The diagnosis 
generation process is based on a combination of abductive, temporal and 
evidential reasoning over violations of system properties. 
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1   Introduction 

Monitoring security and dependability properties of complex software systems at 
runtime is widely accepted as a technique for increasing system resilience to 
dependability failures and security attacks and several approaches have been 
developed to support it (see [7] for a survey). Although basic monitoring provides 
mechanisms for detecting violations of such properties, it cannot always provide the 
information that is necessary in order to understand the reasons that underpin the 
violation of a property and decide what would be an appropriate reaction to it.  

To appreciate the problem, consider the case of an Air Traffic Management System 
(ATMS), which consists of components (radars) that monitor the traffic in different 
air spaces. By monitoring the operations of ATMS at runtime, the availability and 
integrity of its components (e.g. radars) and the information exchanged between them 
might be ensured. For instance, a property that could be monitored for ATMS might 
state that if there are more than one radars covering a particular airspace and one of 
these radars sends a signal indicating that an airplane is in the relevant airspace, every 
other radar that covers the same space should also send a signal indicating the 
presence of the plane in it and this should happen within a certain time period after 
the receipt of the initial signal.  

In cases where this property is violated, knowing about the occurrence of the 
violation itself is not sufficient for establishing the reasons why some radar has sent a 
signal but another has not. Clearly getting diagnostic information about these reasons 



would be necessary for taking appropriate action as the violation may have been due 
to different reasons, including the following:  

• The radar that did not send the expected signal was malfunctioning.  
• The communication link between the radar that did not send the expected signal 

and the monitor was malfunctioning or an intruder captured the signal and 
prevented it from reaching the monitor.  

• The radar that sent the expected signal was malfunctioning or its identity was 
faked by an intruder which sent a fake signal to the monitor.  

Thus, identifying the reason for the violation is important for taking actions that could 
restore the integrity of the operation of ATMS.  

In this paper, we provide diagnostic information for violations of security and 
dependability properties that are detected by the monitoring framework described in 
[17]. This framework has been developed within the European integrated research 
project SERENITY to support the monitoring of security and dependability properties 
in distributed and dynamically evolving systems. Such properties are expressed by 
monitoring rules specified in Event Calculus (EC) [16].  The provision of diagnostic 
information is based on the generation of all the possible alternative explanations1 of 
the events which are involved in the violations of rules, and the assessment of the 
plausibility of these explanations by checking whether their expected effects 
correspond to events recorded during the operation of the monitored system. The key 
characteristic of our approach for the provision of diagnostic information is the use of 
abductive reasoning [2][10][11] for the generation of explanations, and belief based 
reasoning [15] for the assessment of explanation plausibility. 

The rest of this paper is structured as follows. In Section 2, we provide a brief 
overview of the monitoring framework. In Section 3, we describe the different stages 
of the diagnostic process. In Section 4, we overview related work and, finally, in 
Section 5, we present conclusions and directions for future work.  

2   Monitoring framework 

 
The core of the monitoring framework in [17] is a generic engine for checking 

violations of properties expressed as EC rules of the form body ⇒ head. The meaning 
of a rule is that if its body evaluates to true, its head must also evaluate to true. EC is a 
first-order metric temporal logic language which can be used for representing and 
reasoning about events and their effects on the state of a system over time. Our 
monitoring framework rules are defined in terms of the standard EC predicates. These 

include the predicates: (i) Happens(e,t,ℜ(lb,ub)) which denotes that an instantaneous 

                                                           
1 It should be noted that the term “explanation” in our work is used to denote the diagnostic 

information that explains why a violation of a system property that has been detected at 
runtime has occurred and is not a description of the reasoning of the monitor to a human 
being. 



event e occurs at some time t that is restricted to be within the time range ℜ(lb,ub)2, 
(ii) HoldsAt(f,t) which denotes that a state (aka fluent) f holds at the start of the 
execution of a system and at time t, (iii) Initiates(e,f,t) and Terminates(e,f,t) which 
denote the initiation or termination of a fluent f by an event e at time t respectively, 
and (iv) Initially(f) which denotes that a fluent holds at the start of the operation of a 
system.  

An example of an EC rule is:  
Rule 1: Happens(signal(_r1, _a, _s),t1,R(t1,t1) ∧ HoldsAt(covers(_r1,_s),t1) ∧ HoldsAt(covers(_r2,_s), 
t1) ∧ _r1 ≠ _r2 ⇒ Happens(signal(_r2,_a,_s), t2 ,R(t1, t1+5))  

This rule expresses the condition about the radars of ATMS that we discussed in 
the introduction. More specifically, Rule 1 states that for all the pairs of different 
radars _r1 and _r2 if the first radar _r1 sends a signal event signal(_r1, _a, _s) at 
some time point t1 to indicate the presence of the airplane denoted by the variable _a 
in the airspace denoted by the variable _s and at the time point t1 it is known that both 
_r1 and _r2 cover the airspace _s (as indicated by the predicates 
HoldsAt(covers(_r1,_s),t1) and  HoldsAt(covers(_r2,_s), t1) in the body of the rule, 
respectively), the second radar _r2 should also send a separate signal indicating the 
presence of _a in _s  no later than 5 time units after the receipt of the original signal 
as indicated by the predicate Happens(signal(_r2,_a,_s), t2 ,R(t1, t1+5)).3 Rule 1 will 
be violated if there is a signal event from only one of the radars of ATMS which 
cover a specific airspace but not the others. 

3   Diagnostic process 

As shown in Figure 1, the overall process of diagnosing the causes of rule violations 
includes four stages, namely:  

1. explanation generation in which all the possible explanations for the individual 
events that were reported to the monitor and have caused the violation (referred 
to as “violation observations” henceforth) are generated.  

2. explanation effect identification in which the possible consequences (effects) of 
the explanations of the violation observations are derived by deduction  

3. plausibility assessment in which the effects of explanations are checked against 
the event log of the monitor to see if there are events that match them and could 
provide supportive evidence for the explanations  

4. diagnosis generation in which an overall diagnosis for the violation is generated 
from the individual explanations  

                                                           
2 The time range ℜ(lb,ub) expresses temporal constraints for the occurrence of an event e, 

while t expresses the exact time of occurrence of an instance of e.  
3 In Rule 1 and all the EC formulas in the rest of the paper, all the non time variables appear 

with underscored names (_varName) and are assumed to be universally quantified unless 
otherwise specified in a formula. 



 

Fig. 1. Diagnostic process 

 
The generation of explanations and their effects in stages (i) and (ii) above is based on 
a (possibly) incomplete model of the behaviour of the monitored system that is 
expressed in the form of EC formulas called assumptions. In the following, we 
discuss the stages of the diagnostic process in detail.  

3.1 Explanation generation  

The generation of explanations for violation observations is based on abductive 
reasoning. More specifically, given a set Ω of events and fluents that are involved in 
the violation of a monitoring rule, this stage of the diagnostic process tries to find a 
set of explanation formulas Φ which, in conjunction the set of the assumptions about 
the system that is being monitored and the events that are known to the monitor at the 
time when the explanation is required (collectively referred to as the theory TH in the 
following), entail Ω. Formally, this is a search for a set of atomic formulas Φ that 
satisfy the conditions:  

(Cnd 1): TH ∪ Φ |- Ω, and  
(Cnd 2): ∀ f in Φ: predicate (f) ∈ APreds  

where predicate (f) is the predicate of formula f and APreds is a set of abducible 
predicates whose truth value can be established only by abductive reasoning. 

The search for explanations is based on a newly developed algorithm (see [18]) 
which starts from a violation observation P that needs to be explained and tries to find 
all assumptions of the form a: B1 ∧ … ∧ Bn ⇒ H in TH whose head H can be unified 
with P. When such an assumption is found, the algorithm checks if: (i) the unification 
of P with H provides concrete values for all the non time variables of the predicates 
B1, …, Bn in the body of a, and (ii) it is possible to derive concrete time ranges for the 
time variables of all these predicates by using George Dantzig’s classic Simplex 
method (see [5]). If these conditions are satisfied, the algorithm instantiates the 
predicates B1, …, Bn and identifies which of the predicates B1,…,Bn are observable 
(O-preds), deducible (D-preds) or abducible predicates (A-preds), assuming that these 
are disjoint categories of predicates.  



Then, the algorithm checks if each of the O-Preds and D-preds in the body of the 
assumption a can be matched with some recorded event or derived from the events in 
the monitor’s log and the known system assumptions, respectively. If there are O-
preds and D-preds that cannot be verified via this check, the algorithm tries to find an 
abduced explanation for them recursively and, if such explanations are found, for all 
the non verified O-preds and D-preds, these explanations, along with the A-preds 
have been identified in the current step of the explanation process, are reported as the 
possible explanation of the initial violation observation P. In cases, however, where 
there are O-Preds or D-preds in the body of an assumption a that can neither be 
verified nor explained by abduction, the explanation generation path using the 
particular assumption fails.  

 

 

Fig. 2. ATMS event log 

As an example of explanation generation, consider a violation of Rule 1. More 
specifically, this rule is violated by the event (E7) in the event log of Figure 2 
(Happens(signal(R1,A1,S1),7,R(7,7)) and the predicates 
¬Happens(signal(R2,A1,S1),t,R(7,12)), HoldsAt(covers(R1,S1),7) and 
HoldsAt(covers(R2,S1),7) which can be derived from this log. In particular, the 
predicate ¬Happens(signal(R2,A1,S1),t,R(7,12)), which denotes the absence of a 
signal from radar R2 in the time range from T=7 to T=12, is deduced by the principle 
of negation as failure (NF) from the events (E4) and (E8) in the log that were 
received from radar R2 at T=1 and T=13, respectively. This deduction is possible as 
soon as the monitor receives the (E8) event because no other event has been received 
from R2 between T=1 and and T=13. Also the predicates HoldsAt(covers(R1,S1), 7) 
and HoldsAt(covers(R2,S1), 7) can be deduced from the events (E1) and (E2) in 
Figure 2, which denote that radars R1 and R2 cover the airspace S1 initially, and the 
absence of any event signifying a repositioning of any of the two radars until the time 
point T=7 when the monitor receives the signal for the presence of aircraft A1 in S1 
from R1 (this deduction is based on the axioms of EC [12]). 

To explain the violation, the predicates Happens(signal(R1,A1,S1),7,R(7,7)) and 
¬Happens(signal(R2,A1,S1),t,R(7,12)) need to be explained individually. 
Assuming that the following assumptions are known about the ATMS: 
  

(A0) Initiates(_e1,_f),t1,R(t1,t1)) ∧ ¬∃_e2,t2: Terminates(_e2,_f),t2,R(t1,t2)) ⇒ HoldsAt(_f,t2)  
(A1) Happens(inspace(_a,_s),t1,R(t1,t1)) ∧ HoldsAt(covers(_r,_s),t1) ⇒ Happens(signal(_r,_a,_s),t2,  

              R(t1,t1+5))  
(A2) Happens(inspace(_a,_s),t1, R(t1,t1)) ⇒ Happens(permissionRequest(_a,_s), t2, R(t1-20,t1-1))  



 
the search for an explanation of Happens(signal(R1,A1,S1),7,R(7,7)) will detect that 
this predicate can be unified with the predicate Happens(signal(_r,_a,_s), t2, 
R(t1,t1+5)) in the head of assumption (A1). The unification of these two predicates 
will be {_r/R1, _a/A1, _s/S1} and the linear constraint system generated for the time 
variable t1 in (A1) will include the constraints t1 ≤ 7 and 7 ≤ t1 + 5. Thus, since the 
non time variables in the body of (A1) are covered by the unification and the 
constraints t1 ≤ 7 and 7 ≤ t1 + 5 determine the range [2,...,7] as a feasible time range 
for t1, the conditions of the explanation generation process are satisfied and the 
predicate Happens(inspace(A1,S1),t1,R(2,7)) will be generated as a possible 
explanation of Happens(signal(R1,A1,S1),7,R(7,7)). Subsequently, assuming that 
Happens(inspace(_a,_s),t1,R(t1,t1)) belongs to the set of the abducible predicates A-
preds, there will be no need for further elaboration of it.  

It should be noted, however, that as Happens(inspace(A1,S1),t1,R(2,7)) has been 
generated as an explanation from assumption (A1), it can be retained as an 
explanation only if the other instantiated predicate in the body of (A1), i.e. the 
predicate HoldsAt(covers(R1,S1),7), is True when t1 takes values in the range R(2,7). 
The latter predicate, however, can be deduced from the log of Figure 2 and 
assumption (A0). Thus, Happens(inspace(A1,S1),t1,R(2,7)) becomes a possible 
explanation of Happens(signal(R1,A1,S1),7,R(7,7)). 

3.2 Explanation effect identification 

Following the generation of explanations, the next step in the diagnosis process is 
the identification of the expected effects of these explanations. These consequences 
are identified in order to assess the plausibility of explanations. The assessment of 
plausibility is based on the hypothesis that if the expected effects of an explanation 
match with events which have occurred and recorded during the operation of the 
system that is being monitored, then there is supportive evidence for the explanation. 
This is because the events that match its expected effects might also have been caused 
by it.  

The identification of the expected effects of an explanation is based on deductive 
reasoning. Generally, for an explanation Exp=P1 ∧…∧ Pn formed as a conjunction of 
abduced atomic predicates, the diagnosis process iterates over the predicates Pi that 
constitute it and, for each of these predicates, finds the system assumptions B1 ∧ … ∧ 
Bn ⇒ H which have a predicate Bj in their body that can be unified with Pi and the rest 
of the predicates in its body are also True. For such assumptions, if the predicate H in 
the head of the assumption is fully instantiated and its time range is  determined, H is 
derived as a possible consequence of Pi.  

Then, if H is an observable predicate, i.e., a predicate that can be matched with 
recorded events, H is added to the possible effects of Exp. If H, however, is not an 
observable predicate, the effect identification process tries to generate the 
consequences of H recursively and, if it finds any such consequences that correspond 
to observable events, it adds them to the set of the expected effects of Exp. In this 
way, the diagnosis process computes the transitive closure of the effects of Exp.  



As an example of identifying the consequences of explanations, consider again the 
ATMS system and suppose that, in addition to assumptions (A1) and (A2), three more 
assumptions are known for this system, namely:  
 

(A3) Happens(inspace(_a,_s),t1,R(t1,t1)) ⇒ Initiates(inspace(_a,_s), inairspace(_a,_s),t1)  
(A4) Initiates(inspace(_a,_s), inairspace(_a,_s),t1) ∧ HoldsAt(landing_airspace_for(_s,_arpX),t1) ⇒   

Happens(landingRequest(_a, _arpX), t2, R(t1-10,t1))  
(A5) Happens(changeOfLandingApproach(_arpX,_s),t1,R(t1,t1))⇒ 

Initiates(changeOfLandingApproach(_arpX,_s), landing_airspace_for(_s,_arpX),t1)  
 
The formula (A3) above states that when an event inspace(_a,_s) that signifies the 

entrance of an aircraft _a in an airspace _s becomes known a fluent called 
inairspace(_a,_s) should be initiated to signify the presence of _a in _s unless this 
fluent already holds. Formula (A4) states that when an aircraft _a enters an airspace 
_s that is used as the final landing route for approaching an airport _arpX (see the 
fluent landing_airspace_for(_s,_arpX)) then the aircraft _a must have made a landing 
request for the particular airport within the last 10 time units before entering _s. Using 
(A3) and (A4), it is possible to determine the expected effects of the predicate 
Happens(inspace(A1,S1),t1,R(2,7))) that was generated as a possible explanation of 
Happens(signal(R1,A1,S1),7,R(7,7)) earlier. Specifically, assuming that the airspace 
S1 is the landing airspace of an airport AR-a then the entrance of the aircraft A1 into 
S1 should be preceded some request from A1 to land in AR-a or, equivalently, that a 
runtime event Happens(landingRequest(A1,AR-a), t2, R(0,6)) should have occurred. 
Thus, the latter runtime event would be an expected effect of the explanation 
Happens(inspace(A1,S1),t1,R(2,7)).  

Formally, from Happens(inspace(A1,S1),t1,R(2,7))) and (A3) the predicate 
Initiates(inspace(A1,S1), inairspace(A1,S1), t1) can be deduced for t1 in [2,…,7]. As 
the latter predicate, however, is not an observable predicate, the diagnosis process will 
try to identify whether it has any observable consequences of its own. Whilst 
searching for such consequences, Initiates(inspace(A1,S1), inairspace(A1,S1), t1) can 
be unified with the first predicate in the body of (A4). Furthermore, the other 
predicate in the body of this assumption, namely the predicate 
HoldsAt(landing_airspace_for(S2,AR-a), t) can also be deduced to be True for the 
time range [2,…,7] (i.e., for t in [2,…,7]) from the event (E5) in Figure 2 and 
assumptions (A5) and (A0). Thus, both predicates in the body of (A4) are True and, 
therefore, the predicate Happens(landingRequest(A1,AR-a), t2, R(0,6)) in its head can 
be derived from it. Assuming that landingRequest(_a, _arpX) is an observable event, 
Happens(landingRequest(A1,AR-a), t2, R(0,6)) will be established as an expected 
effect of the explanation Happens(inspace(A1,S1),t1,R(2,7))).  

3.3 Assessment of explanation plausibility 

After deriving the expected effects ΦC={C1,…,CL} of an explanation Φ, the 
diagnosis process searches the event log of the monitor to find events that can match 
these effects. In this search, a match between an event e in the log, which has been 
produced by an event captor Captor(e) and has a timestamp te, and an effect Ck 

(k=1,…,L) is detected only if: (i) e has been produced by the same event captor as the 



captor that Ck is expected to be produced from, (ii) e can be unified with Ck , and (iii) 
the timestamp of e falls within the time range of Ck.  

It should be appreciated, however, that although the presence of a matching event 
for an expected effect of an explanation confirms that the effect has indeed occurred, 
the absence of a matching event for an effect at the time of the search does not 
necessarily mean that such an event has not occurred and, therefore, cannot cast 
negative evidence in the validity of the consequence. This is because there might be 
cases where, although an event that satisfies the conditions (i)−(iii) above may have 
occurred, this event might not have arrived yet at the event log of the monitoring 
framework due to communication delays in the “channel” between the event captor 
that captured the event and the monitoring framework. To cope with this problem, the 
search for events that match an explanation effect Ck establishes that no such events 
have occurred if at the time of the search there is no event e satisfying the conditions 
(i)-(iii) above, and the last known value of the clock of Captor(Ck) (i.e., the timestamp 
of the last event in the log that has arrived at the monitor from this captor) is greater 
than the upper boundary of the time variable of Ck.  

Furthermore, there is a possibility of having effects Ck for which, although no 
matching event satisfying (i)-(iii) can be found at the time of the search, the last 
received event from the relevant captor has a timestamp that is less than or equal to 
the upper time boundary of Ck. Such effects cannot be confirmed or disconfirmed and, 
therefore, cast positive or negative evidence for Φ. To cope with this uncertainty, we 
use the Dempster Shafer (DS) theory of evidence [15] for the assessment of the 
plausibility of an explanation, and define the function that gives the basic probability 
assignment to the validity of an explanation as:  
Definition 1: The basic probability of the validity of an explanation is computed by 
the function:  

mE(Valid(Φ)) = |Φ C+ | / |Φ C |  
mE(¬Valid(Φ)) = |Φ C- | / |Φ C |  
mE(Valid(Φ)∨¬Valid(Φ))=|Φ C  − (Φ C+  ∪ Φ C-)| / |Φ C |  

where  
• ΦC+ is the set of confirmed effects of Φ, defined as Φ C+ = {Ck /Ck ∈ ΦC and 

∃e. (e ∈ Log and Captor(e) = Captor(Ck) and tkLB≤te and te≤ tkUB and 
unifier(e,Ck) ≠ ∅)}  

• Φ C- is the set of a set of disconfirmed effects of Φ, defined as Φ C- = { Ck /Ck ∈ 
Φ C   and ¬∃e. (e ∈ Log and Captor(e)=Captor(Ck) and tkLB≤te and te≤ tkUB 

and unifier(e,Ck)≠ ∅) and lastTime(Captor(Ck))> tkUB}  
• tkLB, tkUB are the lower and upper boundaries of the time range of Ck, te is the 

timestamp of the event e, and lastTime(Captor(Ck)) is the timestamp of the 
last event arrived from Captor(Ck) to the monitor.  

According to this definition, the probability of the validity of an explanation Φ is 
measured as the proportion of the effects of Φ that have been confirmed by events in 
the event log at time t. Also the probability of an explanation Φ not being valid is 
measured as the proportion of the effects of Φ that have been disconfirmed by events 
in the event log. Note that, as in general Φ C+ ∪ Φ C- ⊆ Φ C, we will also have that 
mE(Valid(Φ)) + mE(¬Valid(Φ))≤ 1 and, mE is not a classic probability function. As we 
prove in [14], however, mE satisfies the axioms of basic probability assignments in the 
DS theory of evidence and, can therefore, be interpreted as a function of this type.  



Using mE, the basic probability of the explanation Happens(inspace(A1,S1),t1,R(2,7)) 
of the violation observation Happens(signal(R1,A1,S1),7,R(7,7)) of Rule-1 can be 
computed as follows. As discussed in Section 3.2, an expected effect of this 
explanation is Happens(landingRequest(A1,AR-a),t2,R(0,6)). Another expected effect 
of the same explanation is the predicate Happens(permissionRequest(A1,S1), t2, 
R(0,7)). The latter effect can be derived from assumption (A2), according to which an 
aircraft which enters a particular airspace at some time point t1, must have requested 
permission to enter the airspace before its entrance and no more than 20 time units 
prior to it. Assuming then that the request for diagnosing the violation of Rule-1 is 
made at T=15, a search in the event log of Figure 2 will identify that the event 
Happens(permissionRequest(A1,S1),3,R(3,3)) provides confirmatory evidence for 
Happens(permissionRequest(A1,S1),t2,R(0,7)) but there is no matching event for 
Happens(landingRequest(A1,AR-a),t2,R(0,6)). 

Furthermore, if Happens(landingRequest(A1,AR-a), t2, R(0,6)) refers to events 
which are captured and transmitted by the event captor captor-AR-a then at the time 
of the search (T=15), it will not be impossible to establish whether an event matching 
Happens(landingRequest(A1,AR-a),t2,R(0,6)) has occurred. This is because, as shown 
in Figure 2, the last event received from captor-AR-a until T=15 is 
Happens(changeOfLandingApproach(AR-a,S1),2,R(2,2)) and, therefore, the latest 
known time for this captor (lastTime(captor-AR-a))) is 2. Thus, the basic probabilities 
in the validity of the explanation Φ=Happens(inspace(A1,S1),t1,R(2,7)) will be: 
mE(Valid(Φ)) = 1/2 = 0.5, mE(¬Valid(Φ)) = 0/2 = 0 and mE(Valid(Φ) ∨ ¬Valid(Φ)) = 
1/2 = 0.5. 

3.4 Diagnosis generation 

Having obtained the basic probability measures in the validity or not of individual 
explanations, the next step in the diagnosis process is to construct an aggregate 
explanation of the rule violation. The construction of such aggregate explanations is 
based on assessing the overall belief in the genuineness of the events that are involved 
in the violation. This assessment is based on the hypothesis that an event E, which is 
involved in a violation of a rule, is genuine if and only if at least one of the 
explanations that have been generated for it is valid. Based on this hypothesis, as we 
show in [18], the belief in the genuineness of E (Gen(E)) is measured as:  
Bel(Gen(E)) = Bel(∨i=1,…,n Valid(Φi)) 

       =  ΣI⊆{1,…,n}and I≠∅(−1)|I|+1{Π i∈I mE(Valid(Φi))}    (1)  
 
Bel(¬Gen(E)) = Bel(∧i=1,…,n ¬Valid((Φi)) 
                       = Π i=1,…,n mE(¬Valid(Φi))      (2)  
whereby Φi (i=1,…,n) are the alternative explanations of E 

The beliefs in the genuineness of E and its negation which are computed by the 
above formulas are used to decide whether or not a violation observation is confirmed 
by its available explanations. In particular, the computation of Bel(Gen(E)) and 
Bel(¬Gen(E)) generates a belief range for the genuineness of E which, according to 
the DS theory [15], is: 

[Bel(Gen(E)),…, Pls(Gen(E))] 



whereby: Pls(Gen(E)) = 1 − Bel(¬Gen(E))      (3) 
 The lower bound of this range is the belief in the genuineness of E and the upper 

bound of it is the maximum possible value that the belief in the genuineness of E can 
take given the belief in the non genuineness of E. The upper bound for the belief in 
the genuineness of E is called the “plausibility” of this proposition [15]. 

According to our approach, E is confirmed only if Bel(Gen(E)) > Bel(¬Gen(E)) 
and the final diagnosis of the violation consists of the confirmed and unconfirmed 
events of it and their explanations. It should also be noted that if no explanation can 
be generated for a violation observation, the diagnosis process attempts to find an 
explanation of its negation and, if this is possible, the beliefs in the genuineness of the 
event are calculated by using the (F4) formula and the following one:  

Bel(¬Gen(E)) = Bel(Gen(¬E)))       (4)  
Due to (1)-(4), the beliefs in the genuineness of the predicates involved in the 

violation of Rule-1 are calculated from the alternative explanations of the relevant 
violation observations. Specifically, for the predicate 
P1=Happens(signal(R1,A1,S1),7,R(7,7))) there is a single explanation 
Φ11=Happens(inspace(A1,S1),t1,R(2,7)) with basic probabilities mE(Valid(Φ11))}=0.5 
and mE (¬Valid(Φ11))}=0 , as we discussed earlier. Thus, Bel(Gen(P1))=mE 
(Valid(Φ11))}=0.5 and Bel(¬Gen(P1))=mE(¬Valid(Φ11))}=0 . The predicates 
P2=HoldsAt(covers(R1,S1),7) and P3=HoldsAt(covers(R2,S1),7) are also confirmed 
without using belief measures, as they are both derived from the runtime events (E1) 
and (E2) in Figure 2. Finally, P4= ¬Happens(signal(R2,A1,S1),t,R(7,12))  is a 
negated predicate and, since no explanation of it can be generated from the 
assumptions of ATMS, the diagnosis process generates explanations of its positive 
form, i.e., Happens(signal(R2,A1,S1),t,R(7,12)). Following the same reasoning 
process as in the case of P1, Φ41=Happens(inspace(A2,S1,t,R(7,17)) will be derived 
as an explanation of ¬P4 with basic probabilities mE(Valid(Φ41))} = 0.5 and mE 
(¬Valid(Φ41))} = 0. Thus, Bel(Gen(¬P4))=0.5 and Bel(¬Gen(¬P4))= 0 and, from (F4) 
and (F5), Bel(¬Gen(P4))=0.5 and Bel(Gen(P4))= 0. Thus, P4 is reported as an 
unconfirmed predicate and, finally, as the cause of the rule violation.  

4   Related work 

In the context of model-based diagnosis, diagnosis focuses on the detection of 
system failures and typically involves the identification of traces of system events that 
have led to a failure (problematic event) using automata that recognise faulty 
behaviour [1][6][9][13][19]. In [6], diagnosis is carried through the synchronization 
of automata modelling the expected behaviour of a monitored system and the events 
captured from it. The approach in [9] is similar but decentralised as synchronisation is 
first performed for individual system components and then is aggregated for the 
global system. In [1][19], the problem of fault diagnosis, concerning time, has been 
studied by using timed automata to model systems.  

Our approach is different from the above, as our focus is not the detection of faulty 
behaviours. Such faulty behaviours are detected by the core monitoring capability of 
the framework described in [17] as violations of monitoring rules by the current trace 



of runtime events. The focus of our approach, in this paper, is the provision of 
possible explanations for the events that constitute the faulty behaviours and through 
them the confirmation or not of the genuineness of these events. The provision of 
such diagnostic information is necessary if the event traces which are taken into 
account by the monitor cannot be assumed to be complete and/or consist of trusted 
genuine events which have not been caused by malfunctioning system components or 
are the results of attacks. Another difference between the work in model based 
diagnosis and our approach is that to perform monitoring and the generation of 
diagnostic explanations for violations of properties, we do not assume a complete 
model of the system that is being monitored. Our approach can be based on a partial 
model of this system that includes the properties that should be monitored expressed 
as rules in Event Calculus, and assumptions about parts of the behaviour of the 
monitored system which are also expressed as EC formulas.  

The generation of abductive explanations considering temporal information is the 
main focus of interest of the research work described in [2] and [14]. In [2], a 
temporal abduction algorithm is described which makes use of temporal constraints 
associated with the observations and the formulation of the underlying domain theory. 
In [14], the time ranges of the generated explanations are calculated by the use of a 
computation method based on linear constraint satisfaction, while the uncertainty of 
explanations is treated through the use of probabilistic assessment scheme based on 
Bayesian inference [8].   

Our approach draws upon work on temporal abductive reasoning [2][3][11][16] 
and its applications to diagnosis [3][10], but is based on a newly developed algorithm 
for abductive search with EC which generates all the possible alternative explanations 
of a formula (unlike [2][16]), treats the time constraint satisfaction problem as a linear 
programming problem, and computes beliefs in explanations using the DS theory. 
These beliefs are also used in order to rank explanations and select some of them as 
the most plausible. The choice of the DS theory of evidence as the framework for 
calculating the likelihoods of abduced explanations has been dictated by the need to 
deal with uncertainty regarding the confirmation of the consequences of explanations 
as we discussed in Section 3.3 and to reason in the presence of this uncertainty.  

5   Conclusions and future work 

In this paper, we have presented the extension of a framework supporting the 
runtime monitoring of software systems which can provide diagnostic information for 
violations of monitored properties. The provision of diagnostic information is based 
on alternative explanations of events involved in violations of properties which are 
generated by abductive reasoning using a model of the monitored properties 
expressed in Event Calculus. Our approach supports also the computation of beliefs in 
the plausibility of explanations based on evidence about their expected effects that is 
gathered from the event log of the monitored system. A more detailed account of our 
approach and its implementation is given in [18]. 

Currently, we are extending the scheme for the assessment of the plausibility of 
explanations in order to take into account beliefs in the genuineness of events in the 



monitor’s log, which are used in order to derive the expected consequences of 
explanations of violation observations or match with these consequences and are, 
therefore, used as confirmatory evidence for them. Since the genuineness of these 
events may also be questioned, our approach may be extended to compute beliefs in it 
and use these beliefs as a weighting factor when taking such events into account for 
generating or confirming explanations. It should, however, be appreciated that 
extending our approach in this direction requires the establishment of a time window 
that will determine the event set, which should be taken into account in the process, 
since looking at the entire event log is unlikely to be feasible in real applications.  
Furthermore, we are currently performing an experimental evaluation of our approach 
in the context of industrial case studies used in the SERENITY project.   
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