
Using an Ontology to Suggest Software Design Patterns 

Integration 

Dania Harb, Cédric Bouhours, Hervé Leblanc 

IRIT – MACAO 

Université Paul Sabatier 

118 Route de Narbonne 

F-31062 TOULOUSE CEDEX 9 

{harb, bouhours, leblanc}@irit.fr 

Abstract. To give a consistent and more valuable feature on models, we 

propose that model-driven processes should be able to reuse the expert 

knowledge generally expressed in terms of patterns.  In order to formalize and 

use them, some design pattern ontologies have been developed.  To share them 

on the Web they have been implemented using the OWL language. They can be 

easily interrogated with dedicated query languages. Our work has consisted in 

extending a design pattern intent ontology with “alternative model” and “strong 

points” concepts, which partially refers “anti-patterns”.  We validate this 

approach in tooling a step of a design review activity, we have proposed.  This 

activity, directed by design patterns, is adapted to a model driven process, for 

the need to improve object-oriented architecture quality. 

Keywords: OWL, SPARQL, Software Design Pattern, Design Review 

Activity, MDE, MDA 

1   Introduction 

The emergent MDE community, aiming at giving a productive feature on models, has 

proposed model-driven process development.  However, to obtain guarantees on 

model relevance at the end of each activity, these processes should promote the reuse 

of the knowledge of experts generally expressed in terms of analysis [1], design [2] or 

architectural [3] patterns approved by the community.  Given the existence of “code 

review” activities [4] in some development processes, we have specified a “design 

review” activity [5] directed by design patterns and oriented to model quality.  In this 

activity, we propose to parse models to find fragments substitutable with software 

design patterns and to replace them if the intent of the designer matches with the 

intent of the pattern and if the architectural qualities of the pattern are needed.  Our 

activity is situated after the design stage, and its purpose is to urge and to help the 

designer to integrate design pattern in his design.   

Thanks to their Design Pattern Intent Ontology (DPIO), Kampffmeyer et al. [6] 

have developed a wizard enabling designers to efficiently retrieve software design 

patterns applicable for their design problems, during the design stage.  Our approach 



2      Dania Harb, Cédric Bouhours, Hervé Leblanc 

has not the same timing. It is situated after the design stage, and it verifies if there is 

no known bad design practices in a model.  So, the designer is not in need of 

identifying design problems, it is the activity which finds the lacks in his models and 

suggests design patterns integrations instead.  However, the DPIO [6] is an interesting 

start point for the formalization of our concepts because it links software design 

pattern to some problem concepts.  So, in reusing this ontology backwards (from the 

pattern to the design problems), and in adding our concepts, we are able to establish a 

dialog with the designer.   

In this paper, after presenting the design review activity, we explain how we have 

reused and extended the DPIO [6].  We illustrate the execution of our activity on a 

“file system management” example. 

2   The Design Review Activity 

The design review activity, presented in [5], may be decomposed into four steps (see 

Fig. 1).   
 

 

 
Pattern integration 

[propositions] 

 

 
Rules of object 

oriented quality 

 

 
Model to review 

 
Designer 

 

 
Model to review 

[checked] 

 

 
Model to review 

[improved] 

 

 
Alternative models 

catalog 

 

 
Integration tool 

 

 
Object oriented 

quality checking 

 

 
Alternative models 

detection 

 

 
Patterns integration 

 

 
Validation of 

propositions 

 

 
Pattern integration 

 

 
Integration trace 

 

 
OWL ontology 

step 

sequence 

IN or OUT 

element 

for a step 

 

Fig. 1. Design Review Activity 



Using an Ontology to Suggest Software Design Patterns Integration      3 

In order to work with models in a “sufficient” quality, the first step checks good 

basic object-oriented design practices. 

When the model to review is checked in a “sufficient” quality state, the second step 

consists in an automatic research of model fragments which are candidate to a 

substitution with a pattern.  This research is based on structural similarities detection 

with “alternative models”.  An “alternative model” is a model which solves 

inadequately the same problem as a pattern [5].  That means there is a better solution 

to solve this problem.  Our work hypothesis is that a software design pattern is the 

best solution for a given design problem. According to the taxonomy proposed by 

Chikofsky and Cross [8], our detection technique can be connected to a 

redocumentation technique as to permit model restructuring.  Our “alternative 

models” catalog is presented in [9], with the experiments used to constitute it. 

Each “alternative model” detected in the model represents propositions of 

fragments substitutable with a design pattern.  Since we need the designer opinion in 

the third step, our ontology will help him determine if his intent matches with the 

suggested pattern intent and whether the propositions are needed in the model to 

review.   

With the designer authorization, the last step consists in integrating the validated 

propositions into the model.  This integration is done thanks to an automatic model 

refactoring. 

3   Reusing and extending an existing ontology 

In order to improve the design of object oriented models, our work relies on detecting 

all instances of alternative models in UML design models and substituting them, if 

necessary, with appropriate design patterns.  Each class of the instances detected is 

connected in the same manner as the classes of the alternative model. So, since the 

detection is only structural, the instances detected must be checked by the designer 

before any substitution with a pattern. Therefore, after the detection step, propositions 

of patterns integration consist of sets of model fragments representing a possible 

substitution. These sets may be large where some fragments may not be relevant with 

a substitution. So, to help the designer in filtering the fragments, we need an ontology 

that formalizes intent of design patterns (is the substitution have a sense?) and our 

characterizations of “alternative models” in terms of quality features (is the effort of 

the substitution balanced by improved architectural qualities?). 

For this purpose, we choose OWL, the Web Ontology Language [10], to import an 

existing ontology on design patterns intent and extend it by adding our knowledge on 

“alternative models”. We validated our new knowledge base using a specific query 

language to interrogate it and filter out the pertinent information.   



4      Dania Harb, Cédric Bouhours, Hervé Leblanc 

3.1   Requirements 

Our catalogue is composed with “alternative models”, introduced in Section 2, and 

their characterization.  We have constituted our catalog in asking students to solve 

some design problems. These problems were simply solvable with designs patterns, 

but, as the students chosen have no knowledge on design patterns, they solve the 

problems without using design patterns. In following our work hypothesis, their 

solutions were not the best solution for the problem, and so, the models produced had 

some design defects. The characterization of these defects consists in a valuation of 

the “strong points” of the pattern. “Strong points” are criteria of object-oriented 

architecture or software engineering quality, partially deduced from the 

“consequences” section of the GoF [2] catalogue and from our study on the design 

defects of “alternative models”.  As pattern injection may alter some object-oriented 

metrics [11], “strong points” allow us to compute dedicated pattern metrics to classify 

the “alternative models” and to help the estimation of the pertinence of pattern 

injection in a design model. Each “alternative model” perturbs the “strong points” of 

its associated pattern. 

Since we need to formally describe design patterns, “alternative models” and 

“strong points” in a machine readable format, we start with the DPIO ontology. These 

concepts must be constructed in a way that allows querying based on the “alternative 

model” detected.  

 

 

Intent: Compose objects into tree structures to represent part-whole hierarchies. 

Composite lets clients treat individual objects and compositions of objects uniformly.   

Applicability: Use the Composite pattern when: 

 you want to represent part-whole hierarchies of objects. 

 you want clients to be able to ignore the difference between compositions of 

objects and individual objects. Clients will treat all objects in the composite 

structure uniformly. 

Structure:  

Component

Leaf

+children*

Composite

 
Strong points: 
1 Decoupling and extensibility 

1.1 Maximal factorization of the composition 

1.2 Addition or removal of a Leaf does not need code modification 

1.3 Addition or removal of a Composite does not need code modification 

2 Uniform processing 

2.1 Uniform processing on operations of composed object 

2.2 Uniform processing on composition managing 

2.3 Unique access point for the client 



Using an Ontology to Suggest Software Design Patterns Integration      5 

Fig. 2. Composite Pattern and its “Strong Points” 

In Fig. 2, we present one of the GoF patterns, named Composite.  The intent, the 

applicability and the structure are provided directly from the GoF book while the 

“strong points” are deduced from our experiments by comparing solutions to specific 

design problem implemented by the Composite pattern and its “alternative models”. 

Fig. 3 shows the structure and the design defect valuation of an “alternative model” to 

the Composite pattern.  We have named it “Development of the composition on 

Composite with process conformance” in reference of its design defects.  Then an 

“alternative model” can be considered as a “chipped pattern”. 

So we have made two major hypotheses about “alternative models”. First, each 

“alternative model” is attached by the valuation of their design defects to a unique 

design pattern.  Second, each “alternative model” has one or more strong points 

perturbed.  We assume that the same structure of an “alternative model” can be 

duplicated in our catalog, but with a different name, a different valuation and some 

different components. 

 

 

Fig. 3. Characterization of an “Alternative Model” 

3.2   Existing ontology: the Design Pattern Intent Ontology 

Design patterns have been used successfully in recent years in the software 

engineering community in order to share knowledge about the structural and 

behavioural properties of software. Most of the existing approaches to formalizing 

design patterns are based on structural aspects. For example, the work of Dietrich et 

al. [12] uses the OWL to formally describe the structure of design patterns and then 

transform it in first-order logic predicates which are reuse as an entry for a scanner 

pattern.  However, there is more lightly approaches concentrated in the usability of 

design patterns according to the design problems they solve.  Kampffmeyer and 

Zschaler [6] define the intent of the 23 GoF design patterns [2] using OWL. Their 

Name: 

Development of the composition on Composite with process conformance 

 

Alternative model: 

Component

CompositeLeaf
*

*

 

Strong points perturbations 

1.1  2.1  

1.2  2.2  

1.3  2.3  

 

 



6      Dania Harb, Cédric Bouhours, Hervé Leblanc 

work was based on the work of Tichy [13], who developed a catalogue of more than 

hundred design patterns classified according to the problems patterns solve. 

The core structure of the DPIO, provided from the paper [6], is presented in Fig. 4 

by UML classes and associations. Kampffmeyer and Zschaler chose to represent their 

ontology with UML diagram because they consider that is easily to understand. To 

read the diagram, they indicate: “The relations between DesignPattern, DPProblem 

and ProblemConcept classes are depicted using UML-notations. UML classes 

symbolize OWL classes and UML associations symbolize OWL object properties. 

Each DesignPattern is a solution to one or more design pattern problem DPProblem. 

The association between them indicates an object property isSolutionTo which is an 

inverse property of isSolvedBy. DPProblem is defined that is the root node for more 

specific problems. The association class Constrains indicates an OWL object property 

that can be specialized also by subproperties. DPProblem is a set of classes that 

describe a problem by constraining a ProblemConcept”. The DPIO contains the 

vocabulary for describing the intent of design patterns.  
 

 

Fig. 4. Graphical overview of the core structure of the DPIO 

 

All the 23 GoF patterns inherit from the DesignPattern class. DPProblem and 

ProblemConcept are the root classes of the other hierarchies. 

Based on the work of [6], and instead of finding the design pattern for a given 

problem, we retrieve the intent of a design pattern. It is much like reversing the query 

to get the pertinent data from the same ontology. So we can benefit from their existing 

work and their published ontology.  

3.3   Method and Results 

Now to determine the scope of our new ontology, there are kinds of questions called 

“competency questions” the ontology should be able to answer [14]. Our work could 

be defined in 3 steps: first, when an “alternative model” is detected, we need to 

interrogate our knowledge base to know which design pattern could replace it. 

Second, we will verify with the designer if his “alternative model” detected has a 

similar intent as the corresponding design pattern. Last, in this case, we will show him 



Using an Ontology to Suggest Software Design Patterns Integration      7 

the lack in his model by displaying the perturbed “strong points”. Then, if the 

designer finds the need to improve his model, his fragment will be substituted with 

the design pattern. Therefore, the three competency questions are as follow: 

1. Which design pattern could replace a given “alternative model”? 

2. What is the intent of the corresponding design pattern? 

3. Which are the “strong points” perturbed using this “alternative model”? 

 

In designing the structure of the new ontology, we took into consideration all the 

possible relations between the classes in the DPIO model and the classes we want to 

add: 

1. Each”alternative model” could be replaced by one and only one Design 

Pattern. But a Design Pattern will replace one to many “alternative 

models”. 

2. An “alternative model” perturbs at least one “strong point” of the Design 

Pattern that can replace it. 

From this analysis, we extend the DPIO by adding our new concepts. 

 

Fig. 5. Graphical overview of the structure of the extended ontology 

 

Fig. 5 represents the new structure of the extended ontology. Based on this 

structure and the relations between classes, we extended the existing ontology with 

OWL classes and properties as follow: 

1. Two new OWL classes: 

a. AlternativeModel: the root class of all “alternative models”. They 

are grouped by the design pattern that could replace them. For 

example, we find six “alternative models” for the Composite 

pattern. They inherit all from the Composite_AM class (Fig. 6). 

They have the name of their super class followed by their 

numeration in the catalogue. 

b. StrongPoint: the root class of all the “strong points”. They are 

attached to a design pattern.  For example, we find two main 

“strong points” for the Composite pattern: Composite_Rule_1 

and Composite_Rule_2 (Fig. 6); each one of them was précised 

by three sub features. They have the name of their super class 

followed by their numeration in the catalogue. 

 

 



8      Dania Harb, Cédric Bouhours, Hervé Leblanc 

2. Four new OWL properties: 

a. isReplacedBy: links an AlternativeModel to his corresponding 

DesignPattern.  

b. Replace: the inverse of isReplacedBy. 

c. Perturbes: links an AlternativeModel to the valuation of the 

corresponding pattern “strong points” (StrongPoint). 

d. hasRule: links a DesignPattern class to one of its StrongPoint. 

 

Fig. 6 shows a detailed structure of the extended base concerning the Composite 

pattern. The “alternative model” presented in Fig. 3 perturbs the three subfeatures of 

the first “strong point” of the Composite pattern that concerned in the Decoupling and 

extensibility. More precisely, for each OWL class concerning our concepts, we have: 

 

OWL Classes rdfs:comment 
Composite_AM_5 Development of the composition on “Composite” with 

protocol conformance 

Composite_Rule_1 Decoupling and Extensibility 

Composite_Rule_2 Uniform processing 

Composite_Rule_1.1 Maximal factorization of the composition 

Composite_Rule_1.2 Adding or removing a Leaf does not need a code 

modification 

Composite_Rule_1.3 Adding or removing a Composite does not need a code 

modification 

Composite_Rule_2.1 Uniform processing on operations of composed objects 

Composite_Rule_2.2 Uniform processing on compositions management 

Composite_Rule_2.3 Unique access point for the client 

 

 

Fig. 6. Detailed structure of the extended ontology 



Using an Ontology to Suggest Software Design Patterns Integration      9 

For presentation reasons, we have omitted the name of the design pattern in each 

sub feature. 

We used Protégé [15], an open source ontology editor and knowledge-base 

framework, to load the existing ontology and add our new classes, properties, 

property characteristics, and interrogate it using queries. We referred to a user guide 

[14] on how to develop an ontology using Protégé and the OWL Plug-in. We created 

our OWL classes, linked them by OWL properties, and interrogated the knowledge 

base by generating SPARQL (SPARQL Protocol and RDF Query Language) [16] 

queries to answer our competency questions. 

SPARQL is a W3C Candidate Recommendation towards a standard query language 

for the Semantic Web. Its focus is on querying RDF graphs at the triple level. 

SPARQL can be used to query an RDF Schema or OWL model to filter out 

individuals with specific characteristics. 

4   Illustration on a “File System Management” Design 

After adding our new concepts to the DPIO, the knowledge base could now be 

interrogated according to the competency questions we mentioned earlier. Standard 

ontology reasoning is used to retrieve the results responding to queries. In order to 

illustrate the use of the ontology, we execute the whole activity on an example.  It was 

found in a subject of an object-oriented programming supervised practical work. It 

aims to implement a file management system represented in the Fig. 7 below.  

Directory

+open()
+delete()
+getSize(): int
+getAbsolutePath(): String
+add(e: FileSystemElement)
+remove(e: FileSystemElement)
+get(): FileSystemElement[*]
+searchDir(name: String)
+searchFile(name: String)

File

-size: int
-data: byte

+open()
+delete()
+getSize(): int
+getAbsolutePath(): String

FileSystem

+getRoot(): Directory
+setRoot(d: Directory)

FileSystemElement

+delete()
+getSize()
+getAbsolutePath()
+open()

Path

-path: String

+getPath(): String
+getParts(): String[*]

Nameable

-name: String

-getrName(): String

*

-root

-subdirectory

*

FileSystemServices

+search(p: Path): FileSystemElement

Comparable

+compareTo(c: Comparable): int

 

Fig. 7. Model to Review: File System Management 

 

 



10      Dania Harb, Cédric Bouhours, Hervé Leblanc 

This static UML model represents a basic architecture for a File System 

Management.  Authors of this model are interested in the presentation of some object 

concepts:  

 Inheritance between classes and abstract classes.  A uniform protocol for 

every FileSystemElement is encapsulated by a corresponding abstract 

class.  Directories and Files must respect this protocol via inheritance 

relationship. We can note that all concrete classes are derived directly or 

indirectly from an abstract class. This rule enforces the emergence of 

reusable protocols. 

 Management of references, here composition links, between container and 

components. A Directory object manages some references to Files and 

Directories objects.  

Nevertheless, this model contains a misconception.  Although there is a uniform 

protocol owned by the class FileSystemElement, the management of composite links 

along a hierarchical structure is duplicated.  Indeed, Directory class manages 

independently links on Files and Directories.  Now, we consider two evolution 

scenarios. The first is adding new Terminal types in the tree structure, for example, 

symbolic links in UNIX systems.  This evolution requires the management of this 

new type of links by the Directory class and then requires code modification and code 

duplication in this class.  The second is adding new non Terminal types in the tree 

structure, for example archive files in UNIX or in Java environment.  We can 

consider that an archive file has the same functionalities as a Directory.  This 

evolution requires a reflexive link on an archive file class and the duplication of all 

links that represent composition links in the tree structure.  Then it requires 

duplication of management of composition and modification in the Directory class, it 

must manage another type on FileSystemElement.  These two scenarios show a 

decoupling problem (each container manages a part of the composite structure) and an 

extensibility limitation (it requires existing code modification for adding new type of 

terminal or non terminal element of the composition hierarchy).  Therefore, this 

model can be improved.  Furthermore, when the authors have implemented this 

model, they realized that there were defects, and they adapted their code to improve it. 

4.1   Object-Oriented Quality Checking 

Visually, there is no design mistake: each class of the model presents a reusable 

protocol.  Composition links are used here as delegation between Directory and File. 

And messages sent between them have the same selector.  

4.2   “Alternative Models” Detection 

This step consists in the execution of all queries corresponding at each “alternative 

model” of the base.  In this example, the query of the fifth Composite “alternative 

model” returns theses matching classes:  

1. The Directory class is able to play the role of the Composite class. 

2. The File class is able to play the role of the Leaf Class. 

3. The FileSystemElement is able to play the role of the Component class. 



Using an Ontology to Suggest Software Design Patterns Integration      11 

This means that we detected an “alternative model” for the Composite pattern 

because they have the same structural features (cf. Fig. 8).  

 

 

Fig. 8. The fifth Composite “Alternative Model” its Instantiation in the Model 

4.3   Designer/Machine dialog 

At this step, the designer must verify the substitutability of the detected fragment.  

Firstly, he must verify if the intent of the fragment matches with the proposed design 

pattern.  To do so, we build a question thanks to a SPARQL query we have coded (cf. 

Listing 1).  This query retrieves the intent of the design pattern in using the 

“alternative model” detected (here Composite_AM_5).  Indeed, we consider that the 

intent of the pattern is described with a list of couples (constraint – ProblemConcept) 

in the ontology (see Fig. 5). 

 
SELECT ?DesignPattern ?constrains ?ProblemConcept 

WHERE{ 

 ?DesignPattern rdfs:subClassOf ?x. 

 ?x rdf:type owl:Restriction. 

 ?x owl:onProperty :replace. 

 ?x owl:someValuesFrom: Composite_AM_5. 

 ?DesignPattern rdfs:subClassOf ?y. 

 ?y rdf:type owl:Restriction. 

 ?y owl:onProperty :isSolutionTo. 

 ?y owl:someValuesFrom ?pbconcept. 

 ?pbconcept rdfs:subClassOf ?z. 

 ?z rdf:type owl:Restriction. 

 ?z owl:onProperty ?constrains. 

 ?z owl:someValuesFrom ?ProblemConcept. 

} 

Listing 1 SPARQL query to retrieve the intent of the Composite pattern that could replace the 

“alternative model” Composite_AM_5 



12      Dania Harb, Cédric Bouhours, Hervé Leblanc 

Based on the results (cf. Fig. 9) of this query, we will proceed in dialoguing the 

designer with the first question: We have detected in your design an alternative model 

of the CompositeDesignPattern.  Is the fragment {FileSystemElement, File, 

Directory} composes Object, builds TreeStructure and nests Objects? 

 

Fig. 9. Screenshot of Protégé after executing the query (Listing 1) 

We can note that the intent of {FileSystemElement, File, Directory} is a recursive 

composition: “Directories are composed with Files or Directories which are 

composed with…”. So the answer to the previous question is positive. 

Now, we must check the interest to replace the fragment with the pattern.  Thanks 

to the perturbation of the “strong points”, we can present to the designer the 

advantage to use the pattern. We retrieve the perturbed “strong points” with a 

SPARQL query (Listing 2): 

 
SELECT ?Strong_Points ?Sub_Features 

WHERE{ 

 :Composite_AM_5 rdfs:subClassOf ?x. 

 ?x rdf:type owl:Restriction. 

 ?x owl:onProperty :perturbs. 

 ?x owl:someValuesFrom ?SF. 

 ?SF rdfs:subClassOf ?SP. 

 ?SP rdfs:comment ?Strong_Points. 

 ?SF rdfs:comment ?Sub_Features. 

} ORDER BY ASC(?Strong_Points) 

Listing 2 SPARQL query to retrieve the “strong points” perturbed by COMPOSITE_AM_5 

The second question is built with the results (cf. Fig. 10) of the previous query: 

Our analysis shows that you have problems of “Decoupling and Extensibility”; your 

model is unable to satisfy those points: 

1. Maximal factorization of the composition. 

2. Addition or removal of a leaf does not need code modification. 

3. Addition or removal of a composite does not need code modification. 

In injecting the CompositeDesignPattern, you will improve all of these points. Do 

you want to refactor the identified fragment {FileSystemElement, File, Directory} ? 

 



Using an Ontology to Suggest Software Design Patterns Integration      13 

 

Fig. 10. Screenshot of the result window presenting the “strong points” perturbed 

As we consider that the model may evolve, it is useful to guarantee that there are 

extensibility and decoupling possibilities.  Therefore, the fragment must be 

substituted with the pattern. 

4.4   Patterns Integration 

At this step, the identified fragment is replaced by the suggested design pattern like 

the Fig. 11 below: 

Directory
<<Composite>>

+open()
+delete()
+getSize(): int
+getAbsolutePath(): String
+add(e: FileSystemElement)
+remove(e: FileSystemElement)
+get(): FileSystemElement[*]
+searchDir(name: String)
+searchFile(name: String)

File
<<Leaf>>

-size: int
-data: byte

+open()
+delete()
+getSize(): int
+getAbsolutePath(): String

FileSystem

+getRoot(): Directory
+setRoot(d: Directory)

FileSystemElement
<<Component>>

+delete()
+getSize()
+getAbsolutePath()
+open()

Path

-path: String

+getPath(): String
+getParts(): String[*]

Nameable

-name: String

-getrName(): String

-root

-subdirectory *

FileSystemServices

+search(p: Path): FileSystemElement

Comparable

+compareTo(c: Comparable): int

 

Fig. 11. Model to Review Improved 

To do so, a suite of simple model refactoring suffices to integrate the pattern.  

Here, it consists in: 

 Remove composition link between Directory and File. 

 Move the end of the recursive composition link from Directory to 

FileSystemElement. 

These inter-classes refactorings can be automatically deduced with an operation of 

“differentiation” between the “alternative model” and the pattern structure. 



14      Dania Harb, Cédric Bouhours, Hervé Leblanc 

At the end of the activity, we can say that this model is improved, because we have 

substituted a fragment (with “weak points”) with a pattern (with “strong points”).  

This transformation may appear as non fundamental in the model, but at the code 

level, the implications are substantial.  Every hierarchy traversal methods are simpler 

to implement, and there is less code to write.  Moreover, in case of extensions, there is 

no code modification of existing classes. 

5.   Conclusion and Perspectives 

The approach of reusing and extending an existing ontology corresponding to our 

requirements was successfully applied.  From the existing DPIO ontology, we have 

plugged our concepts on “alternative models” and “strong points”. These concepts are 

fundamental for tooling our Design Review Activity.  Accurately, at the step named 

validation of substitution propositions, we have simulated a dialog with a designer by 

interrogating the extended base using queries.  These queries will be generated 

automatically by a template process.  The integration of this work into a tool 

dedicated to the design review activity is envisaged. 

Finally, we conclude with some perspectives: 

 Take into consideration the relationships between patterns.  For example, 

the Decorator pattern can be applied to the Composite pattern structure. 

 Take into consideration the applicability of each pattern.  For example, 

referring to the GoF book, one of the applicability of the Composite 

pattern is: you want clients to be able to ignore the difference between 

compositions of objects and individual objects.  We notice that this 

sentence cannot be part of the pattern intention but can be considered as a 

“strong point”. 

 Optimize our knowledge base by sharing common “strong points” 

between patterns.  For example, the Composite, the Decorator and the 

Bridge pattern have a same “strong point” concerning the maximal 

factorization between specific classes. 

 Use inference rules to find new concepts when adding new “alternative 

models” or “strong points”.  This could help us improving our knowledge 

on patterns and particularly, our knowledge on the good practices on 

object oriented architecture. 

Acknowledgements  

We are grateful to Mrs. Nathalie Aussenac-Gilles for her precious advices during 

this work.  



Using an Ontology to Suggest Software Design Patterns Integration      15 

References 

1. Fowler M., “Analysis patterns: reusable objects models”, Addison Wesley Longman 
Publishing Co, Inc., 1997. 

2. Gamma E., Helm R., Johnson R., Vlissides J., “Design Patterns: Elements of Reusable 
Object-Oriented Software”, Addison Wesley Professional, 1995. 

3. Buschmann F., Meunier R., Rohnert H., Sommerlad P., Stal M., “Pattern-Oriented 
Software Architecture”, John Wiley & Sons, August 1996. 

4. Dunsmore A.P., “Comprehension and Visualisation of Object-Oriented code for 
Inspections”, Technical Report, EFoCS-33-98, Computer Science Department, University 
of Strathclyde, 1998. 

5. Bouhours C., Leblanc H.., Percebois C., “Alternative Models for a Design Review 
Activity”. In : Workshop on Quality in Modeling - ACM/IEEE International Conference on 
Model Driven Engineering Languages and Systems, NASHVILLE, TN (USA), 
30/09/2007-05/10/2007, Ludwig KUZNIARZ, Jean-Louis SOURROUILLE, Miroslaw 
STARON (Eds.), Springer, p. 65-79, October 2007. 

6. Kampffmeyer H., Zschaler S., Engels G., Opdyke B., Schmidt D. C., Weil F., “Finding the 
Pattern You Need: The Design Pattern Intent Ontology”, in MoDELS, Springer, 2007, 
volume 4735, pages 211-225. 

7. Guéhéneuc Y.  G., Albin-Amiot.  H., “Using Design Patterns and Constraints to Automate 
the Detection and Correction of Inter-Class Design Defects”, in Proceedings conference 
TOOLS, July 2001, pages 296-305. 

8. Chikofsky E.  J., Cross J.  H., “Reverse engineering and design recovery: A taxonomy”, in 
IEEE Software, 7(1), page 13-17, January 1990. 

9. Bouhours C., Leblanc H., Percebois C., “Alternative Models for Structural Design 
Patterns”, research report, IRIT/RR--2007-1--FR, IRIT, December 2007, 
http://www.irit.fr/recherches/DCL/MACAO/docs/AlternativeModelsForStructuralDesignPa
tterns.pdf. 

10. D.L. McGuinness and F. van Harmelen: OWL Web Ontology Language Overview, 
2004.http://www.w3c.org/TR/owl-features/  

11. Huston B., “The effects of design pattern application on metric scores”, in Journal of 
Systems and Software, 58(3), Elsevier Science, September 15, 2001, pages 261-269. 

12. Dietrich, J., Elgar, C.: A formal description of design patterns using OWL, in: Australian 
Software Engineering Conference (ASWEC'05), pp. 243-250. IEEE Computer Society, Los 
Alamitos, 2005. http://doi.ieeecomputersociety.org/10.1109/ASWEC.2005.6   

13. Tichy, W.F.: A catalogue of general-purpose software design patterns. In: TOOLS'97. 
Proceedings of the Tools-23: Technology of Object-Oriented Languages and Systems, 
IEEE Computer Society, Washington, DC, USA, 1997. 

14. Noy, N.F., McGuinness, D.L.: Ontology development 101: A guide to creating your first 
ontology. Technical Report KSL-01-05, Knowledge Systems Laboratory, Stanford 
University, Stanford, CA, 94305, USA, March 2001. 

15. Protégé ontology editor and knowledge acquisition system (2006). 
http://protege.stanford.edu/  

16. Prud'hommeaux E., Seaborne: SPARQL Query Language for RDF, January 2008. 
http://www.w3.org/TR/rdf-sparql-query/ 


