
Embedded System Construction – Evaluation of Model-

Driven and Component-Based Development Approaches

Christian Bunse
1
, Hans-Gerhard Gross

2
, and Christian Peper

3

1
 International University in Germany, Bruchsal, Germany

Christian.Bunse@i-u.de
2
 Delft University of Technology, Delft, The Netherlands

h.g.gross@tudelft.nl
3
 Fraunhofer Institute for Experimental Software Engineering, Kaiserslautern, Germany

Christian.Peper@iese.fraunhofer.de

Abstract. Model-driven development has become an important engineering para-
digm. It is said to have many advantages, such as reuse or quality improvement,

over traditional approaches, even for embedded systems. Along a similar line of

argumentation, component-based software engineering is advocated. In order to
investigate these claims, the MARMOT method was applied to develop several

variants of a small micro-controller-based automotive subsystem. Several key fig-

ures, like model size and development effort were measured and compared with

two main-stream methods: the Unified Process and Agile Development. The
analysis reveals that model-driven, component-oriented development performs

well and leads to maintainable systems and a higher-than-normal reuse rate.

Keywords: Exploratory Study, Embedded, Model-Driven, Components

1 Introduction

Embedded software design is a difficult task due to the complexity of the problem

domain and the constraints from the target environment. One specific technique that

may, at first sight, seem difficult to apply for the embedded domain, is modeling and

Model-Driven Development (MDD) with components. It is frequently used in other

engineering domains as a way to solve problems at a higher level of abstraction, and

to verify design decisions early. Component-oriented development envisions that new

software can be created with less effort than in traditional approaches, simply by

assembling existing parts. Although, the use of models and components for embedded

software systems is still far from being industrial best practice. One reason might be,

that the disciplines involved, mechanical-, electronic-, and software engineering, are

not in sync, a fact which cannot be attributed to one of these fields alone. Engineers

are struggling hard to master the pitfalls of modern, complex embedded systems.

What is really lacking is a vehicle to transport the advances in software engineering

and component technologies to the embedded world.

Software Reuse is currently a challenging area of research. One reason is that software

quality and productivity are assumed to be greatly increased by maximizing the (re)use of

MODELS`08 Workshop ESMDE

41

mailto:Christian.Bunse@i-u.de
mailto:h.g.gross@tudelft.nl
mailto:Christian.Peper@iese.fraunhofer.de

(part of) prior products instead of repeatedly developing from scratch. This also stimulated

the transfer of MDD and CBD [12] techniques to the domain of embedded systems, but

the predicted level of reuse has not yet been reached. A reason might be that empirical

studies measuring the obtained reuse rates are sparse. Studies, such as [7] or [8] examined

only specific aspects of reuse such as specialization or off-the-shelf component reuse, but

did not provide comparative metrics on the method’s level. Other empirical studies that

directly focus on software reuse either address non-CBD technology [14], or they focus on

representations on the programming language-level [15]. Unfortunately, there are no

studies in the area of MDD/CBD for embedded systems.

This paper shortly introduces the MARMOT system development method. MARMOT

stands for Method for Component-Based Real-Time Object-Oriented Development and

Testing, and it aims to provide the ingredients to master the multi-disciplinary effort of

developing embedded systems. It provides templates, models and guidelines for the prod-

ucts describing a system, and how these artifacts are built. The main focus of the paper is

on a series of studies in which we compare MARMOT, as being specific for MDD and

CBD with the RUP and Agile Development to devise a small control system for an exte-

rior car mirror. In order to verify the characteristics of the three development methods,
several aspects such as model size [13] and development effort are quantified and ana-

lyzed. The analysis reveals that model-based, component-oriented development performs

well and leads to maintainable systems, plus a higher-than-normal reuse rate, at least for

the considered application domain.

The paper is structured as follows: Section 2 briefly describes MARMOT, and Sec-

tions 3, 4, and 5 present the study, discuss results and address threats to validity. Fi-

nally, Section 6 presents a brief summary, conclusions drawn, and future research.

2 MARMOT Overview

Reuse is a key challenge and a major driving force in hardware and software devel-

opment. Reuse is pushed forward by the growing complexity of systems. This section

shortly introduces the MARMOT development method [3] for model-driven and

component-based development (CBD) of embedded systems. MARMOT builds on

the principles of KobrA [1], assuming its component model displayed in Fig. 1, and

extends it towards the development of embedded systems. MARMOT components

follow the principles of encapsulation, modularity and unique identity that most com-

ponent definitions put forward, and their communication relies on interface contracts

(i.e., in the embedded world these are made available through software abstractions). An

additional hardware wrapper realizes that the hardware communication protocol is trans-

lated into a component communication contract. Further, encapsulation requires separating

the description of what a software unit does from the description of how it does it. These

descriptions are called specification and realization (see Fig. 1).

The specification is a suite of descriptive (UML [11]) artifacts that collectively define
the external interface of a component so that the component can be assembled into or used

by a system. The realization artifacts collectively define a component’s internal realiza-

tion. Following this principle, each component is described through a suite of models as if

it was an independent system in its own right.

MODELS`08 Workshop ESMDE

42

Fig. 1. MARMOT component model.

The fact that components can be realized using other components, turns a MARMOT

project into a tree-shaped structure with consecutively nested abstract component repre-

sentations. A system can be viewed as a containment hierarchy of components in which

the parent/child relationship represents composition. Any component can be a contain-

ment tree in its own right, and, as a consequence, another MARMOT project. Acquisition

of component services across the tree turns a MARMOT project into a graph. The four

basic activities of a MARMOT development process are composition, decomposition,

embodiment, and validation as shown in Fig. 2.

Fig. 2. Development Activities in MARMOT.

Decomposition follows the divide-and-conquer paradigm, and it is performed to sub-

divide a system into smaller parts that are easier to understand and control. A project al-

ways starts above the top left-hand side box in Fig. 2. It represents the entire system to be

built. Prior to specifying the box, the domain concepts must be determined, comprising

descriptions of all relevant domain entities such as standard hardware components that

will appear along the concretization dimension. The implementation-specific entities de-

termine the way in which a system is divided into smaller parts. During decomposition,

Structural Model

(UML class/object
diagrams)

Functional Model

(operation specs.)

Behavior Model

(UML statechart diagram)

Decision ModelSpecification

Realization

Structural Model

(UML class/object
diagrams)

Interaction Model

(UML collaboration
diagrams)

Activity Model
(UML activity
diagrams)

Decision Model

S
y
s
te

m

C
o

m
p

o
n

e
n

t

Specification

MODELS`08 Workshop ESMDE

43

newly identified logical parts are mapped to existing components, or the system is decom-

posed according to existing components. Whether these are hard- or software is not impor-

tant since all components are treated in a uniform way, as software abstractions.

Composition represents the opposite activity, which is performed when individual

components have been implemented or reused, and the system is put together. After

having implemented some of the boxes and having some others reused, the system

can be assembled according to the abstract model. The subordinate boxes with their

respective super-ordinate boxes have to be coordinated in a way that exactly follows

the component description standard introduced above.

Embodiment is concerned with the implementation of a system and a move towards

executable representations. It turns the abstract system (i.e., models) into concrete

representations that can be executed. MARMOT uses refinement and translation pat-

terns for doing these transformations. MARMOT supports the generation of code

skeletons and can thus be regarded as a semi-automatic approach.

Validation checks whether the concrete representations are in line with the abstract

ones. It is carried out in order to check whether the concrete composition of the em-

bedded system corresponds to its abstract description.

3 Description of the Study

In general, empirical studies in software engineering are used to evaluate whether a “new”

technique is superior to other techniques concerning a specific problem or property. The

objective of this study is to compare the effects of MARMOT concerning reuse in embedded
system development to other approaches such as the Unified process and agile development.

The study was organized in three runs (i.e., one run per methodology). All runs fol-

lowed the same schema. Based on an existing system, documentation subjects performed

a number of small projects. These covered typical project situations such as maintenance,

ports to another platform, variant development, and reuse in a larger context. The first run

applied MARMOT. The second run repeated all projects but used a variation of the Uni-

fied process, specifically adapted for embedded system development. The third run, apply-

ing an agile approach, was used to validate that modeling has a major impact and to rule

out that reuse effects can solely be obtained at the code level. Metrics were collected in all

runs and were analyzed in order to evaluate the respective research questions.

3.1. RESEARCH APPROACH

Introducing MDD and CBD in an organization is generally a slow process. An organiza-

tion will start with some reusable components, and eventually build a component reposito-

ry. But they are unsure about the return on investment gained by initial component devel-

opment plus reuse for a real system, and the impact of the acquired technologies on quality
and time-to-market. This is the motivation for performing the study and asking questions

on the performance of these techniques.

Research Questions. Several factors concerning the development process and its

resulting product are recorded throughout the study in order to gain knowledge about

using MDD and CBD for the development of small embedded systems. The research

MODELS`08 Workshop ESMDE

44

questions of the case-study focus on two key sets of properties of MDD in the context of

component-oriented development. The first set of questions (Q1-Q4) lead to an

understanding of basic and/or general properties of the embedded system development

approach:
Q1: Which process was used to develop the system? Each run of the study used a

different development approach (i.e., MARMOT, Unified Process, and Agile). These

are compared in terms of different quality attributes of the resulting systems.

Q2: Which types of diagrams have been used? Are all UML diagram types required,

or is there possibly a specific subset sufficient for this domain?
Q3: How were models transferred to source code? Developers typically work in a proce-

dural setting that impedes the manual transformation of UML concepts into C [10].

Q4: How was reuse applied and organized? Reuse is central to MDD with respect to

quality, time-to-market, and effort, but reuse must be built into the process, it does not

come as a by-product (i.e., components have to be developed for reuse).

The second set of questions (Q5-Q9) deals with the resulting product of the applied

approach (i.e., with respect to code size, defect density, and time-to-market).

Q5: What is the model-size of the systems? MDD is often believed to create a large

overhead of models, even for small projects. Within the study, model size follows the

metrics as defined in [13].

Q6: What is the defect density of the code?

Q7: How long did it take to develop the systems and how is this effort distributed
over the requirements, design, implementation, and test phases? Effort saving is one

promise of MDD and CBD [12], though, it does not occur immediately (i.e., in the

first project), but in follow-up projects. Effort is measured for all development phases.

Q8: What is the size of the resulting systems? Memory is a sparse resource and pro-

gram size extremely important. MDD for embedded systems will only be successful if

the resulting code size, obtained from the models, is small.

Q9: How much reuse did take place? Reuse is central for MDD and CBD and it must

be seen as an upfront investment paying off in many projects. Reuse must be ex-

amined between projects and not within a project.

Research Procedure. MDD and CBD promise efficient reuse and short time-to-

market, even for embedded systems. Since it is expected that the benefits of MDD

and CBD are only visible during follow-up projects [5], an initial system was

specified and used as basis for all runs. The follow-ups then were:
R1/R2 Ports to different hardware platforms while keeping functionality. Ports were

performed within the family (i.e., ATMega32) and to a different processor family (i.e.,

PICF). Implementing a port within the same family might be automated at the code-

level, whereas, a port to a different family might affect the models.

R3/R4 Evolving system requirements by (1) removing the recall position functionali-

ty, and (2) adding a defreeze/defog function with a humidity sensor and a heater.

R5 The mirror system was reused in a door control unit that incorporates the control

of the mirror, power windows, and door illumination.

MODELS`08 Workshop ESMDE

45

3.2. PREPARATION

Methodologies. The study examines the effects of three different development me-

thods on software reuse and related quality factors. In the first run, we used the

MARMOT method that is intended to provide all the ingredients to master the multi-

disciplinary effort of developing component-based embedded systems. In the second

run we followed an adapted version of the Unified Process for embedded system devel-

opment [4] (i.e., RUP SE). RUP SE includes an architecture model framework that sup-

ports different perspectives. A distinguishing characteristic of RUP SE is that the compo-

nents regarding the perspectives are jointly derived in increasing specificity from the over-

all system requirements. In the third run, an agile process (based on Extreme Pro-

gramming) [9], adapted towards embedded software development, was used.

Subjects of the study were graduate students from the Department of Computer Science

at the University of Kaiserslautern (1
st
 run) and the School of IT at the International

University (2
nd

 and 3
rd
 run). All students, 45 in total (3 per team/project), were enrolled

in a Software Engineering class, in which they were taught principles, OO methods,

modeling, and embedded system development. Lectures were supplemented by practical

sessions in which students had the opportunity to make use of what they had learned. At

the beginning of the course, subjects were informed that a series of practical exercises

were planned. Subjects knew that data would be collected and that an analysis would be

performed, but were unaware of the hypotheses that were being tested. To further con-

trol for learning and fatigue effects and differences between subjects, random assign-

ment to the development teams was performed. As the number of subjects was known

before running the studies it was a simple procedure to create teams of equivalent size.

Metrics. All projects were organized according to typical reuse situations in compo-

nent-based development, and a number of measurements were performed to answer

the research questions of the previous sub-section:

Model-size is measured using the absolute and relative size measures proposed in [13].

Relative size measures (i.e., ratios of absolute measures) are used to address UMLs multi-

diagram structure and to deal with completeness [13]. Absolute measures used are: the

number of classes in a model (NCM), number of components in a model (NCOM), num-

ber of diagrams (ND), and LOC, which are sufficient as complexity metrics for the simple
components used in this case. NCOM describes the number of hardware/software compo-

nents, while NCM is represents the number of software components. These metrics are

comparable to metrics such as McCabe’s cyclomatic complexity for estimating the

size/nesting of a system. Code-size is measured in normalized LOC. System size is meas-

ured in KBytes of the binary code. All systems were compiled using size optimization.

The amount of reused elements is described as the proportion of the system which can

be reused without any changes or with small adaptations (i.e., configuration but no model

change). Measures are taken at the model and code level.

Defect density is measured in defects per 100 LOC, whereby defects where collected

via inspection and testing activities.

Development effort and its distribution over development phases are measured as

development time (hours) collected by daily effort sheets.

Materials. The study uses a car-mirror control system that moves a mirror horizontally

and vertically into the desired position. Positions can be stored/recalled to support driver

profiles. The simplified version of this study controls two servos via potentiometers, and

MODELS`08 Workshop ESMDE

46

indicates movement on a LCD. A replication package is available from the authors.

For each run, the base system documentation was developed by the authors of this pa-

per. The reason was that we were interested in the reuse effects of one methodology in the

context of follow-up projects. Using a single documentation for all runs would have

created translation and understanding efforts. Therefore, reasonable effort was spent to

make all three documents comparable concerning size, complexity, etc. This is supported

by the measures of each system.

4 Evaluation and Comparison

In the context of the three experimental runs, a number of measurements were per-

formed with respect to maintainability, portability, and adaptability of software sys-

tems. Tables 1, 2, and 3 provide data concerning model and code size, quality, effort,

and reuse rates. Table columns denote the project type1.

Table 1. Results of the First Run (MARMOT)
 Original R1 R2 R3 R4 R5

LOC 310 310 320 280 350 490

Model Size

(Abs.)

NCM 8 8 8 6 10 10

NCOM 15 15 15 11 19 29

ND 46 46 46 33 52 64

Model Size

(Rel.)
1 1 1 1 0.8 1

3.25 3.25 3.25 2.5 3 3.4

1.375 1.375 1.375 1.33 1.3 1.6

Reuse Reuse Fraction(%) 0 100 97 100 89 60

New (%) 100 0 3 0 11 40

Unchanged (%) 0 95 86 75 90 95

Changed (%) 0 5 14 5 10 5

Removed (%) 0 0 0 20 0 40

Effort (h) Global 26 6 10.5 3 10 24

Hardware 10 2 4 0.5 2 8

Requirements 1 0 0 0.5 1 2

Design 9.5 0.5 1 0.5 5 6

Implementation 3 1 3 0.5 2 4

Test 2.5 2.5 2.5 1 2 4

Quality Defect Density 9 0 2 0 3 4

First Run Porting the system (R1) required only minimal changes to the models. One
reason is that MARMOT supports the idea of platform-independent modeling (plat-

form specific models are created in the embodiment step). Ports to different processor

families (R2) are supported by MARMOT’s reuse mechanisms.

1 Project types are labeled following the scheme introduced in section 3 (e.g., “Original” stands

for the initial system developed by the authors as a basis for all follow-up projects, “R1” –
Port to the ATMEGA32 microcontroller (same processor family), “R2” – Port to the PIC F

microcontroller (different processor family), “R3“ – Adaptation by removing functionality

from the original system, “R4” – Adaptation by adding functionality to the original system,

and “R5” – Reuse of the original system in the context of a larger system.

assesNumberofCl

ateChartsNumberofSt

assesNumberofCl

erationsNumberofOp

assesNumberofCl

sociationsNumberofAs

MODELS`08 Workshop ESMDE

47

Concerning the adaptation of existing systems (R3 and R4), data show that large por-

tions of the system could be reused. In comparison to the initial development project the

effort for adaptations is quite low (26hrs vs. 3/10hrs). The quality of the system profits

from the quality assurance activities of the initial project. Thus, the promises of CBD

concerning time-to-market and quality could be confirmed.

Interestingly, the effort for the original system corresponds to standardized effort

distributions over development phases, whereby the effort of follow-ups is signifi-

cantly lower. This supports the assumption that component-oriented development has

an effort-saving effect in subsequent projects.

Porting and adapting an existing system (R1-R4) implies that the resulting variants are

highly similar, which explains why reuse works well. It is, therefore, interesting to look at

larger systems that reuse (components of) the original system (i.e., R5). 60% of the R5

system was reused without requiring major adaptations of the reused system. Effort- and

defect density are higher than those of R1-R4, due to additional functionality and hard-

ware extensions. However, when directly compared to the initial effort and quality, a

positive trend can be seen that supports the assumption that MARMOT allows embedded

systems development at a low cost but with high quality.

Table 2. Results of the Second Run (Unified Process)
 Original R1 R2 R3 R4 R5

LOC 350 340 340 320 400 500

Model Size

(Abs.)

NCM 10 10 10 8 12 13

NCOM 15 15 15 11 19 29

ND 59 59 59 45 60 68

Model Size

(Rel.)
1.5 1.5 1.5 0.72 1.33 1.07

4 3.5 3.5 3.25 3 3.46

2.5 2.3 2.3 2.5 2.16 1.76

Reuse Reuse Fraction(%) 0 100 94 88 86 58

New (%) 100 0 6 11 14 42

Unchanged (%) 0 92 80 70 85 86

Changed (%) 0 4 15 6 15 14

Removed (%) 0 4 5 24 0 41

Effort (h) Global 34 8 12 5.5 13 29

Hardware 10 2 4 0.5 2 8

Requirements 4 1 1 1.5 3 4

Design 12 1 2 1 4 7

Implementation 5 2 3 1.5 2 6

Test 3 2 2 1 2 4

Quality Defect Density 8 1 2 0 3 4

The Second and Third Run replicated the projects of the first run but used different

development methods. Interestingly, the results of the second run are quite close to

those of the first. However, the Unified Process requires more overhead and increased
documentation, resulting in higher development effort. Ironically, model-size seems to

have a negative impact on quality and effort. Interestingly, the mapping of models to

code seems not to have added additional defects or significant overheads.

Although the amount of modeling is limited in the agile approach, it can be observed

that the original system was quickly developed with a high quality. However, this does

not hold for follow-up projects. These required substantially higher effort than the effort

assesNumberofCl

ateChartsNumberofSt

assesNumberofCl

erationsNumberofOp

assesNumberofCl

sociationsNumberofAs

MODELS`08 Workshop ESMDE

48

required for runs 1 and 2. A reason might be that follow-ups were not performed by the

developers of the original system. Due to missing documentation and abstractions, reuse

rates are low. In contrast, the source-code is of a good quality.

Table 3. Results of the Third Run (Agile)
 Original R1 R2 R3 R4 R5

LOC 280 290 340 300 330 550

Model

Size

(Abs.)

NCM 14 15 15 13 17 26

NCOM 5 5 5 4 7 12

ND 3 3 3 3 3 3

Model

Size

(Rel.)

0 0 0 0 0 0

3.21 3.3 3.3 3.15 3.23 4.19

3.5 3.3 3.3 3.46 3.17 2.57

Reuse Reuse Fraction(%) 0 95 93 93 45 25

New (%) 100 5 7 7 55 75

Unchanged (%) 0 85 75 40 54 85

Changed (%) 0 14 15 40 36 10

Removed (%) 0 1 10 20 10 5

Effort (h) Global 18 5 11.5 6 13.5 37

Hardware 6 2 4 1 2 8

Requirements 0.5 0 0 0.5 1 1

Design 2 0 0 1 1.5 3

Implementation 7 2 5 2 6 18

Test 2.5 1 2.5 1.5 3 7

Quality Defect Density 7 0 2 1 5 7

5 Threats to Validity

The authors view this study as exploratory. Thus, threats limit generalization of this

research, but do not prevent the results from being used in further studies.

Construct Validity. Reuse is a difficult concept to measure. In the context of this paper

it is argued that the defined metrics are intuitively reasonable measures. Of course, there

are several other dimensions of each concept. However, in a single controlled study it is

unlikely that all the different dimensions of a concept can be captured.

Internal Validity. A maturation effect is caused by subjects learning as the study

proceeds. The threat to this study is subjects learned enough from single runs to bias

their performance in the following ones. An instrumentation effect may result from
differences in the materials which may have caused differences in the results. This

threat was addressed by keeping the differences to those caused by the applied me-

thod. This is supported by the data points as presented in table 1, 2, and 3. Another

threat might be the fact that the studies were conducted at different institutes.

External Validity. The subjects were students and are, therefore, unlikely to be represent-

ative of software professionals. However, the results can be useful in an industrial context

for the following reasons: Industrial employees often do not have more experience than

students when it comes to applying MDD. Furthermore, laboratory settings allow the

investigation of a larger number of hypotheses at a lower cost than field studies. Hypo-

theses supported in the laboratory setting can be tested further in industrial settings.

assesNumberofCl

ateChartsNumberofSt

assesNumberofCl

erationsNumberofOp

assesNumberofCl

sociationsNumberofAs

MODELS`08 Workshop ESMDE

49

6 Summary and Conclusions

The growing interest in the Unified Modeling Language provides a unique opportunity

to increase the amount of modeling work in software development, and to elevate quali-

ty standards. UML 2.0 promises new ways to apply object/component-oriented and
model-based development techniques in embedded systems engineering. However, this

chance will be lost, if developers are not given effective and practical means for han-

dling the complexity of such systems, and guidelines for applying them systematically.

This paper shortly introduced the MARMOT approach that supports the compo-

nent-oriented and model-based development of embedded software systems. A series

of studies was described that were defined to empirically validate the effects of

MARMOT on aspects such as reuse or quality in comparison to the Unified Process

and an agile approach. The results indicate that by using MDD and CBD for embed-

ded system development will have a positive impact on reuse, effort, and quality.

However, similar to product-line engineering projects, CBD requires an upfront in-

vestment. Therefore, all results have to be viewed as initial. This has led to the plan-

ning of a larger controlled experiment to obtain more objective data.

References

[1] Atkinson, C., Bayer, J., Bunse, C., and others. Component-Based Product-Line Engineering

with UML, Addison-Wesley, UK, 2001.

[2] Bunse, C., Gross, H.-G., Peper, C., Applying a Model-based Approach for Embedded Sys-
tem Development, 33rd SEAA, Lübeck, Germany, 2007.

[3] Bunse, C., Gross, H.-G., Unifying Hardware and Software Components for Embedded

System Development, In: Architecting Systems with Trustworthy Components, Reussner,

Staffort, Szyperski (Eds), Lecture Notes in Computer Science, Vol. 3938, Springer, 2006.
[4] Cantor, M., Rational Unified Process for Systems Engineering, the Rational Edge e-Zine,

2003, http://www.therationaledge.com/content/aug_03/f_rupse_mc.jsp.

[5] Crnkovic, I., Larsson, M. (Eds.), Building Reliable Component-Based Software Systems,

Artech House, 2002.
[6] Douglass, B.P., Real-Time Design Patterns, Addison-Wesley, 2003.

[7] Briand, L.C., Bunse, C., Daly, J.W., A Controlled Experiment for Evaluating Quality

Guidelines on the Maintainability of Object-Oriented Designs, IEEE TSE, 27(6), 2001

[8] Li, J., Conradi, R., Slyngstad, O.P.N., Torchiano, M., Morisio, M., Bunse, C., A State-of-
the-Practice Survey of Risk Management in Development with Off-the-Shelf Software,

IEEE Transaction on Software Engineering, 34(2), 2008

 [9] Hruschka, P., Rupp, C., Agile SW-Entwicklung für Embedded Real-Time Systems mit

UML, Hanser, 2002.
[10] Marwedel, P., Embedded System Design, (Updated Version), Springer, 2006.

[11] Object Management Group, UML Infrastructure and Superstructure, V2.1.2, 2007

[12] Szyperski, J., Component Software. Beyond OOP, Addison-Wesley, 2002

[13] Lange, C.F., Model Size Matters, Workshop on Model Size Metrics, 2006 (co-located with
the ACM/IEEE MoDELS/UML Conference); October, 2006.

[14] Burkhard, J-M., Detienne, F., An Empirical Study of Software Reuse By Experts in Ob-

ject-Oriented Design, INTERACT'95, Lillehammer Norway, June 27-29 1995

[15] Lee, N-Y., Litecky, C.R., An Empirical Study of Software Reuse with Special Attention to
ADA, IEEE Transaction on Software Engineering, 23(9), 1997

MODELS`08 Workshop ESMDE

50

