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Abstract. Most IE methods do not provide easy means for integrating complex
prior knowledge that can be provided by human experts. Such knowledge is espe-
cially valuable when there are no or little training data. In the paper we elaborate
on the extraction ontology paradigm; the distinctive features of our system called
Ex are 1) probabilistic reasoning over extractable attribute and instance candi-
dates and 2) combination of the extraction ontology approach with the inductive
and (to some degree) wrapper approach. We also discuss the issues related to the
deployment and evaluation of applications based on extraction ontologies.

1 Introduction

In the last decade, web information extraction (WIE) was dominated by two styles.
One—wrapper-based—is quite reliable but strictly depends on the formatting regu-
larity of pages. The other—inductive—paradigm assumes the presence of annotated
training data, which is rarely fulfilled in real-world settings, and manual labelling of
training data is often unfeasible. In addition, both approaches usually deliver extracted
information as weakly semantically structured; if WIE is to be used to fuel semantic
web repositories, secondary mapping to ontologies is typically needed, which makes
the process complicated and may introduce additional errors [4].

There were recently proposals for pushing ontologies towards the actual extraction
process as immediate prior knowledge. Extraction ontologies [3] define the concepts the
instances of which are to be extracted in the sense of various attributes, their allowed
values as well as higher-level Extraction ontologies are assumed to be hand-crafted
based on observation of a sample of resources; they allow for rapid start of the actual
extraction process, as even a very simple extraction ontology (designed by a compe-
tent person) is likely to cover a sensible part of target data and generate meaningful
feedback for its own redesign. The clean and rich conceptual structure (allowing partial
intra-domain reuse and providing immediate semantics to extracted data) makes extrac-
tion ontologies superior to ad-hoc hand-crafted patterns used in early times of WIE.
However, many aspects of their usage still need to be explored.

Section 2 of the paper briefly reviews the features of our WIE tool named Ex (see [5]
for a more thorough description). Section 3 drafts a larger context of the ontology-based
extraction task, namely, the design of extraction ontologies (incl. their relationship to
usual domain ontologies), practical aspects of their usage, and their evaluation. Finally,
Section 4 summarises the contributions of the paper.



2 Brief Overview of the Ex system

2.1 Main Characteristics of Ex

Our approach to WIE was originally inspired by that developed by Embley and col-
leagues at BYU [3]. The main distinctive features of Ex are:

1. The possibility to provide extraction evidence with probability estimates plus other
quantitative info such as value distributions, allowing to calculate the likelihood for
every attribute and instance candidate using pseudo-probabilistic inference.

2. The effort to combine hand-crafted extraction ontologies with other sources of in-
formation: HTML formatting and/or training data. HTML formatting is exploited
via formatting pattern induction, cf. Section 2.4. Training data can be exploited via
incorporating external inductive learning tools, currently those from Weka.1

Ex currently has two major real-world applications (details on both are in [5]):

– In the EU (DG SANCO) MedIEQ project2 Ex acts as one of the major IE engines
assisting medical website labelling authorities in assigning quality labels to web-
sites based on several dozens of medical website quality criteria. Several criteria
have been operationalised wrt. automatically-extractable information; most exten-
sive experiments so far concerned the presence and richness of contact information,
so far in three languages (English, Spanish and Czech).

– In cooperation with a large Czech web portal we extract information about products
sold or described online, such as TV sets, computer monitors and bicycles.

In addition, for experimental purposes, we also systematically address other domains
such as weather forecasts [8] or seminar announcements (see subsection 2.3).

2.2 Structure of Ex(traction) Ontologies

Extraction ontologies in Ex are designed so as to extract occurrences of attributes (such
as ‘speaker’ or ‘location’), i.e. standalone named entities or values, and occurrences
of whole instances of classes (such as ‘seminar’), as groups of attributes that ‘belong
together’, from HTML pages or texts in a domain of interest.

Attributes are identified by their name, equipped with a data type (string, long text,
integer or float) and accompanied by various forms of extraction evidence relating to
the attribute value or to the context it appears in. Attribute value evidence includes (1)
textual value patterns; (2) for integer and float types: min/max values, a numeric value
distribution and possibly units of measure; (3) value length in tokens: min/max length
constraints or a length distribution; (4) axioms expressing more complex constraints on
the value and (5) coreference resolution rules. Attribute context evidence includes (1)
textual context patterns and (2) formatting constraints.

Patterns in Ex (for both the value and the context of an attribute or class) are
nested regular patterns defined at the level of tokens (words), characters, formatting tags

1 http://www.cs.waikato.ac.nz/ml/weka
2 http://www.medieq.org



(HTML) and labels provided by external tools. Patterns may be inlined in the extraction
ontology or sourced from (possibly large) external files, and may include e.g. fixed lexi-
cal tokens, token wildcards, character-level regexps, formatting tags, labels representing
the output of external NLP tools or references to other patterns or attribute candidates.
For numeric types, default value patterns for integer/float numbers are provided.

For both attribute and class definitions, axioms can be specified that impose con-
straints on attribute value(s). For a single attribute, the axiom checks the to-be-extracted
value and is either satisfied or not (which may boost or suppress the attribute candidate’s
score). For a class, each axiom may refer to all attribute values present in the partially
or fully parsed instance. For example, a start time of a seminar must be before the end
time. Arbitrarily complex axioms can be authored using JavaScript. Further attribute-
level evidence includes formatting constraints (such as not allowing the attribute value
to cross an HTML element) and coreference resolution scripts.

Each class definition enumerates the attributes which may belong to it, and for each
attribute it defines a cardinality range. Extraction knowledge may address both the con-
tent and the context of a class. Class content patterns are analogous to the attribute
value patterns, however, they may match parts of an instance and must contain at least
one reference to a member attribute. Class content patterns may be used e.g. to describe
common wordings used between attributes or just to specify attribute ordering. For each
attribute, the engagedness parameter may be specified to estimate the apriori probability
of the attribute joining a class instance (as opposed to standalone occurrence). Regard-
ing class context, analogous class context patterns and similar formatting constraints
as for attributes are in effect.

In addition, constraints can be specified that hold over the whole sequence of ex-
tracted objects. Currently supported are minimal and maximal instance counts to be
extracted from a document for each class.

All types of extraction knowledge mentioned above are pieces of evidence indi-
cating the presence (or absence) of a certain attribute or class instance. Every piece of
evidence may be equipped with two probability estimates: precision and recall. The pre-
cision of evidence states how probable it is for the predicted attribute or class instance
to occur given the evidence holds, disregarding the truth values of other evidence. The
recall of evidence states how abundant the evidence is among the predicted objects,
disregarding whether other evidence holds.

2.3 Example

In order to illustrate most of the above features, we present and explain an example
from the seminar announcement extraction task3, in which the speaker name, location
and start and end times (stime, etime) are to be extracted. Fig. 1 shows the structure of
an extraction ontology for this task. Fig. 2 displays a part of the corresponding code
in the XML-based ontology definition language, dealing with the name of the speaker
and start time. Note that the extraction ontology defines some extra attributes like date,
host and submitter; these are ‘helper’ attributes extracted in order for the system not to
confuse them with the remaining attributes.

3 Compiled by A. McCallum, http://www.cs.umass.edu/˜mccallum/code-data.html.



Fig. 1. General scheme of seminar extraction ontology

Fig. 2. Fragment of code of seminar extraction ontology

In the global scope of the model, extraction knowledge affecting more than one
attribute is defined: an axiom states that in 80% of cases, the duration of a seminar is
between 30 minutes and 4 hours. The axiom is conditioned so that it only applies when
both stime and etime are specified.

The speaker attribute shows the usage of nested regular patterns defined at the level
of both words and characters. The ‘value’ section contains a sample pattern that is as-
sumed to be exhibited by 50% of valid speaker names and its expected precision is 80%:
the pattern partially relies on frequent first-name and surname lists. This value-related
evidence is combined with contextual evidence stating that at least 10% of speaker
names are preceded by indicative word sequences that, when present, identify a sub-
sequent speaker name with 60% precision. A user-defined person-name co-reference
resolution script is used to uncover multiple mentions of the same speaker.

Next, a generic time attribute follows which extracts time references from the input
text. It contains an axiom that checks the time validity and also a time co-reference rule
that identifies when two time entries are the same (like “noon” and “12pm”). Then two
specializations of time are defined: the start and end times (only the start time is shown).



The system specializes an attribute value when it finds some evidence that indicates the
specialization (a context pattern in this sample). All properties of the general attribute
are inherited to the child.

2.4 Extraction Process

The inputs to the extraction process are the extraction ontology and a set of documents.
The process consists of five phases with feed-back looping; further details are in [5]:

– Document pre-processing, including DOM parsing, tokenisation, lemmatisation,
sentence boundary detection and optionally execution of a POS tagger or external
named entity recognisers.

– Generation of attribute candidates (ACs) based on value and context patterns; an
AC lattice is created.

– Generation of instance candidates (ICs) for target classes in a bottom-up fashion,
via gluing the ACs together; high-level ontological constraints are employed in this
phase. The ICs are eventually merged into the AC lattice.

– Formatting pattern induction allowing to exploit local mark-up regularities. For
example, having a table with the first column listing staff names, if e.g. 90 person
names are identified in such column and the table has 100 rows, patterns are induced
at runtime that make the remaining 10 entries more likely to get extracted as well.

– Attribute and instance parsing, consisting in searching the merged lattice using
dynamic programming. The most probable sequence of instances and standalone
attributes through the analysed document is returned.

3 Ontology Design, Deployment and Evaluation

3.1 Design and Deployment of Extraction Ontologies

Clearly, the critical aspect of the WIE approach relying on extraction ontologies is the
design of such ontologies. So far, in the projects mentioned in section 2, all ontologies
were designed manually by experienced knowledge engineers; the time required for the
initial design was in the order of several person-weeks. For some attributes it may prove
difficult to enter all needed extraction knowledge manually and still achieve acceptable
error rates. This can be due to large heterogeneity of the extracted values and due to the
complexity or large amounts of the required extraction knowledge, or simply because
of lack of the designer’s knowledge (e.g. extraction from different languages). We are
working in different directions to alleviate this problem:

– Inductive models can be trained to classify selected attributes for which training
data are available. The classifier’s decisions are then used within the extraction
ontology patterns and can be augmented with further expert knowledge.

– When no training data are available, the designer can perform mining over the cur-
rent extraction results in order to find frequent phrases that occur in different po-
sitions wrt. so-far extracted attribute values. The positions include left and right
context, prefix, content and suffix, and different types of string overlap. The mined
phrases can guide the designer in creating indicative context and content patterns.



– An alternative to building complex extraction models is to utilize evidence related
to the larger context of data. For example, in the MedIEQ project, the extraction
ontologies initially extract generic ‘contact information’ which is then specialized
(e.g. to ‘person responsible for medical content’ or to ‘administrative staff’) using
post-processing rules relying on page category determined by other tools.

We also investigate possibilities for reducing the amount of work in building the
conceptual structure of the extraction ontology. Our hypothesis, partially confirmed
by experiments described in [8], is that existing domain ontologies and possibly other
models can be used as starting point for semi-automatically designing the structure of
extraction ontologies via a set of transformation rules. As extraction ontologies are
pre-dominantly tree-structured (they reflect the presentation structure of web/text doc-
uments), the transformation mostly has the character of serialisation, including steps
such as converting a terminal subclass partition to an attribute of the superclass. More-
over, if even an authoritative domain ontology (DO) does not exist, state-of-the-art on-
tology engineering technology may allow to build it on the fly. From within large reposi-
tories of ontologies relevant ontologies can be retrieved via ontology search tools;4 they
can be selected based on their quality evaluation and partially merged.

The high-level workflow can be initiated either by adopting (or building) a DO or by
directly writing an EO. In the latter case, we however lack a target ontological structure
to be populated by extracted data. We thus assume that a DO could be re-engineered
from an EO by following the transformation rules backwards (though such ‘deseriali-
sation’ would require more human investment). Even though populating the DO using
transformation rules will be a non-trivial process, it is likely to be more transparent
compared to IE approaches that do not exploit ontological structures.

Finally, we assume that the EO could also be purely syntactically transformed to a
semantic web (i.e. OWL) ontology, let us call it Ex2OWL ontology, that would serve as
a DO (at the cost of being skewed towards document-oriented view).

Figure 3 depicts the scheme of prospective high-level workflow around EO-based
IE. Solid edges correspond to fully-supported processes (now only the actual Ex-based
IE), dashed edges to processes currently subject to intense research (the flow from on-
tology repository through the target DO to the EO), and dotted5 edges to processes
weakly elaborated to date (some of them amounting to mere syntactic transformations).

3.2 Evaluation of Ontology-Based Extraction

Common approaches to IE evaluation, have they been developed at the level of formal
models [2] or e.g. pragmatically applied in the ACE programme,6 solely focus on met-
rics for result quality. Even the presence of ontologies in IE is only reflected in scoring
formulae modified so as to handle taxonomic similarity instead of exact in/correctness
of results [7]. In reality, however, the result quality (typically measured by extraction
accuracy) is only one factor of the overall cost; another one is the cost of procurement
of extraction knowledge. An exception is the extraction of notorious types of generic

4 We so far mainly experimented with OntoSelect, http://olp.dfki.de/ontoselect.
5 Undirected edges do not refer to processes but merely to the ‘population’ relationship.
6 http://www.nist.gov/speech/tests/ace/ace07/doc/ace07-evalplan.v1.3a.pdf



Fig. 3. High-level schema of (Ex)traction-ontology-based IE

named entities (such as peoples’ names or locations in English) for which reasonably
performing, previously trained tools already exist. However, in most cases, the poten-
tial user has to deal with a specific task for which no extraction model exists yet. The
extreme alternatives now are 1) to let humans manually label a decent sample of the
corpus and train a model, or 2) to prepare the extraction patterns by hand, e.g. in the
form of an extraction ontology. Various middle ways are of course possible.

Let us sketch a very simple evaluation model that would allow to compare dissimilar
IE methods including the model-building context. Instead of directly comparing the
accuracy of different methods, we can declare the minimal accuracy value required for
the target application (target accuracy – TA). Then we will calculate the overall cost (in
terms of the human power consumed) required by those different methods in order for
the TA to be reached. For a purely inductively-trained model, the cost amounts to

CI = cannot.nI (1)

where cannot is the cost of annotating one elementary unit (such as ontological instance)
and nI is the number of annotations needed to learn a model reaching the TA. Similarly,
for an extraction ontology that only uses manual extraction evidence, the cost is

CO = cinspect.nO +CODesign (2)

where cinspect is the cost of merely inspecting (viewing) one elementary unit and nO is
the number of units that had to be viewed by the extraction ontology designer to build
a model reaching the TA; CODesign then is the cost of designing the actual extraction
ontology. It is important to realise that cinspect << cannot (among other, cinspect does
not have to deal with exact determination of entity boundaries, which is a well-known
problem in creating the ground truth for IE) and most likely also nO < nI ; what now
matters is whether this lower cost in CO is/not outweighed by the relatively high cost
of CODesign. The model can be arbitrarily extended: e.g. for hybrid approaches (such as
that we use in Ex) we could also consider the cost of deciding which attributes are to be
extracted using which method—inductive vs. manual.

Let us, eventually, briefly touch another problem, that of cross-validation, which is a
standard approach in evaluating inductive IE methods. While in the inductive approach
an annotated dataset can be repeatedly partitioned and presented to the learning tool, we
cannot do the same with the human designer of the extraction ontology, as s/he is not



as ‘oblivious’ as a machine. The only way of simulating cross-validation in this context
thus seems to be the inclusion of multiple designers, which is in most cases prohibitive.

As partial illustration of the mentioned concepts, let us tentatively compute the cost
of IE over seminar announcements. The utilized dataset contained 485 annotated doc-
uments, of which 240 were made available to the extraction ontology designer (who
finally only needed to see a subset of these) and the remaining 245 were used for test-
ing. After about 8 person days of development, the extraction ontology attained, on the
test set, precision/recall values roughly comparable to those reported in literature; with
F-measure reaching 94% for both stime end etime, and 69% and 77% for speaker and
location, respectively. The accuracy for the two latter fields did not reach the best re-
sults7 achieved by inductive algorithms like LP2 [1]. However, we can hypothesise that
the total cost CO = cinspect.240 + 8PD was possibly lower than CI = cannot.485. The
comparison is further skewed by the different train/test set partitioning: one-way cut in
our approach in contrast to 10-fold cross-validation used for other systems.

4 Conclusions

Thanks to their short development cycle, extraction ontologies are an interesting al-
ternative for WIE when there are no or little training data. State-of-the-art ontological
engineering techniques can be employed to ease their development. Fair evaluation of
their performance however needs to take into account a larger context of their creation.

The research was supported by the EC, FP6-027026, Knowledge space of semantic
inference for automatic annotation and retrieval of multimedia content—K-Space.
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