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Abstract. The information extraction system iDocument interactively
extracts information from text such as instances and relations with re-
spect to existing background knowledge. An extraction process creates
weighted recommendations describing indications of relevant informa-
tion. During execution, each process step records its output into an in-
stantiated process model. We reused these bits of information for gener-
ating conceptual, functional as well as causal explanations. The purpose
of these explanations is to illustrate the evolution of recommendations
for convincing users of their validity. In order to visualise explanations,
our component utilises different mechanisms for textual, tabular, and
graphical rendering styles.
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1 Introduction

The need for explanations in computer science has been recognised since the
first generation of expert systems [1–3]. The main goal of explanations in expert
systems was to justify the results of reasoning processes supporting the user’s
decision processes and increasing trust in results [4]. This concerns not only
expert systems but also knowledge based systems in general.

We consider three participants in any explanation scenario as depicted in
Figure 1. We call the system or agent that provides the solution to some problem,
a technical device, a plan, or a decision to be explained the originator.

This agent is interested in which way the user reacts after receiving the ex-
planation. The user is the second participant in our scenario. He is the addressee
of the explanation. Finally, the explainer presents the explanation to the user.
This agent is interested in transferring the intention of the originator to the user
as correctly as possible. The explainer selects the style of the explanation and
is responsible for the computational aspects as well as for organising a dialog if
needed.



Fig. 1. General explanation scenario [5]

The user applies the explanation in some way. With this application, in prin-
ciple, a utility is connected, either for the user or for the originator. It depends
on the application which utility dominates. Sometimes the user is mainly inter-
ested in reacting properly and sometimes the primary interest is on the side of
the originator.

In this paper we describe explanations used in the knowledge-based infor-
mation extraction system iDocument3. Based on a knowledge base (KB), iDoc-
ument (originator) generates recommendations for annotating documents with
relevant information and finally for populating the KB with extracted infor-
mation, namely instances and relations. As recommendations as such are not
self-explanatory, the explanation facility (explainer) of iDocument supports dif-
ferent kinds of explanation and communicates these explanations by use of tex-
tual, graphical and tabular visualisations. The purpose of the explanations is to
illustrate the evolution of recommendations for convincing users of their validity.
The system is transparent for users, which in [6] is described as one important
explanation goal. The prospective user of iDocument is a knowledge worker who
is familiar with the contents of the KB.

The paper is organised as follows. Firstly, we describe the notion of expla-
nation. Then, we introduce iDocument and its explanation facility. Finally, we
briefly summarise the results and a future outlook on our work.

2 Explanations

The notion of explanation is used in different situations and has several as-
pects [7]. For instance, explanations are used to describe the causality of events
or the semantics of a concept. Explanations help correcting mistakes or serve as
(moral) justifications. They are used to describe functionalities and to communi-
cate practical knowledge. Hence, the term explanation is an ambiguous notion.

3 http://idocument.opendfki.de/



2.1 Explanations in Philosophy of Science

Scientific explanations are a topic in Philosophy of Science. An important model
was developed by Hempel and Oppenheim [8]. According to Hempel, an expla-
nation is the answer to a why-question which can be derived from facts with the
application of general laws. Here, the explanation is called explanandum and the
facts and laws constitute the explanans. For instance, an explanation could be
based on the following reasoning process: All children like chocolate. Ralf is a
child. In conclusion, Ralf likes chocolate. The law All children like chocolate and
the fact Ralf is a child make up the explanans, which does the explaining.

Other explanation models in Philosophy are analogy models pointing out an
analogy between two domains whereas one is known or familiar [9]. In former
times many philosophers had the opinion that explanations of phenomena could
be reduced to something familiar. The acceptance of the isomorphism depends on
the fact that laws in both domains are known. Hence, analogies are not suitable
for scientific explanations but they could be used to provide hypotheses with
supporting character [6, 10].

2.2 Explanations in Expert Systems

Expert systems are designed to solve problems similar to human experts in cer-
tain domains. In the first generation of expert systems explanations are recog-
nised as key feature explaining solutions and reasoning processes. Hence, ex-
planation facilities were an important component to support the user’s needs
and decisions [11]. Often explanations were nothing more than (badly) para-
phrased rules because important aspects were missing or too much information
was given [12]. In order to improve on dialogues, second generation systems
focused on context, goals and actions, methods and justifications to support
explanations, together with an even richer knowledge representation.

Spieker [13] distinguishes several kinds of explanation, which we adopt in
this paper. Conceptual explanations concern questions such as “What is...?”, or
“What is the semantics of...?”. The purpose of these explanations is to establish
cognitive links between unknown and known concepts. Conceptual explanations
can be given in different forms such as definitions, theoretical propositions, pro-
totypical examples, or functional descriptions.

The goal of why-explanations is to explain the cause or the justification for
a fact or a current situation. One clearly has to distinguish between causes and
justifications. Whereas the first concept is causal in nature and not symmetric,
the latter only provides evidence for what has been asked for. How-explanations
are a special case of why-explanations and ask for an explanation of the function
of a device. They describe processes leading to an event using a causal chain.

In order to justify the need for explanations in iDocument, we give a concise
introduction of its functionalities.



3 iDocument

iDocument is a knowledge-based information extraction (KBIE) system. We ex-
plain KBIE as a special form of a traditional IE process that is well explained
in [14]. KBIE extracts relevant bits from text with the help of an underlying
knowledge base. If this knowledge base uses formal ontologies for knowledge rep-
resentation, we speak of ontology-based IE (OBIE). Concerning OBIE systems,
the knowledge base separates ontologies for structuring information domains,
rules for expressing integrity and regularities, frame-like instances describing
concrete knowledge, and, finally, relations for expressing behaviour between in-
stances. Figure 2 shows the architecture and process of an OBIE system as
being implemented in iDocument. The extraction process is based on cascading
extraction tasks and comprises the following steps:

Fig. 2. Architecture and process of a knowledge-based IE system

1. Normalisation: Extracts metadata about and plain text data from docu-
ments that are coded in textual or binary file formats.

2. Segmentation: Partitions plain text into hierarchical ordered segments,
namely: paragraphs, sentences, and tokens.

3. Symbolisation: Recognises known tokens or token sequences as symbols
and unknown noun phrases as named entities.

4. Instantiation: Resolves and disambiguates symbols as occurrences of in-
stances, relations, and properties.

5. Contextualisation: Resolves recognised relations between and properties
of instances with respect to existing contexts such as the document, the
user’s question, or the knowledge base. Entities that cannot be resolved to
existing instances are classified as new instance.

6. Population: Evaluates extracted instances, properties, and relations. Valid
information is populated into the knowledge base.



In iDocument, input is matched by finite-state cascades and evaluated by
an underlying knowledge base. Thus, iDocument generates weighted hypotheses
about matches. Weights are defined as belief values according to Dempster-
Shafer [15]. This allows to express a belief in an event X with e.g., bel(X) :=
0.6. The complement 1 − bel(X) describes the remaining uncertainty, which
differs from Bayes probabilities, where 1 − P (X) defines the probability of the
complement event 1− P (X) = P (¬X).

We restrict ourselves to using positive pattern matches for simplifying the
calculation of belief values here. We define the range ]bel, 1.0] between belief
and absolute certainty in a hypothesis as uncertainty. As depicted in Figure 3,
we define four ranges of belief regarding the amount of certainty to be used
in hypotheses. Belief values less than 0.25 are called uncertain. Belief values
less than 0.5 are defined as unrealistic. Realistic belief values are less than 0.75.
Higher values are defined to be certain.

0.0 0.25 0.5 0.75

uncertain unrealistic realistic certain

1.0

Fig. 3. A scale of belief values

iDocument aims at assisting users with valuable recommendations for a given
text. Each extraction task creates recommendations in form of hypotheses with
weights representing belief values. The hypotheses are conceptualised using an
application ontology4.

Existing hypotheses may lead to new hypotheses in proceeding tasks. As a re-
sult, a complex mesh of hypotheses describes final recommendations concerning
document and knowledge base. In spite of this complexity, the user interface of
iDocument is kept slender and provides a quick overview of extracted recommen-
dations. It may be that users doubt these recommendations because in general
they are not self-explanatory. In order to convince users of the validity of recom-
mendations additional information is needed. Justifying the recommendations
essential aspects of the derivation are presented to users (why-explanations).
This especially concerns explanations of the steps instantiation and contextuali-
sation. In general, the belief in recommendations is not self-explanatory as well.
Information about the calculation of belief may also contribute to accepting rec-
ommendations (how-explanations). Different types of hypotheses are involved in
these calculations. For understanding the calculations it is essential to describe
the semantics of the different kinds of hypotheses (what-explanations).

According to Roger Shank, a cognitive psychologist and computer scientist,
explanations are considered the most common method used by humans to sup-
port decisions [16]. In iDocument explanations serve as information to under-

4 http://ontologies.opendfki.de/repos/ontologies/obie/annotation



stand the semantics of the analysed document itself. Hence, they are helpful to
populate the KB with just the relevant information.

4 Explanations in iDocument

iDocument’s explanation facility—the explainer in Figure 1—makes use of its
rule base, application ontology, and process model. Rule-based explanations are
the first choice for explaining recommendations and have been investigated, e.g.,
in expert systems research. Because rules are used for generating recommen-
dations, the authors took advantage of this fact in order to generate textual
explanations. Textual explanations are suitable for describing complex and diffi-
cult facts. But explanations should not be too complicated. A way of abstracting
from details is provided by graphical explanations. They help users to understand
recommendations by supporting comprehension [17].

Not only end users but also experts and developers need explanations. They
need the opportunity to analyse the evolution of the recommendations in detail.
For this reason the explanation facility of iDocument provides a component to
explore the extraction process with the aid of linked tables. Textual, graphical
and tabular explanations are described in the following sections.

Fig. 4. Screenshot of iDocument



4.1 Textual Explanations

Inference Concerning why-explanations, we justify hypotheses with the help
of rules.

Consider the instantiation task of the previous section where unknown enti-
ties can be recommended as new class instances. Let iDocument assume that the
symbol Sheuli Doe is an instance of the class person because Sheuli is a known
first name in the KB. But users may not be familiar with the first name Sheuli
so there is the need for clarification.

The recommendation (hypothesis) is based on a rule phrasing If a part of a
symbol is a known first name, the symbol may be an instance of a person. The
rule and the listed facts explain why the symbol may be an instance of a person
(compare to scientific explanations in Section 2.1).

For giving such explanations, an inference engine is needed that is capable of
providing information about its reasoning processes. In general, this information
is not accessible so that it is necessary to analyse the trace of the inference
engine. In iDocument we used SWI Prolog5 and mapped rules of the KB to
Prolog predicates of a certain pattern. The pattern allows storing the firing
rules and the applied facts as well.
Consider a rule representing the example form above:

symbol(?x) ∧ part(?x, ?y) ∧ firstname(?y) → person(?x)

This rule is mapped to the following predicate pattern:

rule(head([X]), body([Y ])) : −head([X]), body([Y ]).

The arguments of head and body are lists which contain the expressions from
the rule above including the variables and atoms. Head and body of the rule
predicate have to be proven so that variables are bound to concrete values.

If someone wants to know why Sheuli Doe may be a person, an appropriate
query is formulated phrasing Is there a rule R with a head H?. In this case,
the head contains the person hypothesis about Sheuli Doe. The inference engine
returns the body of the firing rule, such that all necessary information for the
explanation is available: the rule and the facts. Both are verbalised with the
approaches described in the following subsection.

Verbalisation iDocument’s verbalisation component summarises hypothetical
information of the process model and rule-based knowledge. The main under-
lying idea is to express information of the knowledge base with the help of
MultiNet [18]. MultiNet is a representation language for the semantics of nat-
ural language expressions. As its name implies it is an extension of semantic
networks and relies on several means of expressions such as notion representa-
tives or relations.

Any kind of notion is represented by a node of the semantic network whereby
the relations are used to describe cognitive relations between these notions. The
5 available at http://www.swi-prolog.org



semantics of the relations is to characterise object notions or describe the se-
mantic role of notions in sentences expressing a situation.

The example about Sheuli Doe is verbalised as follows: Sheuli Doe may be
person because Sheuli is a known first name of the knowledge base.

The verbalisation of hypotheses is accomplished by an extension of the ap-
plication ontology. Each concept and each relation in the ontology is annotated
with information such as the infinitive of a generic notion. In addition, the an-
notations also provide information about the connection of relations of the ap-
plication ontology and MultiNet relations. The generation of English sentences
is realised with the SimpleNLG6 library of Ehud Reiter. This tool generates cor-
rect English sentences when provided with subject, predicate and object. In our
implementation these syntactic roles are indicated by MultiNet relations.

4.2 Graphical explanations

Rules are useful to explain simple connections. But frequently, several rules
(much verbal information) are required to explain recommendations, affecting
the understandability of the visualisation [17]. In order to provide understand-
able explanations, which is an essential aspect of explanations [11], iDocument
makes also use of graphical explanations, thus simplifying understanding of dif-
ficult and complex steps of the extraction process.

Fig. 5. Cluster hypothesis (screenshot)

6 http://www.csd.abdn.ac.uk/ ereiter/simplenlg/



Graphical explanations consist of three components: graphics, textual infor-
mation, and legend. In general, graphics are used for explaining hypotheses or
for comparing competitive hypotheses supporting the user to construct his own
hypotheses. The textual part provides all necessary information to verify these
constructed hypotheses. The legend, finally, links used symbols with iDocument,
thus, providing conceptual explanations. Mainly, iDocument uses two types of
graphics: mathematical graphs and charts.

Mathematical graphs are used for visualising cluster hypotheses as shown in
Figure 5. The hypothesis is about a project (“Nepomuk”) and related persons
(“Leo Sauermann”, “Michael Sintek”, etc.). A document icon at the top right of a
concept indicates that the associated string occurs in the analysed document. All
persons are related to the project in the same way: they are project members.
The graph integrates different bits of information enabling a quick overview
which could not be realised as easily by lists, text, or rule-based information.

But graphs are also used to point out analogies according to user feedback.
Consider an article about two groups A and B and a person P which is related
to both groups expressed by the relation r. In this case, iDocument generates
a cluster hypothesis containing the corresponding instances A, B and P of the
knowledge base. Let A and P be accepted by the user and let B be the topic of
interest. The graphics visualises the cluster hypothesis as graph and highlights
a helpful analogy. In this case the graphics signifies that P relates to A like P
relates to B, so B might by interesting for the user.

average frequency

frequency

be
lie

f explanation

dfki

and

in

Fig. 6. Belief distribution

An important aspect of the graphics is to provide as much information as
necessary but not to give too much information. This strategy is realised in the
graphics of Figure 6 comparing belief distribution of token and symbol hypothe-
ses. The visualisation of all calculated beliefs is not useful. For this reason, there



is just a selection of some beliefs and according hypothesis. The selection is based
on the ranges presented in Section 3. For each range there is a random selection
of a belief and corresponding token or symbol.

The intention of the chart is to explain different issues at one glance. The
points in the upper curve represent hypotheses about tokens occurring in docu-
ment and ontology as well (symbol hypotheses). The points in the lower curve
represent tokens of the document that do not occur inside the KB. A concrete
point describes a correlation between the frequency of a token and the belief
of the corresponding hypothesis, which indicates the relevance of the tokens for
the document. The vertical dashed line represents the average token frequency
of the document.

The chart illustrates that the higher the belief in a token is, the closer its
frequency is to the average token frequency. The chart also shows that sym-
bol hypotheses have a higher belief than simple token hypotheses. A cognitive
abductive reasoning process may lead to the conclusion that the calculation of
belief depends on three input parameters: the type of the hypothesis, the token
frequency and the average token frequency. These charts can help the user in
understanding why some frequencies are higher or lower than the one of interest.
Furthermore they also support the meaningfulness of beliefs, which may increase
trust. In general, tokens such as “and” or “in” are stop words whereas “dfki”
and “explanation” are meaningful words.

4.3 Tabular information provision

The explanation facility of iDocument enables exploring process model and ap-
plication ontology as well with the aid of linked tables. Whereas explanation so
far is aimed at end-users, exploration is intended for IE experts and developers.
The exploration was already valuable for detecting errors and improving the
system by the authors.

The exploration component provides three kinds of information regarding the
knowledge base: instance knowledge, conceptual knowledge, and process knowl-
edge. Hence the exploration component of the explanation component is used
to give what- and how-explanations. The knowledge about an instance or con-
cept is given by a list of all associated information and the relation itself. For
example, the associated information about a symbol hypothesis explains what
this hypothesis is about (what-explanation).

In iDocument, there are several methods calculating values for different pur-
poses which represent mathematical functions. For instance, there is a method
calculating the belief of token hypotheses. In normal programs, these methods
are black boxes because the calculation is not transparent for users. In iDocu-
ment all operations concerning these methods are logged with the use of a certain
ontology. This ontology is capable of representing mathematical expressions such
as sums or products. Such expressions always consist of an operator, at least one
argument and a corresponding value. The call of the mentioned methods entails
the logging of several information bits. Because the methods represent mathe-
matical functions, the logged information can be used to determine that function.



The presentation of the process knowledge presents the mathematical function,
its parameters, the calculation, and its values realising how-explanations.

The logging functionality is based on AspectJ7 which is an aspect-oriented
extension for the Java programming language. AspectJ allows developers to de-
fine certain constructs called aspects. Mainly, aspects cover two entities: point-
cuts and advices. A Pointcut describes a set of join points which represent an
interesting point in the control flow of a program of a certain pattern. Advices
represent additional code, which is executed whenever the program execution
reaches one of the join points. Hence, AspectJ enables developers to integrate
functionality before, around and after method calls.

The main advantage for using AspectJ is that it is not necessary to include
the logging functionality in the source code of iDocument. Both source codes
are separated from each other. But also another problem is solved with the
aspect oriented programming paradigm. iDocument was realised in a dynamic
way. For instance, the calculation of different belief values changed from time to
time. Using a special logging library it was not necessary to adapt the pointcuts,
join points, and the advices. Hence, this aspect of the explanation facility is
independent from iDocument. The approach may be understood as some kind
of explanation-aware computing.

5 Summary and Outlook

In this paper, we described the explanation facility of the knowledge-based infor-
mation extraction system iDocument. It makes use of three kinds of information
provision, explaining the significance of iDocument recommendations: graphi-
cal explanations, rule-based, and explorative explanations. We pointed out that
it is important to provide these different information paradigms regarding un-
derstandability of explanations. We also presented first approaches to gather
information enabling explanation-aware computing.

The logging of information that serves as explanation base is still a great
challenge in computer programs. This concerns not only the knowledge repre-
sentation of the gathered information but also the knowledge extraction during
the program flow. Furthermore the question about which information and how
much information is needed has to be answered.
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