
RDF Models for Dynamic Syndication and Wireless

Applications

 Leon Shklar

Information Architects

70 Hudson St.

Hoboken, NJ 07030, USA

shklar@cs.rutgers.edu

ABSTRACT

Machine-understandable metadata is providing the foundation for

next-generation frameworks that enable automated construction

of server-side Java applications. Such applications are composed

of metadata objects implementing RDF models and Java classes

that use metadata objects as processing context. Using RDF to

support dynamic transformation of content to different channels

and devices opens up opportunities for multi-purpose content

services that target different audiences and a wide variety of

desktop and wireless devices. Such services do not have to

depend on costly maintenance to keep up with new, evolving,

and personalized devices. Properly designed applications that are

built in the era of cell phones and palm devices should still work

for interactive TV and futuristic Star Trek-like personal

communicators.

Keywords

Metadata, RDF, Transformation, Wireless.

1. INTRODUCTION

The Resource Description Framework (RDF) is a metadata

standard that was designed by the World Wide Web Consortium

(W3C) to enable Web applications that depend on machine-

understandable metadata and to support interoperability between

such applications. It targets a number of important areas that

include dynamic syndication and personalization, mobile devices,

resource discovery, intelligent agents, content rating, intellectual

property rights, and privacy preferences. RDF uses XML to

encode and transport RDF models but may also use alternative

mechanisms in the future.

Applying RDF to redesigning the syndication process makes it

possible to model content subscriptions. Instead of having to

receive scheduled distributions of content, subscribers can direct

their customers to syndicators' sites, while syndicators use the

subscription models to recognize subscriptions (e.g., based on

User-Agent or HTTP-Referer HTTP headers) and

dynamically tailor content to subscribers' profiles. RDF-based

syndication models can be naturally extended from targeting

different content channels to enabling the expanding variety of

desktop and wireless devices.

Emerging commercial products support multiple devices by

building libraries of device-specific XSLT stylesheets to

transcode XML content. Such stylesheets may be fairly efficient

when compiled into Java bytecode (Sun distributes the XSLT

compiler). The problem is in maintaining stylesheet libraries for

the rapidly growing variety of new and evolving devices, let

alone device personalization. The proposed solution is to change

the level of granularity of transformations and design them for

individual features rather than devices. Using RDF models to

implement device and user agent profiles, it is possible to

dynamically compose transformations by adapting and combining

feature-based stylesheets, making it unnecessary to build and

maintain ever-expanding libraries of complex device-specific

components.

W3C, in coordination with the Wireless Access Protocol (WAP)

Forum, is developing the Composite Capabilities/Preference

Profiles (CC/PP) specification as the standard for setting device

and user agent preferences. The upcoming RDF-based

specification would allow defining a device by its features (e.g.,

screen size, keyboard (if any), display characteristics, etc). Next-

generation servers that target multiple devices would combine

device and user agent profile information with connection

bandwidth and use it to construct stylesheet transformations. An

efficient server would optimize stylesheet construction by

caching components, as well as intermediate composites. For

example, caching device-specific stylesheets that are constructed

based on individual device profiles and combining them with

stylesheet components that are determined by the operating

system, user agent software, and connection bandwidth.

Currently, the main practical limitation is the lack of CC/PP

support on the part of device vendors and service providers; it is

likely to be remedied in the near future. In the prototype, we

implement our own version of this service based on the local

database of CC/PP-based device profiles. This implies that

administering the server involves maintaining device and user

profiles, which is orders of magnitude less work than

maintaining device-specific XSLT transformations. Even this

overhead will not be necessary when CC/PP becomes the

recommendation and vendors start providing CC/PP services.

2. DEVICE SPECIFICATIONS

We begin by discussing sample RDF specifications for devices

and user agents. These specifications, when represented as

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee.

Semantic Web Workshop 2001 Hong Kong, China.

Copyright by the author.

addressable metadata graphs, will provide processing context for

HTTP requests.

Consider the XML-encoded RDF specification describing a

handheld device "xyz":

<?xml version="1.0"?>

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-

rdf-syntax-ns#"

 xmlns:ccpp="http://www.w3.org/2000/07/04-

ccpp#"

xmlns:uaprof="http://www.wapforum.org/UAPROF/ccpps

chema-19991014#">

 <rdf:Description

about="http://www.mozilla.org/wap/profiles/Mozilla

">

 <type resource="http://www.xyz-

mobile.com/profiles/Schema#UserAgent" />

<uaprof:BrowserName>Mozilla</uaprof:BrowserName>

<uaprof:BrowserVersion>Symbian</uaprof:BrowserVers

ion>

 <uaprof:CcppAccept>

 <rdf:Bag>

 text/plain

 text/vnd.wap.wml

 </rdf:Bag>

 </uaprof:CcppAccept>

 </rdf:Description>

</rdf:RDF>

Here, the subject of the description is

http://www.mozilla.org/wap/profiles/Mozilla. The

rdf:type element identifies the subject resource, the

uaprof:BrowserName identifies the browser name as Mozilla,

uaprof:BrowserVersion identifies the browser version as

Symbian, and uaprof:CcppAccept defines MIME types

supported by the browser.

Individual devices and user agents are likely to differ from

default configurations. For example, my xyz device may have an

optional screen, and I may have configured my browser to

support HTML in addition to plain text and WML. However, it is

possible to incorporate default configurations by reference. My

profile would have the following form:

<?xml version="1.0"?>

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-

rdf-syntax-ns#"

 xmlns:ccpp="http://www.w3.org/2000/07/04-

ccpp#"

xmlns:uaprof="http://www.wapforum.org/UAPROF/ccpps

chema-19991014#">

 <rdf:Description

about="http://www.ia.com/leon/profile">

 <ccpp>

 <rdf:Description

about="http://www.ia.com/mobile/Hardware/device112

3">

 <rdf:type resource="http://www.xyz-

mobile.com/profiles/Schema#Hardware" />

 <ccpp:Defaults

rdf:resource="http://www.ia.com/xyzProfile" />

 <uaprof:ScreenSize>320x200</uaprof:ScreenSize>

 </rdf:Description>

 </ccpp:component>

 <ccpp:component>

 <rdf:Description

about="http://www.ia.com/mobile/UserAgent/Mozilla-

beta">

 <rdf:type resource="http://www.xyz-

mobile.com/profiles/Schema#UserAgent" />

 <ccpp:Defaults

rdf:resource="http://www.mozilla.org/wap/profiles/

Mozilla" />

 <uaprof:BrowserVersion>Symbian-

beta</uaprof:BrowserVersion>

 </rdf:Description>

 </ccpp:component>

 </rdf:Description>

</rdf:RDF>

Individual Here, ccpp:Defaults elements reference default

profiles while uaprof:ScreenSize and

uaprof:BrowserVersion override default properties of the

device and user agent correspondingly. The resulting profile,

when interpreted by the server-side transformation agent, would

control automated assembly of an XSLT stylesheet that get

compiled into Java bytecode and cached on the server.

A feature-based approach to building device profiles helps to

automate targeted transformations of XML content. A new and

unknown device may be analyzed and mapped to a known device

with the closest set of features. The resulting specification gets

stored in a repository and serves as the basis for combining

transformations into a single XSLT stylesheet.

Figure 1. Sample Model - Content Subgraph.

3. CC/PP SERVER

Since CC/PP is defined as an RDF application, our approach is to

build a specialized RDF server that lends itself to constructing

CC/PP-based applications. Our RDF server is designed to

construct RDF models from XML specifications and to use these

models as processing context for programmable plug-ins. In this

prototype, we are not attempting to build an RDF-based

inference engine. Instead, we are taking a pragmatic approach by

supporting a Java API for pluggable Actor modules that get

invoked in the context of the nodes in the RDF graph.

The system graph is composed of three sub-graphs - the content

graph that models content and encapsulates content retrieval

functionality, the delivery graph that models end-user devices

and browsers, and the transformation graph that models feature-

based transformations (see Figures 1 and 2). The distinction

between the sub-graphs is semantic; structure-wise they are all

RDF graphs and are connected to the same root node. For

convenience, we will refer to content nodes, delivery nodes, and

transformation nodes depending on the context of the respective

graph. Note that the same node may belong to more than one

graph (e.g., the node associated with the "screen size" feature

belongs to both the delivery graph and the transformation graph).

The idea of our system is to promote the design of content

transformations for features and not devices. Adding support for

a new device will only require creating a new feature profile and

even this will become unnecessary in the future. The further idea

is to separate out content-independent components of feature-

based transformations and to minimize the amount of design

work needed to define transformations when adding new content.

Figure 2. Sample Model - Transformation and Delivery

Subgraphs.

3.1 Server Operation

Details of the server operation are illustrated in fig. 1. User

requests are always directed at a content node. When the

Controller receives the first request in a session, it performs the

following steps:

1. Sets references to content retrieval and transformation

Actors according to the following priorities (in descending

order):

1.1 information in the request;

1.2 properties of the content node;

1.3 global defaults.

2. Invokes the transformation Actor to perform the following

steps:

2.1 Establish a new session.

2.2 Traverse the delivery graph to compute device and

user agent profiles and store them in the session.

2.3 Check for the availability of cached content-

independent transformations for computed

profiles; if such transformations are not available,

traverse the transformation graph, compute the

transformations, and store them for future use.

3. Invokes the content retrieval Actor to perform the

following steps:

3.1 Recursively refer to other content nodes and

invoke their associated content retrieval Actors (if

required).

3.2 Compute and apply content-specific transformations

based on device and user agent profiles.

3.3 Apply profile-based content-independent

transformations.

The architecture allows for multiple content retrieval and

transformation actors that implement different policies for

content aggregation, feature profiling, and the composition of

stylesheet transformations. Transformation actors are responsible

for compiling feature profiles that they use to compose XSLT-

based transformations. Feature profiles are also used by content

retrieval actors for the purpose of selecting and composing

content-specific transformations. Content retrieval actors get

invoked recursively and may or may not apply transformations to

their content components.

3.2 Content Transformation Actors

Content transformation actors are responsible for figuring out

device and user agent features based on device identification and

user preference profiles that may include information about

custom extensions (e.g., additional memory) or preferences

regarding not making use of certain features that are available

with the device (e.g., keyboard).

In the future, with the support for the CC/PP standard, we will

expect browsers to submit either CC/PP specifications or

references to such specifications. The specification may be

further refined based on user preferences but it will be the

primary source for building device feature profiles. Our

implementation is designed to function in the absence of CC/PP

support but benefit from such support when it becomes available.

To this end, the server maintains a local repository of device

specifications. Device identities may be inferred by the

transformation actor based on information in the request (e.g.,

User Agent). They may also be identified by authenticating users

and retrieving device preferences from their profiles.

Having inferred information about the type of the device the

transformation actor checks for the availability of user

preferences and creates the device feature profile based on

combining this information. For example, the User Agent header

in the request indicates the version of the browser that runs on a

Motorola cell phone of a particular model. The transformation

actor queries the local repository for device features and creates

the initial profile. This profile may get modified based user

preferences.

For example, I may have upgraded memory on my Motorola cell

phone. The transformation actor can at best infer the make and

model of my device based on information in the request but it

can not learn about and take advantage of my upgraded memory.

However, I can list my devices and their upgrades in my profile.

The transformation actor can use this information to update the

initial feature profile that gets retrieved from the local repository.

Once the transformation actor compiles the feature profile, it

uses it to combine feature-based XSLT transformations (if the

target transformation is not already available). It passes the

feature profile to the content retrieval actor that may use it to

select and/or compose content-specific transformations. Once the

transformation actor receives partially transformed content from

the content retrieval actor, it applies feature-based

transformations and returns the result.

3.3 Content Retrieval Actors

Content retrieval actors are responsible for interpreting request

context and using it to control retrieval and transformation of

content. A content retrieval request always targets a metadata

node that provides the processing context, along with request

headers and session information which includes the feature

profile of the target device. Node metadata may reference

content, applications, or recursively refer to other metadata

nodes. It may also reference content-specific XSLT stylesheets

that get selected based on feature profiles for target devices.

For example, a metadata node may reference a fragment of an

XML file, and two other metadata nodes that, in turn, are

associated with a database query and an LDAP query

correspondingly. The content retrieval actor that gets invoked in

the context of the first node retrieves the XML fragment and

recursively invokes content retrieval actors for the referenced

nodes. Content retrieval actors for the query nodes may select

and apply their own transformations to query results prior to

returning them to the original content retrieval actor. Having

received all responses, the original content retrieval actor may

apply different transformations depending on whether the

browser is running on a cell phone or a desktop computer.

3.4 Summary

Our RDF server is designed to provide metadata context for

functional actors. Transformation actors are responsible for

building feature representations of end user devices and for using

the feature models to assemble content-independent XSLT

transformations. Content retrieval actors are responsible for

retrieving and partially transforming content. Content design that

is conducive to applying content-specific transformations may

have dramatic affect on presentation quality.

4. CONCLUSIONS

The future direction of RDF, CC/PP, and related standards has

immediate implications on design and development of wireless

applications. This includes building separate classes responsible

for the assembly and transformation of content, and

implementing feature-based XSLT stylesheets that may be

assembled into device-specific transformations. The way is open

for commercial wireless application development products that

do not make use of proprietary formats and protocols and that

establish a clear path for supporting W3C and WAP Forum

standards.

RDF is emerging as the foundation for next-generation

frameworks that enable automated construction of Java

applications. Such applications are composed of networks of

metadata objects implementing RDF models and Java classes

that use metadata objects as processing context. Using RDF for

wireless applications opens up opportunities for building next-

generation mobile services that don't depend on costly

maintenance to keep up with new, evolving, and personalized

devices. In other words, properly designed applications that are

built in the era of cell phones and palm devices would still work

for future microwave ovens that connect to the Internet to

download cooking instructions.

5. REFERENCES

[1] Composite Capabilities/Preference Profiles, Work in

Progress, W3C.

[2] Resource Description Framework Model and Syntax

Specification, W3C, 1999.

[3] Resource Description Framework Schema

Specification 1.0, W3C, 2000.

[4] Didier Martin, How would you like that served?,

xml.com, 2001.

