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Abstract. Giving explanations is an important functionality of most systems that 
perform some sort of problem-solving, including intelligent tutoring systems. In order to 
make explanation techniques transparent and better reusable across kinds of applications 
and domains, various categorizations have been proposed, but they appear to be on a 
comparably low level of abstraction, oriented on the surface form of explanatory requests. 
Inspired by our work on the tutoring system Dialog that teaches students how to prove 
mathematical theorems, we distinguish categories of explanations according to the depth 
of understanding that these explanations aim at, ranging from expositions of reasoning 
chains to ingredients of problem solving techniques. The modular design of our system 
does not only allow the identification of methods closely related to these categories, but 
it also enables us to clearly distinguish methods for problem solving from methods for 
proper explanation. We are convinced that the field as a whole can profit from factoring 
out explanation methods per se, which have much to do with presentation and tailoring 
issues, and methods for problem-solving that provide enhanced evidence about the results 
and support inquiries on top of them – the proper explanation-aware problem-solving.

1  Introduction

Giving explanations is an important ingredient of many systems that exhibit reasoning capabi-
lities, including knowledge-based systems, question-answering systems, and intelligent tutoring 
systems. Categorizations of explanations are frequently oriented on types of requests, such as “Why 
are you doing <x>?”, or “How did you avoid the typical constraint <p>?” [23]. The perspective in 
this categorization lies on selective content determination, which is intertwined with problem-
solving methods and reasoning about their results. We feel that this approach is appealing for these 
kinds of explanations, but it is hard to generalize it for explanations that involve problem-solving 
on a larger scale, reasoning about the results obtained and the ways how they can be obtained.

We are convinced that the field as a whole can profit from factoring out explanation methods 
per se, which have much to do with presentation and tailoring issues, and methods for problem-
solving that provide enhanced evidence about the results and support inquiries on top of them – the 
proper explanation-aware problem-solving. Such a separation of functionalities would obviously 
strengthen the reuse of methods across applications, and it is likely to make the use of problem-
solving systems for subsequent explanatory requests more effective. This conception is inspired by 
the modular design of our tutoring system Dialog [4] that teaches students how to prove mathema-
tical theorems. In this paper, we discuss how this separation of functionalities enables us to address 
categories of explanations according to the depth of understanding that these explanations aim at, 
ranging from expositions of reasoning chains to ingredients of problem solving techniques. 

This paper is organized as follows. We first motivate our approach. Then we characterize our 
explanation categories in terms of functionalities and methods, with reference to their use in a 
variety of knowledge-based systems covering a number of domains. We give a brief description of 
the Dialog system, followed by describing its explanation-relevant techniques according to our cate-
gorization. Finally, we summarize our ingredients for categorizations of explanations.



2  Motivation and Categories of Explanations

Several categorizations of explanations have been proposed in the literature, most of them oriented 
on types of requests, including [30, 34, 23]. For example, the categorization underlying CALO [9, 
23] comes with a catalog of methods for determining the content required for addressing these 
questions. In addition, a plan language has been developed and successively refined [24], which 
takes care of conveying responses of the problem-solving components to be used for tailoring the 
presentation of explanations. Some complementary approaches aim at producing explanations of a 
different kind, including justifications for problem-solving results exposing the complete reasoning 
task, such as in the project HALO [27], and reasoning about potentially flawed actions as compared 
to appropriate problem-solving behavior [11], which is typical for intelligent tutoring systems.

For studying approaches to giving explanations, intelligent tutoring systems are an excellent 
target, since they cover a variety of situations and purposes in which explanations play a certain 
role. Ultimately, the purpose of these systems is to teach the student problem-solving capabilities 
in the domain at stake, by eliciting partial contributions to addressing specific problems studied in 
a tutorial session. In doing this, intelligent tutoring systems cover the kind of explanations 
mentioned above, especially explanations concerning problem-solving performance.

For our categorization, we assume that explanations always refer to some sort of problem-
solving which requires a non-trivial inference task and which either gives a unique solution, a set 
of solutions of equivalent value or with compensative properties, or at least a state in exploring the 
problem to a certain depth, which gives evidence about the state of affairs uncovered so far, in 
particular still promising paths to potential solutions and assessments about their state, such as a 
collection of competing arguments. The categorization is then oriented on a separation between 

1) the solution per se, 
2) inferences that do not contribute to the solution, and 
3) evidence about how the solution can be uncovered in the given problem space, yielding:

• Explanations aiming at the provision of justifications
This category of explanations addresses the problem solution per se. It aims at illustrating the 
reasoning process in terms of exposing the chain of inferences that proves the validity of the 
solution on the basis of the given context. Various perspectives on these inferences and 
adequate forms of condensation and aggregation can be adopted to built an adequate presentation 
out of these ingredients. The purpose of this explanation category is to make the reasoning 
behind a machine-found solution accessible to a human user, to make the justification given 
checkable to ensure a trust in its validity or at least plausible to obtain some confidence.

• Explanations aiming at the support for understanding of the problem space
This category of explanations adresses the problem space, in particular solution attempts and 
somehow plausible inferences that have been tried out or may have done so, but did not lead to 
sufficient success. These ingredients may be compared to the established solution in ways that 
depend on the nature of the problem at hand, including the proof of falsity and numerical or 
qualitative preferences. The purpose of this explanation category is to make the assessment 
underlying a machine-found solution plausible to a human user, to make the preferences over 
alternatives checkable or at least plausible to ensure a trust in the superiority of the solution.

• Explanations aiming at the development of performance capabilities
This category of explanations addresses techniques on how the problem space is explored, and 
how solutions can be established. Regarding the proper results, the associated explanations 
essentially address meta-information. The purpose of this explanation category is to enhance 
understanding in the problem-solving behavior of the system, which may be used to get 
acquainted with underlying assumptions and think about their impacts, or it may contribute to 
understanding the procedures applied or the principles underlying them, so that the user can 
develop skills to perform the underlying reasoning on his own.



3  Categories of Explanations

In this section, we describe technqiues for addressing the categories of explanations, as outlined in 
the previous section. To a certain extent, we put emphasis on tutoring systems, especially in 
sections 3.2 and 3.3 but, in general, we discuss this topic on a broader basis.

3.1  Explanations Aiming at Providing Justifications

Explanations in this category are mostly conceived as chains of inferences, when viewed in purely 
structural terms. Alternations and multiplicity of elements or subchains in the chains of inferences 
may be present, in case there are alternative ways to justify intermediate or final conclusions, or if 
there are multiple ways of reasoning leading to conclusions of a quality that makes them at least 
competitive. A prototypical example is the main variation produced by a chess program, as the 
heuristically justified “solution” to some position when computed with given limited resources. In 
the general case, the result of the reasoning process justifying the solution to some given problem 
manifests itself in a solution tree, which is typically developed as a proof graph by exploiting 
multiple references to subproblem solutions. A reasonable explanation of this kind of structure 
amounts to a presentation that interprets this structure as content specifications, transforms it into 
a suitable format, and accommodates it to the communicative needs of the audience; even if consi-
dering only content matters in this presentation, experience tells us that substantial modifications 
are required to make machine-found inference chains easily understandable by humans. 

Consequently, the problem of explanation-aware problem-solving amounts to casting the infer-
ence path that leads to the solution on a level of granularity that conforms to some sort of basic 
user communication level. This level is oriented on the pieces of knowledge that make up human 
domain expertise, which is formulated in terms of rules and domain principles in books and other 
teaching material. In formal domain, such as mathematics, this level of granularity corresponds to 
references to axioms, which is called Assertion Level [22] in the field of automated theorem 
proving. Depending on the calculus used for problem-solving, the task to enable adequate expla-
nations requires lifting the representation of the calculus on the user communication level. This 
may be associated with difficulties and may even be incomplete, especially if the problem-solving 
component integrates heterogeneous reasoning processes. Examples include references to quantita-
tive methods [27], and the incorporation of results produced by computer algebra systems in deduct-
ive reasoners [28]. These partial results are treated as results of external reasoners, which are inte-
grated as a single assertion level step in the solution path representation, the reference to the 
external reasoner serving as a justification, which is usually a reference to a domain axiom. In order 
to support flexibility in the presentation, reference to other levels of granularity of the solution 
path should be provided. This can be done explicitly, through annotations for more abstract forms, 
such as the application of methods or lemmas which comprise several subsequent assertion level 
steps, or this can be done on demand, through a systematic transformation process, such as break-
ing up an assertion level step into a sequence of Natural Deduction calculus steps, or by a recom-
putation performed by an external reasoner, thereby including the exposition of some local trace.

The proper explanation amounts then to a presentation of the solution path, at the basic user 
communication level, or it can be mixed up with representations on more abstract or occasionally 
more detailed levels, if such variations are available, and there is evidence on contextual or user-ori-
ented grounds that these alternations are considered superior. In addition, the presentation material 
should be presented selectively by leaving out contextually inferable reasoning steps to avoid 
redundancy, which is an extremely important measure in this kind of inference-rich discourse. 
Another important measure is aggregation of similar assertions, which may appear in some 
solution descriptions. In natural language presentations, performing aggregation adequately is asso-
ciated with difficulties, due to subtleties of coordination phenomena (e.g., ambiguities may be 
introduced). Hence, it should be easier to present a set of expressions underlying a regular pattern in 
a propositional form, such as mathematical formulas with quantifiers or value ranges. 



3.2  Explanations Aiming at Problem Space Understanding

In order to understand why a problem state qualifies as a solution, it is frequently not sufficient to 
be informed about details of the solution per se. Depending on the nature of the problem, it might 
be useful to explore alternatives that come close to the solution proposed in terms of some under-
lying metric. In design tasks, for example, it might be insightful to learn why some solution 
attempt that superficially looks promising ultimately turned out to be inferior. Such an exami-
nation is likely to strengthen the belief in the solution proposed, by getting acquainted with argu-
ments in favor of it, but also with some information about critical aspects, where competitive 
alternatives exist that could be considered superior with minor goal or assessment modifications.

Unfortunately, examinations of this kind typically require considerable specification effort on 
behalf of the user and they are associated with a good deal of extra computation to be carried out by 
the system. The reason for that lies in the organization of problem-solving algorithms, which aim 
at establishing a solution effectively, thereby cheaply refuting alternations in search paths, so that 
insufficient documentation for explanation purposes is yielded. A classical example are chess pro-
grams, which todate can outperform even the best players, but their explanation capabilities are 
poor in comparison to their performance. For instance, non-main-variation moves that look worth 
to be explored for a chess player frequently get assigned a cut-off value in the search tree, which 
contains no extra information. In order to learn about why such a move does not lead to success, a 
user has to try out this move, and sometimes several of them in sequence, and to re-start the search 
engine. Such an exploration is tedious, and it stands in contrast to good human analyses, where 
critical variations are given, enhanced by functional justifications for moves or sets of moves. 

The situation is better for problems which only require shallow search spaces so that detailed 
information on which results are based can be kept for subsequent reasoning processes. A nice 
example is the meanwhile historic backgammon program BKG [7], whose strength is mainly based 
on an elaborate evaluation function [6]. BKG comes with an explanation facility that aims at 
comparing decisions between two moves which is not done by a detailed and cumbersome listing 
of all factors involved; instead, it performs an analysis to identify decisive factors in the evaluation 
scores that dominates the other factors [8]. In some earlier work, we have pursued a similar goal for 
explaining preferences among decisions made by a constraint system, the application domain being 
room assignment in offices [15]. The idea is to find subsets of constraints that are responsible for 
the superiority of a design choice over another one, in the sense that they must be relaxed in order 
to change the preference among the competing design choices, whereas relaxing other constraints 
would not have this effect. Unfortunately, establishing these dominances requires the exploration of 
large portions of the overall search space, which is quite in constrast to modern constraint propa-
gation techniques that are well applicable to considerably larger problem spaces.

Similarly, deviations from the inference chain (more generally, inference graph) that constitutes 
the justification of a solution in proof problems can be examined, which is mostly done for 
tutoring purposes. Apart from incorrect inferences, which constitute a substantial share of problem 
step attempts made by students in tutorial sessions, it might be worth to examine correct 
statements, which may constitute reasonably looking proof attempts that ultimately turn out to be 
unsuccessful, or they may even contribute to an inference chain justifying the solution, but in a 
different way than the solution path found by the problem-solving component. Tutoring systems 
have their problems with solution attempts or requests of this form. For instance, the system 
ATLAS [32], which tutors students in the area of naive physics, sometimes is incapable to refute a 
hypothesis made by a student, if the required algebraic computations get too complex. To 
encounter this problem, tutoring systems frequently precompile solution presentations and partial 
justifications, associated with appropriate natural language forms, so that they can be activated in 
dependency of given dialog situations. Thus, explanation is largely decoupled from problem-
solving, which holds for the several tutoring systems. Consequently, providing contributions to 
explanations aiming at problem space understanding appears to be quite hard; it requires recom-
putations and sometimes selectivity in result presentations. 



3.3  Explanations Aiming at the Development of Performance Capabilities

Explanations in this category attempt to convey problem-solving knowledge to the user that is 
relevant for the issue at stake. A variety of pieces of knowledge and skill-developing advices may 
serve this purpose, depending on how the underlying task can be addressed. This may range from 

1) pure recipes in case a concrete procedure for solving the problem at hand exists, over
2) essentials in searching for a solution – in domains where intelligent tutoring systems apply 

model-tracing approaches (e.g., basic areas of mathematics and physics), to
3) more abstract and vague hints, typically in domains which cannot be addressed by model-tracing 

approaches (so-called ill-structured domains, such as law and domain modeling, for instance, 
building SQL-expressions or Entity-Relationship models).

In case there exists a well-defined procedure for carrying out the required task, explanations on a 
generic level aim at putting the user in a position to apply this recipe and to address the same 
problem or sufficiently similar ones on his own. In addition, knowledge about the methods applied 
may allow the user to assess the reliability of these methods and their potential limitations by 
checking the information sources and assumptions underlying the task considered.

 For domains in which problem-solving is reasonably well understood but requires some 
heuristic component in concrete operationalizations (thus, where model-tracing is applicable), a 
variety of techniques have been developed in the field of intelligent tutoring systems which essen-
tially mimic the behavior of human tutors in comparable situations. System reactions vary in 
dependency of the problem solving context, which comprises the degree to which the problem at 
hand is solved at some stage, as well as the most recent contributions of the student, which may 
range from successfully specified inference steps over partially useful specifications to completely 
useless or erroneous statements. In comparably simple domain, such as high-school algebra, 
explicit strategies such as partitioning the problem at hand, computing an example, and subse-
quently abstracting that example into the original problem have been carefully elaborated on the 
basis of transcripts from human tutoring sessions [14]. They guide the student through the 
problem-solving process in a few steps, with considerable learning success. For significantly more 
complex domains, such as naive physics, it is much harder to implement similar strategies as this 
has been done for high school algebra. A situation in a tutoring session can be addressed from a 
variety of perspectives, since the objectives for relevant inference steps comprise picking relevant 
pieces of domain knowledge, their adaquate interpretation and application, and some associated 
computations. Current systems apply dialog skripts [13] or sequences of hints or help messages in 
increasing precision [32], which in some sense constitute precompiled tutoring strategies, asso-
ciated with descriptions of tutoring situations.

For domains where model-tracing is not meaningfully applicable, the problem-solving situ-
ation can only be checked in some sort of functional terms. Consequently, not individual contri-
butions but the entire solution is subject to an examination, followed by advice generation. In 
constraint-based tutors, solutions proposed are checked as to what extent they meet the constraints 
imposed by the problem specification, so that violated constraints are identified [26]. Feedback 
about a solution proposed by a student addresses constraints according to their relative importance 
for the problem at hand, presentations being tailored to the context and expertise of the student.

For explanations in this category, the techniques developed for intelligent tutoring systems 
give evidence that it is much harder to factor out explanation-aware problem-solving and proper 
presentation components, as we have attempted to do for the other categories. However, it seems to 
be more realistic to lower the goal from teaching problem-solving skills to novices to conveying 
problem-solving techniques or information relevent for this purpose to reasonably knowledgeable 
users. For doing this, it looks promising to represent more abstract forms of knowledge, such as 
recipes, descriptions of problem-solving techniques, and meta-information, such as assumptions 
and sources of knowledge, and tailor and convey them according to situational user needs.



4  Explanation in Tutoring – A Case Study

In this section, we describe the explanation categories outlined in the previous section from the 
perspective of a tutoring system that teaches theorem proving in some subdomain of mathematics.

4.1  Our Tutoring Environment

The tutoring system referred to in this paper concerns system components and developments in the 
Dialog project. The goal of the project is (i) to empirically investigate the use of flexible natural 
language dialog in tutoring mathematics, and (ii) to develop a prototype tutoring system that 
incorporates the empirical findings. 

The experimental system engages a student in a dialog in written natural language to help 
him/her understand and construct mathematical proofs. A modular system architecture is adopted, 
by use of the proof system ΩMEGA [28]. For tutorial purposes, ΩMEGA has been adapted to 
handle proofs represented in a human-adequate form [33]. Interaction with ΩMEGA is mediated by 
a Proof Manager [3]. The task of the Proof Manager is to communicate with the proof system to 
check consistency and validity of (possibly ambiguous) interpretations of student utterances within 
the proof context, and to build and maintain a representation of the constructed proof. Moreover, 
based on feedback from ΩMEGA, the Proof Manager evaluates proof-relevant parts of the 
utterances with respect to completeness, correctness, and relevance, where correct proof steps may 
not necessarily be relevant in that they do not contribute to the progress in finding the proof 
solution. This categorization is an integral part of our tutorial strategies [31].

To investigate phenomena characterizing written computer-mediated tutorial dialogs, we have 
collected two corpora of tutor-student dialogs in two Wizard-Of-Oz experiments in the domains of 
naive set theory and mathematical relations, respectively. The subjects tried to solve three 
problems in naive set theory (e.g., If K(B) ⊇ A, then K(A) ⊇ B) resp. mathematical relations (e.g., 
(R ∪ S) ° T = (T- 1 ° S - 1)- 1 ∪ (T- 1 ° R - 1)- 1 ). In the first experiment, the subjects were divided into 
three groups and tutored with minimal feedback (only correctness and completeness evaluation), 
didactic (the expected realization of the given proof-step was included in tutor's feedback), or 
socratic strategy (the tutor guided the student at the solution by using hints, following a pre-defined 
hinting algorithm), respectively [2]. In the second experiment, the manipulated factor was the 
presentation of the study-material: verbose (using a mixture of natural language and formulas) 
versus formal (using mainly formulas). Further details of the setup can be found in [5]. [36] 
presents the results of the study on the influence of the presentation format.

As the experiments have shown, description in formal domains such as mathematics are charac-
terized by a mixture of natural language and formal expressions. Communicating in this mixed 
language form turns out to be quite effective, combining the preciseness of formal expressions 
with occasional sloppiness in natural language descriptions. In order to handle such descriptions, 
Dialog performs mathematical expression processing as part of the parsing component in an archi-
tecture for processing informal mathematical discourse [35]. This analysis consists of three stages:

(1) detection: mathematical expressions are identified within word-tokenized text;
(2) syntactic verification: the identified sequence is verified as to syntactic validity and, in case of a 

parentheses mismatch, a correction procedure is invoked, 
(3) parsing: a tree representation of the formula is built. 

The parsing component is part of a natural language interpretation component that interfaces the 
proof manager. Altogether, the basic processing pipeline involves four processing stages, where 
the three steps listed above form the first stage in the overall procedure: (i) mathematical 
expression identification and parsing, (ii) syntactic and semantic sentence parsing, (iii) step-wise 
domain interpretation, (iv) formal representation. As a combined natural language and formula 
presentation subsystem, we used the system developed earlier for proof presentation purposes [12].



4.2  Explanations Aiming at Providing Justifications

In the context of Dialog, this category of explanations concerns presentations of the proof of the 
theorem at hand or selected portions of it. This breaks down into transformations of the inference 
graph that represents the proof in the form of the calculus used for proving (typically resolution 
calculus) to an assertion level proof (the explanation-aware part), followed by various tailoring 
measures that aim at a presentation in natural language that mimics textbook proofs (the proper 
explanation part). Details of this process have been presented at the previous meeting of this 
conference series [18], major original contributions being [16] and [17]. An extension of the 
techniques originally developed for proof presentation to meet also tutoring purposes lies in the 
presentation of partial proofs, prominently individual proof steps [10], in accordance with [12]. 

For adequate use of these procedures in a tutoring session, the approach of using general 
problem-solving techniques followed by transformations into human-oriented representations turned 
out to be problematic for a number of reasons:

(1) Proof results
When left with methods optimized for problem-solving, which is what theorem provers are 
made for, the advantage of being quite powerful in finding proofs is to a certain extent compen-
sated by the sometimes unintuitive way in which proofs may occasionally be carried out. The 
consequence is, that transformations to the assertion level maintain this proof path, which may 
look quite unnatural to humans. For example, case distinctions are a conceptually meaningful 
and frequently used method for humans to address a proving task, but this technique is sparsely 
used by resolution-based provers, so that problems where case distinctions yield a simple and 
easily perceivable proof path may be solved quite differently by a machine. For example, when 
proving |a| |b| = |a b|, which easily be done by distinguishing according to positive and negative 
values of a and b, several automated theorem provers did not apply case distinctions at all.

(2) Incremental proof development
In a tutoring session, proofs are not treated as an integrated object that comes as a whole and is 
to be inspected according to some perspective of interest. A proof is rather developed incremen-
tally, in accordance with contributions of the student and operations done by the tutor, which 
reflect the state of the dialog within a tutoring session. Hence, the corresponding formal proof 
that is constructed in accordance with this dialog, must conform to the level of human-oriented 
inferences in which the proof is developed at all stages of incremental development.

(3) Proof step checking
The same considerations as for incemental proof development also hold for the purpose of 
verifying proof steps proposed by the student: the prover must be able to accommodate the 
level of granularity addressed, and it must do this for steps of varying complexity; student 
statements may refer to trivial inference steps, but also to quite complex ones, which require 
subproofs to be explored in order to make them understandable and verifiable.

Because of these requirements, we have abandoned the approach of transforming machine-found 
proofs to the assertion level in tutoring contexts. Instead, proofs are carried out on the assertion 
level itself, in a style that is in accordance with methods developed for proof planning [25], where 
inferences on a higher level of granularity are made, following recipe-like specifications of domain-
specific mathematical problem-solving techniques. [1] shows how reasoning can be based directly 
on the application of axioms in the mathematical subtheory which the tutoring task is about. 
Thereby, it is taken care that the problem-relevant inferences are applied and combined in a flexible 
manner, so that variations in the order of inferences and alternatives in inference steps and even 
subproofs that lead to the same intermediate results are maintained. The resulting proof structure is 
then more a graph representing a set of similar proofs with shared parts rather than a single one. In 
addition, a limited degree of variation in granularity is supported insofar as a subproof that counts 
as a lemma can be replaced by a reference to this lemma. 



4.3  Explanations Aiming at Problem Space Understanding

In the context of Dialog, this category of explanations concerns statements about problem solving 
steps addressed in the tutorial dialog. More specifically, inference steps described by the student are 
assessed as to their potential contributions to the problem solving process under development. 
Essentially, this task amounts to tentatively building extensions to a partially developed proof 
graph, on similar lines as described in the previous subsection. A particular feature thereby is the 
interpretation of inference step descriptions. From the perspective of the system, this analysis is 
complicated by various kinds of errors that students occasionally commit, by imprecision and 
vagueness in the specifications made, and by the sometimes unclear role of these specifications 
with respect to progress towards solving the problem at hand. In order to address these interpre-
tation problems, Dialog has some dedicated analysis components:

(1) An error-tolerant formula analyzer
A significant portion of proof step specifications is made in terms of mathematical formulas, 
mostly embedded in natural language descriptions. As exemplified by our corpora, students 
produce flawed expressions in many cases, most of them can be traced back to some conceptual 
confusion, such as using too strong or too weak operators (e.g., equal instead of less or equal 
resp. less or equal instead of less), or confusing operators with a converse one (e.g., set inter-
section and union). Based on these observations, formula interpretation comes with a generate-
and-test cycle that tries to remedy errors encountered with a limited number of conceptually 
motivated attempts [20]. Ultimately, a number of hypotheses associated with degrees of plausi-
bility according to the proof context and the modifications made is produced.

(2) A semantic interpreter that can handle terminological vagueness
For structurally simple mathematical objects, inference steps can usually be specified in natural 
language, as an alternative to mathematical formulas. In this form of specification, errors as 
mentioned above appear in terms of terminological inaccuracies and vagueness, although some 
of these expressions are established language uses according to textbooks. For instance, “both 
sets together“ can be interpreted as the union or as the intersection of the two sets. Similarly, 
the expression “A is contained in B” can be interpreted as a membership or as a subset relation, 
which can be resolved on the basis of the types of A and B. These expressions are handled by a 
two-stage analysis, in which formal expressions are built via explicit intermediate represen-
tations that maintain conceptual vagueness [19]. The resulting interpretation typically amounts 
to a set of alternatives, even in cases resolution is possible, since the tutorial situation may be 
such that enforcing the student to use exact terminology is considered a tutorial goal. 

(3) A proof step checker that can accommodate partial specifications
Based on interpreting a student's specifications as outlined in the two preceeding paragraphs, the 
resulting formal expressions must be compared to the inferential state of the partially developed 
proof. Interpretation in this context is made difficult by the fact that the formal specifications 
obtained may be partial or ambiguous. In particular, it may be unclear whether an inference is 
forward- or backward-oriented, that is, reasoning from the given facts to the goal, or in reverse 
direction. In order to enable interpretation under these circumstances, underspecification is 
accepted [1]. The alternative interpretations are tested as to their validity, which, as a by-product 
leads to the completion of originally incomplete specifications. This way, it can be found out 
whether or not there is a contextually meaningful interpretation for the student's specifications, 
including which of the possible interpretations are correct and which ones are not. This 
information is very valuable for determining the next dialog contribution of the system, in 
dependency of the tutoring strategy and the context given by the tutorial session.

Altogether, a lesson learned from work on Dialog is that the interpretation of explanatory requests, 
which is not given much emphasis in the literature, may be crucial, although tutoring systems 
appear to be a special case.



4.4  Explanations Aiming at the Development of Performance Capabilities

In the context of Dialog, this category of explanations concerns presentations of feedback about 
how a proposed contribution to a proof that is interactively developed fits into the state of this 
problem-solving process. In order to make this assessment, this contribution must be categorized 
according to its correctness and relevance, which has a strong influence on reactions of the tutoring 
system. For formally correct proof steps, we distinguish the following degrees of appropriateness:

(1) Correctness
A proof step is merely correct if it is has no syntactic or logical errors; it may, however, be 
underspecified in a number of ways, but it is still considered correct if it can be interpreted 
uniquely within the context of domain axioms. Moreover, the proof step considered fails to 
meet the criterion of being relevant for the proof at hand (see also the next item in this list).

(2) Relevance
A correct proof step is also considered relevant if it contributes to making progree towards the 
proof goal. We consider a proof step as being relevant, if it can be identified as a proof step in 
at least one of the possible proof variations that have been developed for the proof at hand. This 
is a strong assumption, since the verification relies on the availability of a set of proofs with 
sufficient variations in the applied proof methods, covering all reasonable proof paths (a kind of 
closed world assumption). Such a compromise is unavoidable, given the present insights about 
proof techniques (see also the discussion about the concept of relevance in [1]). 

(3) Adequacy
A relevant proof step is also considered adequate, if it is not only relevant for the proof at hand, 
but it is also specified on a level of granularity that is considered appropriate for tutorial 
purposes. In general, this amounts to a single assertion level step. The justification for this 
requirement is that the student should be enforced to express a proof in an explicit way, not 
leaving out inference steps in proof specifications other than elementary ones, such as appli-
cations of commutativity. Our experiments have shown that students occasionally make too 
coarse-grained specifications, which in some cases results from guessing and insufficient justi-
fication of inferences. Formal examinations of estimating an appropriate step size on the basis 
of the proof calculus have been presented in [29].

In addition to these categories, a proof step as specified by the student may contain formal 
errors, but they may be considered tolerable from a tutorial perspective, in case a (human) tutor can 
interpret the flawed proof step specification in a meaningful manner. The error analysis and correc-
tion component tries to approach these human interpretation capabilities, as well as the reactions 
observed [21]. If the error correction is considered successful, the system feedback does not only 
take into account the error observed or the degree of adequacy in which a proof step is specified, but 
both these factors play a certain role. According to our experiments, reactions by human tutors 
include mere refusals and various kinds of hints that focus on problem-solving ingredients relevant 
for the inference step just considered, thus addressing the error only. Occasionally, the focus is put 
on acceptance of specifications with minor faults by making an explicit correction (“apparently, 
you meant 

€ 

∈  instead of (the last) 

€ 

∨”, when the tutor faced the following flawed formula, 
  

€ 

∃z ∈ M :(x, y)∈ R oT ∨ (x, y)∨ S oT , where the student misued the cut-and-paste facility), or on 
making an assessment that indicates a mistake in the specifications in such a way that this practi-
cally comes out to an acceptance, provided the faulty element is corrected (“that would mean the 
union instead of the intersection”, if the student has used the ∪-operator instead of the ∩-operator). 

The purpose behind hints and other feedback in a tutoring session lies in encouraging the 
student to carry on with the problem-solving process, by giving away as little information as 
possible, which is known to increase the learning effect. In tutoring of formal domains, hints and 
other situational help messages are given, since no generic recipes for addressing a problem are 
known in most tutoring domains (such as mathematics and most of its subareas).



5  Discussion and Conclusion

In this paper, we have advocated in favor of a high-level categorization of explanations, based on 
degrees of depth of understanding that explanations in each category aim at. These categories are 
associated with representation and processing techniques that partition explanations into a an 
explanation-aware problem-solving part and a proper explanation, that is, presentation part. These 
techniques differ substantially across the three categories defined in this paper: 

(1) Explanations aiming at providing justification
(2) Explanations aiming at problem space understanding
(3) Explanations aiming at problem-solving skills

For addressing explanations belonging to the first category, partitioning the explanation 
process into an explanation-aware problem-solving part and a proper explanation presentation part 
can be organized in a comparably simple manner. The problem-solving process can perform its 
computations in a way that is widely independent of giving explanations, to allow for efficient 
searching. At the end, however, the results must be transformed into a form that corresponds to 
some sort of a “human calculus” (such as the assertion level), yielding a kind of “main variation” 
justifying the solution, so that these results can be communicated appropriately. In addition to this 
basic level of granularity, higher levels of abstraction may be of interest, if available. Techniques 
to set up a reasonable transformation process largely depend on the representation underlying the 
reasoning process: for logical systems, appropriate definitions of rules underlying a “human 
calculus” enable suitable transformation techniques. Symbolic mathematical systems (computer 
algebra systems) may only allow a functional view on the mere results of a computation, espe-
cially when the computation is based on some iterative process. For hierarchically decomposable 
computations, intermediate results can be made available, which may be even at several levels of 
abstraction, including some kind of summarization of computing steps and even decompositions 
into finer-grained levels. In contrast to that, constraint systems make their computations in a 
fundamentally different way, aiming at performance, so that the concept of a “main variation” 
cannot be identified in their solution space.

For addressing explanations belonging to the second category, it is advisable to perform the 
problem-solving computations on a level comparable to the “human calculus”, as we did in the 
Dialog project, even though there exist more efficient calculi for theorem proving. The main 
motivation for adapting representations for the reasoning procedure to the level needed for expla-
nation lies in the support for incrementality. The representations of reasoning paths built during 
problem-solving can be reused to accommodate the reasoning about a specific request. Otherwise, 
computations would have to be started from scratch for each request that features some alternation 
in the solution path or in the description of a feasible solution state.

Addressing explanations belonging to the third category essentially comprises three kinds of 
quite divergent presentations, distinguished according to the degrees of adaptation required:

(1) Meta-information – this comprises various kinds of knowledge that needs to be properly repre-
sented by indicating the role it bears so that it can be accessed when needed

(2) Generic recipes – this piece of information may simply be accessed, but a reasonable use might 
also be a selective and partially instantiated version accoding to contextual demands

(3) Hints – this kind of presentation is specific to tutoring applications, and it typically comprises 
variations of pieces of problem-solving knowledge at varying degrees of concreteness

The main purpose of this categorization lies in envisioning a separation of explanation-aware 
problem-solving form proper explanation presentations, to make the results of problem-solving 
processes reasonably accessible and to avoid or at least reduce recomputations. Some conditions 
under which this aim is supported have been discussed and exemplified by a variety of systems.
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