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Preface

More and more information extraction (IE) systems use ontologies for extrac-
tion tasks. These systems use knowledge representation techniques for extract-
ing information from unstructured or semi-structured domains more efficiently.
The advantages of these procedures are especially an increase of quality in IE-
templates, reusability, and maintainability. Ontologies in IE may provide new
techniques for supporting open tasks of semantic analyses regarding for instance
temporal analyses, resolution of contradiction, or context awareness. There are
several open research topics about ontology-based information extraction, for
instance a proven architecture, evaluation guidelines regarding the use of on-
tologies, or ontologies vs. templates.

This volume contains the papers presented at OBIES 2008: 1st Workshop on
Ontology-based Information Extraction Systems held on the 31st edition of the
Annual German Conference on Artificial Intelligence (KI 2008)in Kaiserslautern.

There were 5 submissions. Each submission was reviewed by at least 3, and
on the average 3.2, programme committee members. The committee decided to
accept 4 papers.

August 2008 Benjamin Adrian
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Scaling up Pattern Induction for Web Relation

Extraction through Frequent Itemset Mining

Sebastian Blohm and Philipp Cimiano

Institute AIFB, Universität Karlsruhe (TH)

Abstract. In this paper, we address the problem of extracting relational infor-

mation from the Web at a large scale. In particular we present a bootstrapping

approach to relation extraction which starts with a few seed tuples of the target

relation and induces patterns which can be used to extract further tuples. Our

contribution in this paper lies in the formulation of the pattern induction task as a

well-known machine learning problem, i.e. the one of determining frequent item-

sets on the basis of a set of transactions representing patterns. The formulation of

the extraction problem as the task of mining frequent itemsets is not only elegant,

but also speeds up the pattern induction step considerably with respect to previ-

ous implementations of the bootstrapping procedure. We evaluate our approach

in terms of standard measures with respect to seven datasets of varying size and

complexity. In particular, by analyzing the extraction rate (extracted tuples per

time) we show that our approach reduces the pattern induction complexity from

quadratic to linear (in the size of the occurrences to be generalized), while man-

taining extraction quality at similar (or even marginally better) levels.

1 Introduction

A problem which has received much attention in the last years is the extraction of (bi-

nary) relations from the Web. Automatic extraction of relations is useful whenever the

amount of text to analyze is not manageable manually. As an example, a car manufac-

turer may want to monitor upcomingmarket developments by analyzing news and blogs

on the Web. Relation extraction can extract the presentedAt relation in order to compile

a list of upcoming car models and where they will be presented (e.g presentedAt(Audi

Q7, Detroit Motor Show)). To address this problem, several supervised approaches have

been examined which induce a classifier from training data and then apply it to discover

new examples of the relation in question. These approaches typically work on a closed

corpus and rely on positive and (implicit) negative examples provided in the form of

annotations [18, 8] or a handful of positive and negative examples [5]. The obvious

drawback of such methods is that they can inherently not scale to the Web as they

would require the application of the classifier to the whole textual data on the Web, thus

being linear in its size.

Alternative approaches to address the problem of extracting relations from the Web

have been presented (we discuss a couple of systems below). These approaches rely on

the induction of patterns on the basis of occurrences of a few examples of the relation

in question. Such explicit textual patterns allow to take a shortcut to linearly scanning

the whole Web by relying on standard index structures to evaluate the string patterns



as standard search engine queries using off-the-shelf search engine APIs. This circum-

vents the need to linearly process the whole Web (see e.g. [3]). Some approaches per-

form pattern induction in an iterative fashion in a cyclic approach which uses the new

examples derived in one iteration for the induction of new patterns in the next iteration

[4, 1]. In this paper we follow this latter approach and in particular examine more in

detail the empirical complexity of the pattern induction step. As in these approaches

the induction of patterns proceeds in a bootstrapping-like fashion, the complexity of the

pattern induction step crucially determines the time complexity of the whole approach.

Earlier implementations of the approach have used greedy strategies for the pairwise

comparison of the occurrences of seed examples. In this paper we show how the Apri-

ori algorithm for discovering frequent itemsets can be used to derive patterns with a

minimal support in linear time. Our empirical evaluation shows that with this approach

pattern induction can be reduced to linear time while maintaining extraction quality

comparable (and even marginally better) to earlier implementations of the algorithm.

The remainder of this paper is organized as follows. In the next section we de-

scribe the approach of pattern-based relation extraction using Web search engines in

more detail. In section Pattern Induction as Frequent Itemset Mining, we give a brief

introduction to Frequent Itemset Mining before describing how it is applied in order

to induce patterns for relation extraction. We describe our experimental results in sec-

tion Experimental Results, before discussing related work and giving some concluding

remarks.

2 Iterative Pattern Induction

The goal of pattern induction is, given a set of seed examples (pairs) S of a relation R

as well as occurrences Occ(S) in the corpus (the Web in our case) of these seeds, to

induce a set of patterns P which are general enough to extract many more tuples stand-

ing in the relation R (thus having a good coverage) and which at the same time do not

overgenerate in the sense that they produce too many spurious examples. The challeng-

ing issues here are on the one hand that the hypothesis space is huge, corresponding to

the power set of the set of possible patterns P representing abstractions over the set of

occurrences Occ(S). We will denote this hypothesis space as 2P . On the other hand,

the complete extension extR of the relation R is unknown (it is the goal of the whole

approach to approximate this extension as closely as possible at the end of the cycle),

such that we cannot use it to compute an objective function: o : 2P → R to determine

the patterns’ accuracy with respect to the extension extR.

The general algorithm for iterative induction of patterns is presented in Figure 1.

It subsumes many of the approaches mentioned in the introduction which implement

similar bootstrapping-like procedures. The key idea is to co-evolve P (which at the

beginning is assumed to be empty) as well as a constantly growing set of examples S

which at the beginning corresponds to the seed examples. The candidate patterns can be

generated in a greedy fashion by abstracting over the occurrences Occ(S). Abstracting
requires finding common properties, which in principle is a quadratic task as it requires

pairwise comparison between the different occurrences.



ITERATIVE PATTERN INDUCTION(PatternsP ′, TuplesS′)
1 S ← S′

2 P ← P ′

3 while not DONE

4 do Occt ← MATCH-TUPLES(S)
5 P ← P ∪ LEARN-PATTERNS(Occt)
6 EVALUATE-PATTERNS(P )
7 P ← {p ∈ P | PATTERN-FILTER-CONDITION(p)}
8 Occp ← MATCH-PATTERNS(P )
9 S ← S + EXTRACT-TUPLES(Occp)
10 EVALUATE-TUPLES(S)
11 S ← {t ∈ S | TUPLE-FILTER-CONDITION(t)}

Fig. 1. Iterative pattern induction algorithm starting with initial tuples S
′ or (alternatively) pat-

terns P
′.

The algorithm starts with a set of initial tuples S′ of the relation in question –

so called seeds – and loops over a procedure which starts by acquiring occurrences

of the tuples currently in S (e.g. by querying a search engine with "Stockholm"

"Sweden") for the relation locatedIn. Further patterns are then learned by abstract-

ing over the text occurrences of the tuples. The new patterns are then evaluated and

filtered before they are matched. A resulting pattern could be “flights to ARG1 ,ARG2

from ∗ airport” and thus may contain wildcards and argument place holders. From these

matches, new tuples are extracted, evaluated and filtered. The process is repeated un-

til a termination condition DONE is fulfilled. The learning is thus inductive in nature,

abstracting over individual positive examples in a bottom-up manner.

For our experiments we have used the implementation of the above algorithm as

described in [3]. They have shown in previous work that in absence of an objective

function to maximize, we can reasonably estimate the quality of the set P of patterns

by a heuristic function. Among the different functions examined in the above men-

tioned work, a simple function which assesses the quality of a pattern on the basis of

its support, i.e. the different occurrences which it was generated from and therefore

covers, is shown to be a good choice compared to other more elaborate measures such

as the pointwise mutual information used in the Espresso [12] and other systems (e.g.

KnowItAll [9]). Therefore, a reasonable choice is to select those patterns which have a

minimal support and meet some heuristic syntactic criteria to prevent too general pat-

terns1. We describe in the following section how this problem can be formulated as the

one of determining frequent itemsets using the well-known apriori algorithm. With this

move, we also reduce the complexity of the pattern induction step from quadratic to

linear in the number of occurrences.

3 Pattern Induction as Frequent Itemset Mining

In our approach, we translate textual occurrences of a certain relation into set represen-

tations and use the Apriori algorithm to find patterns in these occurrences that exceed a

certain minimum support. This task is typically called frequent itemset mining (FIM).

1 In particular, we ensure that the patterns have a minimal number of token constraints (and not

only wildcards) as well as that they have been generated from at least two different tuples.



The mining for frequent itemsets is a subtask of Association Rule Mining. Associa-

tion rules are used to derive statements like “Clients who bought product X also bought

product Y” from transaction databases. A transaction t ∈ DB constitutes a process

with several items a from an alphabet of items A (e.g. products that have been jointly

purchased).DB is thus a (multi) set of subsets of A.

In a databaseDB of transactions the frequent itemsets F ⊂ 2A are defined as those

sets that occur at least freqmin times as subset of a transaction, i.e. F = {f ∈ 2A||{t ∈
DB|f ⊂ t}| ≥ freqmin}.

3.1 The Apriori Algorithm

Apriori [2] is an algorithm for finding all frequent itemsets given a database and a
frequency threshold. It is based on the observation that an itemset f of size |f | = n
can only be frequent in DB if all its subsets are also frequent in DB. Apriori thus
significantly reduces the amount of itemsets for which the frequency has to be counted
by first deriving all frequent itemsets of size n = 1 and then progressively increasing
n so that the above subset condition can be checked when generating the candidates
for n + 1 as all subsets of size n are known. The Apriori algorithm looks as follows in
pseudocode:

APRIORI(Alphabet A, Database DB ⊂ 2A, Threshold freqmin)
1 C ← {{a}|a ∈ A}
2 n← 1
3 while C 6= ∅
4 do

5 ∀c ∈ C : COUNTSUPPORT(c, DB)
6 Fn ← {c ∈ C|SUPPORT(c) >= freqmin}
7 C ← {f ∪ g|f, g ∈ Fn ∧ MERGABLE(f, g)}
8 C ← PRUNE(C, Fn)
9 n← n + 1

The algorithm stores all frequent itemsets of size n in a set Fn after verifying for

each itemset that it occurrs at least freqmin times in DB. The set of candidates for

the first iteration is given by all elements of the alphabet. For the following iterations

it is then generated by taking all elements of Fn and combining them if the condition

MERGABLE(f, g) is fulfilled, which makes sure that f and g overlap in n− 1 elements.
PRUNE(C, Fn) removes all itemsets c from C (which all have length n + 1) for which
one or more of all possible subsets of c of size n are not contained in Fn which is the

above-mentioned necessary condition for c to be frequent.

The performance of the Apriori algorithm depends on the efficient implementation

of the operations COUNTSUPPORT(c, DB), MERGABLE(f, g) and PRUNE(C, Fn). It is
common to use a Trie data structure (also called Prefix Tree) for this purpose. Given

an arbitrary total order on A, one can represent the itemsets as ordered sequences with

respect to that sequence. Tries are trees that represent sequences as paths in the tree

along with their frequency counts. After constructing a Trie from the DB, one can find

and count non-continuous subsequences of DB entries very efficiently, which is the

task of COUNTSUPPORT. Similarly, MERGABLE and PRUNE can be implemented as

traversal operations on the Trie (as described in [11]).



3.2 Mining for Text Patterns with Apriori

The general idea of applying frequent itemset mining for text pattern induction is that

a text pattern "flights to *, *" can be considered the frequent itemset of the

set of text occurrences it has been generated from (e.g. DB = {”We offer flights to

London, England.”,”I look for flights to Palo Alto, CA.”}). In order to ensure that, in
spite of the set character of itemsets, word order is preserved, a special encoding is used,

allowing at the same time to express additional constraints over words. While sequence

mining algorithms such as the one used by Jindal and Liu [10] can be applied, it is

not straightforward to encode multiple constraints per token. Thus, in our approach we

exploit the more general model of unordered itemsets and encode word order and other

constraints as described below.

We use the notion of constraints for describing the textual occurrences and patterns.

Each constraint has a type, a position and a value. A constraint is fulfilled for a given

text segment if the value is present at the given position in a way described by the

constraint type. The positions are the token numbers (aligned by the positions of the

arguments). Types can be for example surface string, capitalization and part-of-speech

with their obvious sets of possible values. The pattern "We offer flights to

*, *" may be represented as the following set of constraints:

surface1 = we, capitalization1 = true
surface2 = offer, capitalization2 = false

surface3 = flights, capitalization3 = false
surface4 = to, capitalization4 = false

surface6 = COMMA, capitalization6 = false

Note that no constraints are posed for positions 5 and 7 because those are the argument

positions (reflected by the ∗ wildcard above). In our implementation we ensure that all
occurrences are aligned such that the position numbers are always the same relative to

the argument positions.

We encode each constraint as a positive integer value using a bijective function

encode : Type × Position × V alue → N: encode(con, pos, value) = value ∗
maxCon ∗ maxPos + (pos + maxPos ∗ (con − 1)). where con is the number of

the constraint type, pos the position and value a numerical value reflecting frequency.

The remaining variables reflect the respective maximal values with respect to the given

database. One can think of this as the process of first “flattening” the structured infor-

mation contained in the constraints to items like:

{surface 1 we, capitalization 1 true,
surface 2 offer, capitalization 2 false,

surface 3 flights, capitalization 3 false,

surface 4 to, capitalization 4 false,
surface 6 COMMA, capitalization 6 false}

and subsequently translated to integer values: {987, 435, 656634, 4235, 234, 6453, 64,
242, 786, 89}. During the application of Apriori, only those subsets are retained that
reflect a frequently occurring textual pattern: {6453,64,242,786,89}= ”flights to *, *”.

Apriori generates all patterns that exceed a given frequency threshold. Inevitably,

this yields multiple patterns that are subsumed by each other (e.g. if " * was born



Relation Size Dataset Description Pmanual Pclassic ∆ PF IM ∆ PF IMtuned

albumBy 19852 Musicians and their musical works 80.8% 27.4% -11.6% -18%

bornInYear 172696 persons and their year of birth 40.7% 19.5% +48.4% +17%

currencyOf 221 countries and their official currency 46.4% 22.8% -17.6% +10.9%

headquarteredIn 14762 companies and the country of their head-
quarter

3% 9.8% +2.2% -5.2%

locatedIn 34047 cities and their corresponding country 73% 56.5% -8.4% -0.5%

productOf 2650 product names and their manufacturers. 64.6% 42.2% -0.9% +12%

teamOf 8307 sportspersons and their team or country 30% 8.0% +1.4% +0.8%

average 48.3 26.6% +1.9% +4.7%

Table 1. Relations with precision scores obtained by the classic system (manual evaluation) and

differences (∆) measured with the two FIM conditions.

in * " is frequent, then " * was * in * " is frequent as well). In order to

avoid such too general patterns and at the same time avoiding too specific ones (e.g.

"Wolfgang Amadeus * was born in * "), we introduce the following rule

for removing more general patterns: if pattern a has all constraints also present in b and

one more, b is removed unless SUPPORT(b) is at least 20% higher than SUPPORT(a).
This rule is applied starting with the smallest patterns. We experimentally determined

that the threshold of 20% leads to a generally rather appropriate set of patterns. The

remaining unwanted patterns are left to be eliminated by further filtering.

4 Experimental Evaluation

The goal of our experimental evaluation is to demonstrate the advantages of modeling

the pattern abstraction subtask of iterative pattern induction as a frequent itemset mining

(FIM) problem.We do so by comparing the performance achieved by our itemset-based

implementation with the abstraction algorithm used in previous implementations (com-

pare [3]). We do not intend to show the superiority of the approach based on Frequent

Itemset Mining to those from the literature as this would require a common benchmark

for large-scale Web Relation Extraction or at least a common basis of implementation.

Such a standard does not exist due to the diversity of applications and pattern represen-

tation formalisms in the literature. Yet, we evaluate our results on a fairly diverse set

of non-taxonomic relations to ensure generality. The datasets we use have already been

used in [3] and are provided for download by the authors. As in these experiments, we

have also used the same 10 seeds selected by hand and the same automatic evaluation

procedure.

4.1 Experimental Setup

In our experiments, we rely on the widely used precision and recall measures to eval-

uate our system’s output with respect to the full extension of the relation2. To give an

2 Note that this is different from the evaluation of other similar systems which calculate these

measures with respect to a specific corpus, thus yielding higher scores. Also due to the abs-

cence of a closed corpus in our Web scenario, our notion of recall is is not comparable. We

use “relative recall” in the sense that it reflects extractions compared to the highest yield count

obtained over all experimental settings we applied.



Fig. 2. Precision, recall, F-measure and extraction rate for the individual configurations averaged

over all relations (left); Time (sec.) taken by a run of the classical induction algorithm (squares)

and the FIM-based algorithm (circles) over the numbers of sample occurrences. (right)

objective measure for temporal performance, we use the Extraction Rate, that is, the

number of correctly extracted tuples TP over the duration D of the extraction process

in seconds (on a dual core machine with 4GB of RAM): Ex = TP
D

Figure 2 shows precision, recall and F-measure for three configurations of the sys-

tem: the classic configuration, the FIM configuration which uses the proposed model-

ing of the learning problem with all parameters unchanged and FIM tuned for which

the parameters have been optimized for the new learning algorithm. In particular, as

FIM is more efficient than the classic merge procedure, we can process a higher num-

ber of tuples, such that we set the number of occurrences downloaded to 200 (versus

a decreasing number as used in [3]). All the other parameters of the algorithm have

been chosen as described there. Overall, there is a small superiority of FIM over the

classic version in terms of precision and recall (29% vs. 27% and 15% vs. 11%). Most

importantly, there is a clear superiority in terms of extraction rate (0.19 vs. 0.05 occur-

rences/second). This difference is statistically significant (two-sides paired Student’s

t-test with an α-Level of 0.05).

Table 1 shows the different relations together with the size of their extension, the

precision yielded by a manual evaluation of a sample of 100 tuples of each relation

(Pmanual), the precision yielded by the classic pattern induction algorithm Pclassic

as well as the relative improvements yielded by our formulation of the problem as a

frequent itemset mining (FIM) task relative to the precision Pclassic calculated auto-

matically with respect to the relation’s extension3. The best results for each relation are

highlighted. In general, we see that while the results vary for each relation, overall the

FIM version of the algorithm does not deteriorate the results, but even slightly improves

them on average (+1,9% for the FIM version and +4.7% for the tuned FIM version).

4.2 Discussion

In principle, there are no reasons for any of the abstraction algorithms to show better

precision and recall because they both explore all possible frequently occurring patterns

3 Note here that the precision Pclassic calculated automatically with respect to the datasets is

much lower than the precision obtained through sampled manual evaluation (Pmanual). This

is due to the in some cases unavoidable in-completeness of the datasets and orthographic dif-

ferences in test data and extraction results.



in a breadth-first-search manner. Differences are due to minor modeling issues (see

below), the slightly different evaluation of patterns based directly on support counts

produced by apriori and, most importantly, the fact that learning is cut off after one hour

per iteration. Indeed the standard implementation frequently reached this time limit of

an hour, thus leading to better results for the FIM version of the algorithm which does

not suffer from this time limit.

One example of slight modeling differences which influenced performance is the

treatment of multi-word instances. The learner has to decide whether to insert one wild-

card ∗ in an argument position (nearly always matching exactly one word) or two (al-
lowing for two or more words). The classic version heuristically takes the number of

words in the argument of the first occurrence used for pattern creation as sample for

the wildcard structure. The FIM version encodes the fact that an argument has more

than one word as an additional constraint. If this item is contained in a learned frequent

itemset, a double wildcard is inserted. The stronger performance with the bornInYear

(+48%), currencyOf (+10.9%) and productOf (+12%) relations can be explained in

that way (compare Table 1). For example, the FIM version learns that person names

have typically length 2 and birth years always have length 1 while the classic induction

approach does not allow this additional constraint. This explains the decreased perfor-

mance of the classic approach for the relations mentioned above for which at least one

argument has a rather fixed length (e.g. years).

As indicated in Figure 2, the clear benefit of the FIM abstraction step lies in its run-

time behavior. The duration of a pattern generation process is plotted over the number

of sample instances to be generalized. To measure these times, both learning modules

were provided with the same sets of occurrences isolated from the rest of the induction

procedure. The FIM shows a close to linear increase of processing duration for the given

occurrence counts. Even though implemented with a number of optimizations (see [3]),

the classic induction approach clearly shows a quadratic increase in computation time

w.r.t. the number of input occurrences.

5 Related Work

The iterative induction of textual patterns is a method widely used in large-scale infor-

mation extraction. Sergey Brin pioneered the use of Web search indices for this purpose

[4]. Recent successful systems include KnowItAll which has been extended to auto-

matic learning of patterns [9] and Espresso [12]. The precision of Espresso on various

relations ranges between 49% and 85%, which is comparable to our range of precisions

Pmanual. Concerning the standard restriction to binary relations, Xu et al. [17] have

shown how approaches used for extracting binary relations can be applied to n-ary rela-

tions in a rather generic manner by considering binary relations as projections of these.

These and the many other related systems vary considerably with respect to the rep-

resentation of patterns and in the learning algorithms used for pattern induction. The

methods used include Conditional Random Fields [16], vector space clustering [1], suf-

fix trees [14] and minimizing edit distance [13]. In this paper, we have proposed to

model different representational dimensions of a pattern such as word order, token at

a certain position, part-of-speech etc. as constraints. Our approach allows straightfor-



wardly to represent all these dimensions by an appropriate encoding. Given such an

encoding, we have shown how frequent itemset mining techniques can be used to effi-

ciently find patterns with a minimal support.

Apart from pattern-based approaches, a variety of supervised and semi-supervised clas-

sification algorithms have been applied to relation extraction. The methods include

kernel-based methods [18, 8] and graph-labeling techniques [6]. The advantage of such

methods is that abstraction and partial matches are inherent features of the learning al-

gorithm. In addition, kernels allow incorporating more complex structures like parse

trees which cannot be reflected in text patterns. However, such classifiers require test-

ing all possible relation instances while with text patterns extraction can be significantly

speeded up using search indices. From the point of view of execution performance, a

pattern-based approach is superior to a classifier which incorporates a learned model

which can not be straightforwardly used to query a large corpus such as the web. Clas-

sification thus requires linear-time processing of the corpus while search-patterns can

lead to faster extraction. Recently, the

A similar approach to ours is the one by Jindal and Liu [10]. They use Sequential

Pattern Mining – a modification of Frequent Itemet Mining – to derive textual patterns

for classifying comparative sentences in product descriptions. While, like our approach,

encoding sequence information, their model is not able to account for several constraints

per word. Additionally, the scalability aspect has not been focus of their study as mining

has only be performed on a corpus of 2684 sentences with a very limited alphabet.

Another approach orthogonal to ours is presented by [7]. Each occurrence is abstracted

over in a bottom up manner which saves pairwise occurrence comparison at the expense

of evaluating the large amounts of pattern candidates with respect to the training set. The

algorithm seems thus more appropriate for fully supervised settings of limited size.

6 Conclusion

Our contribution in this paper lies in the formulation of the pattern induction step as a

well-known machine learning problem, i.e. the one of mining frequent itemsets. On the

one hand, this formulation is elegant and advantageous as we can import all the results

from the literature on association mining for further optimization (an overview of which

is given in and [15]). On the other hand, we have shown that this formulation leads to a

significant decrease in the running time of the extraction. In particular, we have shown

that the running time behavior decreases from quadratic to linear with the number of

occurrences to be generalized with respect to previous implementations. Further, we

have also shown that the quality of the generated tuples even slightly increases in terms

of F-measure compared to the standard pattern induction algorithm. This increase is

mainly due to the modeling of argument length as an additional constraint which can

be straightforwardly encoded in our FIM framework. Overall, modeling the different

representational dimensions of a pattern as constraints is elegant as it allows to straight-

forwardly add more information. In future work we plan to consider taxonomic as well

as other linguistic knowledge.
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Abstract. This paper briefly reports on an agent team doing ontology-based

information extraction (OBIE, IE) for summarization in clinical Bone Marrow

Transplantation (BMT). The SummIt-BMT agents contribute to OBIE through

their  flexible use of  ontological knowledge.  They assess  input text  passages

from web retrieval with respect to a user query.  They use an ontology that

supports IE in particular with concepts, propositions, unifiers and paraphrases.

Sentences with IE hits are annotated with the IDs of ontology propositions that

recognize an instance of their content in the sentence. The agents are beginners,

but they perform. Distributing ontology-based IE to agents has some promise: it

enables parallel processing, it eases tracking of decisions and their explanation

to users. 

1. An agent team for ontology-based information extraction

Imagine a team of agents who specialize in ontology-based information extraction for

summarization (more detail in Endres-Niggemeyer et al. 2006, Endres-Niggemeyer

1998). Figure 1 presents them in their communication environment. For ease of use,

the agents answer to simple German forenames. Their family names are derived from

their function, sometimes with some influence of their structure or history. Currently

there are, in the order of appearance: 

Peter Question 

Kurt DummyIRBean 

Frieda TextToPropMini 

Heini DispatchProposition 

Hugo SpotOntoProps 

Rudi VerifyPropArguments 

Herta CheckPropRelation

Paula SumUpHits

The  agent  community  distributes  summarization  and  IE  tasks  as  observed  in

competent humans: proceed step-by-step and apply all available resources at a time.

Every agent roughly performs a strategy as seen in human summarizers.



The agents are Java classes that extend the jade.core.Agent1.  They run in a JADE

container  and  use  standard  ACL  (Agent  Communication  Language)2 means  of

interaction. All agents share a set of simple calls. Most calls consist of the name of the

addressed agent and a simple German codeword: los (go), mehr (more), fertig (done).

Only the tidy-up agent  Paula is also assigned a more sophisticated command when

she has to reorganize results for presentation: sumup (sum up). When broadcasting the

close-down message to all agents, Kurt says schluss (finish) to make the agents delete.

The system blackboards serve data communication. The  ScenarioBoard stores

the query specification and the findings of the agents. While they interpret a sentence,

the agents exchange data via the TextBlackBoard. External input comes from the text

passage retrieval  result.  At the end of  a  session,  the retrieval  result  (organized in

documents,  paragraphs  and  sentences)  is  augmented  with  the  agents’  relevance

judgements. They mark the relevant text clips, which are presented to the user.

Fig. 2. The agents and their communication network. Dotted arcs represent data input/output

2. The Ontology

The agents and the system users share an ontology of the application domain Bone

Marrow Transplantation (BMT). The ontology was developed by human experts from

a corpus  of  US BMT papers  and  user  queries  of  physicians  at  Hanover  Medical

School. It is stored in a MySQL3 database. In the ontology the agents find the types of

knowledge they need for IE (see Table 1):  concepts, propositions, proposition syntax

records, unifiers, paraphrases, scenarios, and some technical help tables. 

We  use  a  Prolog  style  first  order  predicate  logic  representation.  Inside  the

MySQL database,  all  knowledge  items  are  split  into  separate  tables.  Propositions

1  See JADE at http://jade.tilab.com/

2  http://www.fipa.org/repository/aclspecs.html

3  http://www.mysql.de/



comprise  a  head  and  a  set  of  arguments  allocated  to  the  propositionhead  and

propositionargument tables, respectively. Their proposition ID keeps them together.

Every proposition obeys a syntax record that states its argument roles. Syntax tables

are built like proposition tables. Unifiers are lists of concepts provided by domain

experts.  They unify ontology propositions and text-based candidate propositions: a

concept of the accredited unifier adapts the ontology proposition so that it matches a

candidate  proposition  from  input.  This  expands  the  coverage  of  the  ontology

propositions. Paraphrases map ontology propositions to possible surface formulations.

They are macropropositions (Kintsch and van Dijk 1983): parsed surface phrases with

argument roles as variables, so that one paraphrase can serve a class of proposition

occurrences in text. The scenario representation stores the whole presentation on the

JSP4-based user interface.

Table 1. Ontology database overview.

Knowledge unit Quantity Database tables

concept 4813 concept, conceptsynonym, hyperconcept

japanese concept 4683 multilanguage, japan

proposition 5054 propositionhead, propositionargument, signature

syntax 507 syntaxhead, syntaxargument, predicate, predsyn

unifier 680 unifier, unifcalc

paraphrase 11845 paraphrasehead, paratoken, parapropidlist

scenario 61 scenario, scenfamily_hr, scenarioblock, scenarioblocklist,  scenariofield,

scenariofieldPI, scenariofieldPIlist, scenariofieldlist, scenarioquery,

scenblockoption, scenqueryword, scenquestionargument

3. The agents’ jobs

The agents specialize in different IE subtasks. They produce a summarization effect

by extracting only propositions that match the query and by throwing away doubles.

All agents activate each other as often as needed. 

Scenario interpretation. Peter accepts a user query scenario and the user’s start

signal. Into the scenario form, the user has entered what is known about the current

situation  and  what  knowledge  is  missing.  The agent  parses  this  organized  query,

deposits the resulting propositions on the ScenarioBoard and activates Kurt.

Table 2. Ontology propositions’ hits for the demo sentence.

No. ID Wording (FOL)

1 17650 administer (, patient, ganciclovir, intravenous)

2 17652 administer (, patient, ganciclovir, intravenous, low dose, short-course)

3 17656 administer (, patient, ganciclovir)

4 17685 administer (, patient, methotrexate)

5 21054 haveRiskClass (patient, low risk, disease progression)

6 21055 haveRiskClass (patient, high risk, cytogenetic risk)

7 21056 haveRiskClass (patient, high risk, chromosome aberration)

8 21057 haveRiskClass (patient, high risk, age)

9 22097 prevent (patient, broad-spectrum antibiotic, , antimicrobial prophylaxis, posttransplantation)

Input. Kurt fetches the query and obtains results from outside web retrieval and text

passage retrieval.  He submits  good input sentences  one by one to  the parser  (the

4  Java Server Pages - http://java.sun.com/products/jsp/



Connexor5 FDG  parser)  and  feeds  wording  and  parser  output  into  the  agents’

production line by putting it onto the TextBlackBoard. He calls Frieda.

Let us assume for the sake of a demo that Kurt comes up with the sentence

“All patients at cmv risk were administered high-dose ganciclovir.“

It will be hit by 9 ontology propositions (see table 2). We follow proposition 17685.

Candidate propositions in a parsed sentence.  Frieda picks up the new input.

She finds candidate propositions in a parsed sentence and annotates them (see table 3,

columns 8 – 13).  She  distinguishes  verbal,  prepositional  and attributive candidate

propositions. As soon as her annotation is done, Frieda activates the agent Heini.

Table 3. An example dependency parser  output  with 3 annotated propositions of  different

types. Columns 1 - 7 display the parse, columns 8 – 13 the proposition candidates.

1 2 3 4 5 6 7 8 9 10 11 12 13

1 all DET @DN> %>N det: *

2 patient N NOM PL @SUBJ %NH subj: arg1 modhead2

3 at PREP @<NOM %N< mod: praep1 praep 2

4 cmv ABBR NOM SG @A> %>N attr: arg1 modarg 2 attr 3

5 risk N NOM SG @<P %NH pcomp: arg1 modarg 2 attrbase 3

6 be V PAST PL @+FAUXV %AUX v-ch: aux

7 administer EN @-FMAINV %VP main: pred1

8 high-dose A ABS @A> %>N attr: arg1

9 ganciclovir N NOM SG @OBJ %NH obj: arg1

Sending  propositions  to  interpretation.  Heini is  the  proposition  dispatcher.  He

selects  the  propositions  one  by  one  from the  current  sentence  and  initiates  their

verification. As long as he has input, he submits it to Hugo. When all propositions of

the current sentence are done, he calls Paula, the tidy-up agent.

Fig. 2. An ontology proposition equipped with a unifier for all drugs.

Finding ontology propositions. Hugo checks whether the current proposition shares

at least two ontology concepts with any of the ontology propositions. As soon as he is

done with a concept pair and has some results, Hugo passes the text-based proposition

with the IDs of selected ontology propositions - and possibly some add-ons due to

unifiers -  to the  TextBlackbord.   He activates  Rudi.  If  Hugo cannot find matching

ontology propositions, he returns to Heini and asks for new supplies.

When Hugo begins to treat a new proposition, he puts the IDs of occurring ontology

5  http://www.connexor.com/



concept IDs into its record. Using them he may find several concept pairs that call

ontology propositions. Eventually he selects proposition 17685 (see figure 2): 

administer (, patient, methotrexate). 

His pick takes the direct  and the unifier pathway. According to the unifier  in the

proposition, any drug of the ontology may be put in. As ganciclovir is needed, Hugo

adds an ersatz argument that contains ganciclovir. He puts his results into the package

for  Rudi.

Concept  subsumption.  Rudi tries  to  subsume  text-based  propositions  under

ontology propositions with at least two concepts in agreement. If the subsumption

works,  the  proposition  from text  may  be  a  legitimate  instance  of  the  subsuming

ontology proposition, as far as ontology concepts are concerned. If so, Rudi passes it

to Herta. She will inspect the verbal relation. 

When  Rudi fetches proposition 17685 that  Hugo proposed, he looks for ersatz

arguments, finds one and puts it in. Now his version of proposition 17685 says: 

administer (, patient, ganciclovir). 

As figure  2  shows,  the  proposition  has  some open  slots.  Rudi tries  to  fill  them,

subsuming concepts from the text-based proposition. He succeeds once: he subsumes

high dose under concept 43174 (quantity qualifier) in position 5. Now his proposition

reads: 

administer (, patient, ganciclovir, , high dose).

As all obligatory arguments are satisfied, Rudi passes his result (see table 4) to Herta.

Table 4. Concept-based IE result.

pos propid concept cid role hyper

-cid

unif required testable match

0 17685 administer 0 pred 0 0 false false false

1 17685 0 0 41884 0 false true false

2 17685 patient 38811 arg 38811 0 false true true

3 17685 ganciclovir 39204 arg 39375 1418 true true true

4 17685 0 0 42583 0 false false false

5 17685 high dose 43174 arg 39595 0 false false true

Verification of the verbal relation. Herta’s task is to check the verbal tie that keeps

the ontology concepts together. She verifies the relation information against sets of

paraphrases. If a paraphrase provides a relation wording that is compatible with the

ontology proposition chosen by  Rudi and the relation wording of the text  surface,

Herta has  found the  last  missing link.  She  states  the  recognition success  for  that

proposition by assigning the ID of the subsuming ontology proposition to the text

sentence.  She asks Rudi for fresh input.

In the test case, Herta receives Rudi’s reworked ontology proposition 17685. She

writes the ontology concept’s IDs into the parse of proposition 1 (cf. table 3).

Herta procures her paraphrase set of proposition 17685. She will find the test

paraphrase 14068437 (see table 5) that will fit. Herta seizes the concepts found in the

text-based  proposition  via  their  hypercids  and  attaches  them  to  the  hypercids  /

argument roles of the paraphrase. Then she checks in three passes: 

From satisfied roles she goes towards the root of the dependency tree and checks all

items on her way to ok. 



She compares the verbal chain of the proposition and paraphrase. There should be a

reasonable fit, depending on word classes. If so, Herta places her controls. 

At  the  end,  Herta starts  from the  ontology proposition arguments  without  fillers.

Again she goes up the dependency hierarchy and sets all words on her way to

optional. 

If Herta obtains all ticks as needed, she has verified the verbal relation. In the present

case, she has found 

“patient is administered ganciclovir”. 

She writes the hit ID to the TextBB. Paula will reorganize all results.

Table 5. Paraphrase 14068437 of proposition 17685. The dependency relation is noted in word

ID and dep-target. Relation type is declared in depend relation.

para-

phrase ID

no word

ID

token word class

morphology

syntactic 

function

depend

relation

hyper-

cid

dep-

target

140684371 2 Xpatient N NOM SG @SUBJ %NH subj: 38811 3

140684372 3 be V PRES SG3 @+FAUX %AUX v-ch: 0 4

140684373 4 administer EN @-FMAINV %VP main: 0 1

140684374 5 Xmedication N NOM SG @OBJ %NH obj: 39375 4

Cleaning up.  Paula is the organizer. When processing of a sentence is finished and

has brought some results, Paula stores the sentence with the recognition results to the

ScenarioBoard. She tells  Kurt to provide new input. When all input is done,  Paula

reorganizes the ScenarioBoard. She sorts the recognition IDs of individual sentences

so that she obtains orderly recognition profiles. Based on the profiles and the wording

of the sentences, Paula weeds out doubles. Surviving hits are added to their text clips

in the retrieval result. Paula asks Kurt to close down the agent community.

4. Evaluation

Table 6. Final overall scores of the agents. R1 is the agents’ first run, R2 the second one.

Abstract number of

sentences

R1

sentence

hits

R1 mean

raw

score

R2

sentence

hits

R2 

mean raw

score

mean

final

rating

Bcr-abl1 13 9 2.05 11 1.37 3.7

Bcr-abl2 7 2 3.67 6 2.0 2.2

Bcr-abl3 10 2 4.23 5 1.75 2.2

Childhood ALL1 8 4 3.77 5 2.63 3.2

Childhood ALL2 10 3 4.0 2 1.78 1.5

Childhood ALL3 16 6 3.18 10 2.39 3.6

CMVganciclovir1 12 6 4.35 6 2.15 2.7

CMVganciclovir2 12 8 2.25 7 2.0 3.6

CMVganciclovir3 12 1 5.0 6 2.4 3.0

A biochemist and the author evaluated the agents’ performance in a testbed with a

small  sample  of  Medline  abstracts.  Methods  were  adapted  from  qualitative  field

research.  The agents  ran twice.  Between their  two runs,  the judges improved  the

ontology, and results became much better. Ontology quality matters. Often the agents

stumble over simple human errors, sloppy categorizations or into ontology gaps. In



overcrowded areas,  they  are  obstructed  by  too  many chances  to  derive  the  same

recognition result.

In their second run, the agents achieved fair scores. They are still beginners, but

they come up with results. Table 6 shows their marks on a familiar 5-score scale. 

5. Sources and related approaches 

SummIt-BMT integrates  knowledge from many sources.  Ontology and  agents  are

based on empirical observation of human summarizers (Endres-Niggemeyer 1998),

following human task organization as much as possible. Humans summarize content.

A domain terminology / an ontology is a natural start for their IE activities. For IE

(Appelt  and Israel  1999) and summarization an extended ontology is  required,  so

propositions, unifiers, paraphrases and scenarios were integrated. The agents’ IE is

adaptive  (Turmo  et  al.  2006),  given  a  domain  ontology.  It  seemed  consistent  to

distribute the human-like strategies to an agent community (JADE - Bellemine et al.

2007)  and  to  give  the  agents  task-specific  blackboards  for  data  interchange  and

storage (already in the SimSum system – Endres-Niggemeyer 1998). Implementing

this at the state of the art led to OBIE, to agents using blackboards, to unifier use, to

paraphrases incorporating parsed macropropositions. As mainstream evaluation does

not work for the agents-and-ontology approach, a small-scale evaluation procedure

was drawn from qualitative field research methods (Glaser and Strauss 1980).

6. Conclusion

Ontology-based IE (for summarization) can be distributed to an agent team. This has

advantages: Agents’ decisions can be tracked more easily. The agents may explain

them. New agents are easily integrated, so that the community “learns”. If running in

parallel, agent teams may be fast and scale up well. 

References
 Appelt,  D.,  Israel,  D.:  Introduction  to  Information  Extraction  Technology.  Tutorial  at  the

International  Joint  Conference  on  Artificial  Intelligence  (IJCAI-99),  Stockholm  (1999),
http://www.dfki.de/~neumann/esslli04/reader/overview/IJCAI99.pdf

Bellifemine, F. L., Caire, G., Greenwood, D.: Developing Multi-Agent Systems with JADE.

Wiley (2007)

Endres-Niggemeyer, B.; Jauris-Heipke, S; Pinsky, M.; Ulbricht, U.: Wissen gewinnen durch

Wissen:  Ontologiebasierte  Informationsextraktion. Information  -  Wissenschaft  &  Praxis,

301-308 (2006), http://endres-niggemeyer.fh-hannover.de/OntologiebasierteIE.pdf

Endres-Niggemeyer, B.: Summarizing information. Springer, Berlin (1998)

Glaser,  B.G.,  Strauss,  A.L.:  The  discovery  of  grounded  theory:  Strategies  for  qualitative

research. 11th ed. Aldine Atherton, New York (1980)

Kintsch, W., van Dijk, T. A.: Strategies of discourse comprehension. Academic Press, New

York (1983)

Turmo, J., Ageno, A., Català, N.: Adaptive information extraction. ACM Computing Surveys

38, 2, Article 4 (2006), http://www.lsi.upc.es/~ncatala/home-angles.html



Information Extraction Based on Extraction Ontologies:

Design, Deployment and Evaluation

Martin Labský, Vojtěch Svátek, and Marek Nekvasil

University of Economics, Prague, Dept. Information and Knowledge Engineering,

Winston Churchill Sq. 4, 130 67 Praha 3, Prague, Czech Republic

labsky@vse.cz, svatek@vse.cz, nekvasim@vse.cz

Abstract. Most IE methods do not provide easy means for integrating complex

prior knowledge that can be provided by human experts. Such knowledge is espe-

cially valuable when there are no or little training data. In the paper we elaborate

on the extraction ontology paradigm; the distinctive features of our system called

Ex are 1) probabilistic reasoning over extractable attribute and instance candi-

dates and 2) combination of the extraction ontology approach with the inductive

and (to some degree) wrapper approach. We also discuss the issues related to the

deployment and evaluation of applications based on extraction ontologies.

1 Introduction

In the last decade, web information extraction (WIE) was dominated by two styles.

One—wrapper-based—is quite reliable but strictly depends on the formatting regu-

larity of pages. The other—inductive—paradigm assumes the presence of annotated

training data, which is rarely fulfilled in real-world settings, and manual labelling of

training data is often unfeasible. In addition, both approaches usually deliver extracted

information as weakly semantically structured; if WIE is to be used to fuel semantic

web repositories, secondary mapping to ontologies is typically needed, which makes

the process complicated and may introduce additional errors [4].

There were recently proposals for pushing ontologies towards the actual extraction

process as immediate prior knowledge. Extraction ontologies [3] define the concepts the

instances of which are to be extracted in the sense of various attributes, their allowed

values as well as higher-level Extraction ontologies are assumed to be hand-crafted

based on observation of a sample of resources; they allow for rapid start of the actual

extraction process, as even a very simple extraction ontology (designed by a compe-

tent person) is likely to cover a sensible part of target data and generate meaningful

feedback for its own redesign. The clean and rich conceptual structure (allowing partial

intra-domain reuse and providing immediate semantics to extracted data) makes extrac-

tion ontologies superior to ad-hoc hand-crafted patterns used in early times of WIE.

However, many aspects of their usage still need to be explored.

Section 2 of the paper briefly reviews the features of our WIE tool named Ex (see [5]

for a more thorough description). Section 3 drafts a larger context of the ontology-based

extraction task, namely, the design of extraction ontologies (incl. their relationship to

usual domain ontologies), practical aspects of their usage, and their evaluation. Finally,

Section 4 summarises the contributions of the paper.



2 Brief Overview of the Ex system

2.1 Main Characteristics of Ex

Our approach to WIE was originally inspired by that developed by Embley and col-

leagues at BYU [3]. The main distinctive features of Ex are:

1. The possibility to provide extraction evidence with probability estimates plus other

quantitative info such as value distributions, allowing to calculate the likelihood for

every attribute and instance candidate using pseudo-probabilistic inference.

2. The effort to combine hand-crafted extraction ontologies with other sources of in-

formation: HTML formatting and/or training data. HTML formatting is exploited

via formatting pattern induction, cf. Section 2.4. Training data can be exploited via

incorporating external inductive learning tools, currently those from Weka.1

Ex currently has two major real-world applications (details on both are in [5]):

– In the EU (DG SANCO) MedIEQ project2 Ex acts as one of the major IE engines

assisting medical website labelling authorities in assigning quality labels to web-

sites based on several dozens of medical website quality criteria. Several criteria

have been operationalised wrt. automatically-extractable information; most exten-

sive experiments so far concerned the presence and richness of contact information,

so far in three languages (English, Spanish and Czech).

– In cooperation with a large Czech web portal we extract information about products

sold or described online, such as TV sets, computer monitors and bicycles.

In addition, for experimental purposes, we also systematically address other domains

such as weather forecasts [8] or seminar announcements (see subsection 2.3).

2.2 Structure of Ex(traction) Ontologies

Extraction ontologies in Ex are designed so as to extract occurrences of attributes (such

as ‘speaker’ or ‘location’), i.e. standalone named entities or values, and occurrences

of whole instances of classes (such as ‘seminar’), as groups of attributes that ‘belong

together’, from HTML pages or texts in a domain of interest.

Attributes are identified by their name, equipped with a data type (string, long text,

integer or float) and accompanied by various forms of extraction evidence relating to

the attribute value or to the context it appears in. Attribute value evidence includes (1)

textual value patterns; (2) for integer and float types: min/max values, a numeric value

distribution and possibly units of measure; (3) value length in tokens: min/max length

constraints or a length distribution; (4) axioms expressing more complex constraints on

the value and (5) coreference resolution rules. Attribute context evidence includes (1)

textual context patterns and (2) formatting constraints.

Patterns in Ex (for both the value and the context of an attribute or class) are

nested regular patterns defined at the level of tokens (words), characters, formatting tags

1 http://www.cs.waikato.ac.nz/ml/weka
2 http://www.medieq.org



(HTML) and labels provided by external tools. Patterns may be inlined in the extraction

ontology or sourced from (possibly large) external files, and may include e.g. fixed lexi-

cal tokens, token wildcards, character-level regexps, formatting tags, labels representing

the output of external NLP tools or references to other patterns or attribute candidates.

For numeric types, default value patterns for integer/float numbers are provided.

For both attribute and class definitions, axioms can be specified that impose con-

straints on attribute value(s). For a single attribute, the axiom checks the to-be-extracted

value and is either satisfied or not (which may boost or suppress the attribute candidate’s

score). For a class, each axiom may refer to all attribute values present in the partially

or fully parsed instance. For example, a start time of a seminar must be before the end

time. Arbitrarily complex axioms can be authored using JavaScript. Further attribute-

level evidence includes formatting constraints (such as not allowing the attribute value

to cross an HTML element) and coreference resolution scripts.

Each class definition enumerates the attributes which may belong to it, and for each

attribute it defines a cardinality range. Extraction knowledge may address both the con-

tent and the context of a class. Class content patterns are analogous to the attribute

value patterns, however, they may match parts of an instance and must contain at least

one reference to a member attribute. Class content patterns may be used e.g. to describe

common wordings used between attributes or just to specify attribute ordering. For each

attribute, the engagedness parameter may be specified to estimate the apriori probability

of the attribute joining a class instance (as opposed to standalone occurrence). Regard-

ing class context, analogous class context patterns and similar formatting constraints

as for attributes are in effect.

In addition, constraints can be specified that hold over the whole sequence of ex-

tracted objects. Currently supported are minimal and maximal instance counts to be

extracted from a document for each class.

All types of extraction knowledge mentioned above are pieces of evidence indi-

cating the presence (or absence) of a certain attribute or class instance. Every piece of

evidence may be equipped with two probability estimates: precision and recall. The pre-

cision of evidence states how probable it is for the predicted attribute or class instance

to occur given the evidence holds, disregarding the truth values of other evidence. The

recall of evidence states how abundant the evidence is among the predicted objects,

disregarding whether other evidence holds.

2.3 Example

In order to illustrate most of the above features, we present and explain an example

from the seminar announcement extraction task3, in which the speaker name, location

and start and end times (stime, etime) are to be extracted. Fig. 1 shows the structure of

an extraction ontology for this task. Fig. 2 displays a part of the corresponding code

in the XML-based ontology definition language, dealing with the name of the speaker

and start time. Note that the extraction ontology defines some extra attributes like date,

host and submitter; these are ‘helper’ attributes extracted in order for the system not to

confuse them with the remaining attributes.

3 Compiled by A. McCallum, http://www.cs.umass.edu/˜mccallum/code-data.html.



Fig. 1. General scheme of seminar extraction ontology

Fig. 2. Fragment of code of seminar extraction ontology

In the global scope of the model, extraction knowledge affecting more than one

attribute is defined: an axiom states that in 80% of cases, the duration of a seminar is

between 30 minutes and 4 hours. The axiom is conditioned so that it only applies when

both stime and etime are specified.

The speaker attribute shows the usage of nested regular patterns defined at the level

of both words and characters. The ‘value’ section contains a sample pattern that is as-

sumed to be exhibited by 50% of valid speaker names and its expected precision is 80%:

the pattern partially relies on frequent first-name and surname lists. This value-related

evidence is combined with contextual evidence stating that at least 10% of speaker

names are preceded by indicative word sequences that, when present, identify a sub-

sequent speaker name with 60% precision. A user-defined person-name co-reference

resolution script is used to uncover multiple mentions of the same speaker.

Next, a generic time attribute follows which extracts time references from the input

text. It contains an axiom that checks the time validity and also a time co-reference rule

that identifies when two time entries are the same (like “noon” and “12pm”). Then two

specializations of time are defined: the start and end times (only the start time is shown).



The system specializes an attribute value when it finds some evidence that indicates the

specialization (a context pattern in this sample). All properties of the general attribute

are inherited to the child.

2.4 Extraction Process

The inputs to the extraction process are the extraction ontology and a set of documents.

The process consists of five phases with feed-back looping; further details are in [5]:

– Document pre-processing, including DOM parsing, tokenisation, lemmatisation,

sentence boundary detection and optionally execution of a POS tagger or external

named entity recognisers.

– Generation of attribute candidates (ACs) based on value and context patterns; an

AC lattice is created.

– Generation of instance candidates (ICs) for target classes in a bottom-up fashion,

via gluing the ACs together; high-level ontological constraints are employed in this

phase. The ICs are eventually merged into the AC lattice.

– Formatting pattern induction allowing to exploit local mark-up regularities. For

example, having a table with the first column listing staff names, if e.g. 90 person

names are identified in such column and the table has 100 rows, patterns are induced

at runtime that make the remaining 10 entries more likely to get extracted as well.

– Attribute and instance parsing, consisting in searching the merged lattice using

dynamic programming. The most probable sequence of instances and standalone

attributes through the analysed document is returned.

3 Ontology Design, Deployment and Evaluation

3.1 Design and Deployment of Extraction Ontologies

Clearly, the critical aspect of the WIE approach relying on extraction ontologies is the

design of such ontologies. So far, in the projects mentioned in section 2, all ontologies

were designed manually by experienced knowledge engineers; the time required for the

initial design was in the order of several person-weeks. For some attributes it may prove

difficult to enter all needed extraction knowledge manually and still achieve acceptable

error rates. This can be due to large heterogeneity of the extracted values and due to the

complexity or large amounts of the required extraction knowledge, or simply because

of lack of the designer’s knowledge (e.g. extraction from different languages). We are

working in different directions to alleviate this problem:

– Inductive models can be trained to classify selected attributes for which training

data are available. The classifier’s decisions are then used within the extraction

ontology patterns and can be augmented with further expert knowledge.

– When no training data are available, the designer can perform mining over the cur-

rent extraction results in order to find frequent phrases that occur in different po-

sitions wrt. so-far extracted attribute values. The positions include left and right

context, prefix, content and suffix, and different types of string overlap. The mined

phrases can guide the designer in creating indicative context and content patterns.



– An alternative to building complex extraction models is to utilize evidence related

to the larger context of data. For example, in the MedIEQ project, the extraction

ontologies initially extract generic ‘contact information’ which is then specialized

(e.g. to ‘person responsible for medical content’ or to ‘administrative staff’) using

post-processing rules relying on page category determined by other tools.

We also investigate possibilities for reducing the amount of work in building the

conceptual structure of the extraction ontology. Our hypothesis, partially confirmed

by experiments described in [8], is that existing domain ontologies and possibly other

models can be used as starting point for semi-automatically designing the structure of

extraction ontologies via a set of transformation rules. As extraction ontologies are

pre-dominantly tree-structured (they reflect the presentation structure of web/text doc-

uments), the transformation mostly has the character of serialisation, including steps

such as converting a terminal subclass partition to an attribute of the superclass. More-

over, if even an authoritative domain ontology (DO) does not exist, state-of-the-art on-

tology engineering technology may allow to build it on the fly. From within large reposi-

tories of ontologies relevant ontologies can be retrieved via ontology search tools;4 they

can be selected based on their quality evaluation and partially merged.

The high-level workflow can be initiated either by adopting (or building) a DO or by

directly writing an EO. In the latter case, we however lack a target ontological structure

to be populated by extracted data. We thus assume that a DO could be re-engineered

from an EO by following the transformation rules backwards (though such ‘deseriali-

sation’ would require more human investment). Even though populating the DO using

transformation rules will be a non-trivial process, it is likely to be more transparent

compared to IE approaches that do not exploit ontological structures.

Finally, we assume that the EO could also be purely syntactically transformed to a

semantic web (i.e. OWL) ontology, let us call it Ex2OWL ontology, that would serve as

a DO (at the cost of being skewed towards document-oriented view).

Figure 3 depicts the scheme of prospective high-level workflow around EO-based

IE. Solid edges correspond to fully-supported processes (now only the actual Ex-based

IE), dashed edges to processes currently subject to intense research (the flow from on-

tology repository through the target DO to the EO), and dotted5 edges to processes

weakly elaborated to date (some of them amounting to mere syntactic transformations).

3.2 Evaluation of Ontology-Based Extraction

Common approaches to IE evaluation, have they been developed at the level of formal

models [2] or e.g. pragmatically applied in the ACE programme,6 solely focus on met-

rics for result quality. Even the presence of ontologies in IE is only reflected in scoring

formulae modified so as to handle taxonomic similarity instead of exact in/correctness

of results [7]. In reality, however, the result quality (typically measured by extraction

accuracy) is only one factor of the overall cost; another one is the cost of procurement

of extraction knowledge. An exception is the extraction of notorious types of generic

4 We so far mainly experimented with OntoSelect, http://olp.dfki.de/ontoselect.
5 Undirected edges do not refer to processes but merely to the ‘population’ relationship.
6 http://www.nist.gov/speech/tests/ace/ace07/doc/ace07-evalplan.v1.3a.pdf



Fig. 3. High-level schema of (Ex)traction-ontology-based IE

named entities (such as peoples’ names or locations in English) for which reasonably

performing, previously trained tools already exist. However, in most cases, the poten-

tial user has to deal with a specific task for which no extraction model exists yet. The

extreme alternatives now are 1) to let humans manually label a decent sample of the

corpus and train a model, or 2) to prepare the extraction patterns by hand, e.g. in the

form of an extraction ontology. Various middle ways are of course possible.

Let us sketch a very simple evaluation model that would allow to compare dissimilar

IE methods including the model-building context. Instead of directly comparing the

accuracy of different methods, we can declare the minimal accuracy value required for

the target application (target accuracy – TA). Then we will calculate the overall cost (in

terms of the human power consumed) required by those different methods in order for

the TA to be reached. For a purely inductively-trained model, the cost amounts to

CI = cannot.nI (1)

where cannot is the cost of annotating one elementary unit (such as ontological instance)

and nI is the number of annotations needed to learn a model reaching the TA. Similarly,

for an extraction ontology that only uses manual extraction evidence, the cost is

CO = cinspect.nO +CODesign (2)

where cinspect is the cost of merely inspecting (viewing) one elementary unit and nO is

the number of units that had to be viewed by the extraction ontology designer to build

a model reaching the TA; CODesign then is the cost of designing the actual extraction

ontology. It is important to realise that cinspect << cannot (among other, cinspect does

not have to deal with exact determination of entity boundaries, which is a well-known

problem in creating the ground truth for IE) and most likely also nO < nI ; what now

matters is whether this lower cost in CO is/not outweighed by the relatively high cost

of CODesign. The model can be arbitrarily extended: e.g. for hybrid approaches (such as

that we use in Ex) we could also consider the cost of deciding which attributes are to be

extracted using which method—inductive vs. manual.

Let us, eventually, briefly touch another problem, that of cross-validation, which is a

standard approach in evaluating inductive IE methods. While in the inductive approach

an annotated dataset can be repeatedly partitioned and presented to the learning tool, we

cannot do the same with the human designer of the extraction ontology, as s/he is not



as ‘oblivious’ as a machine. The only way of simulating cross-validation in this context

thus seems to be the inclusion of multiple designers, which is in most cases prohibitive.

As partial illustration of the mentioned concepts, let us tentatively compute the cost

of IE over seminar announcements. The utilized dataset contained 485 annotated doc-

uments, of which 240 were made available to the extraction ontology designer (who

finally only needed to see a subset of these) and the remaining 245 were used for test-

ing. After about 8 person days of development, the extraction ontology attained, on the

test set, precision/recall values roughly comparable to those reported in literature; with

F-measure reaching 94% for both stime end etime, and 69% and 77% for speaker and

location, respectively. The accuracy for the two latter fields did not reach the best re-

sults7 achieved by inductive algorithms like LP2 [1]. However, we can hypothesise that

the total cost CO = cinspect.240 + 8PD was possibly lower than CI = cannot.485. The

comparison is further skewed by the different train/test set partitioning: one-way cut in

our approach in contrast to 10-fold cross-validation used for other systems.

4 Conclusions

Thanks to their short development cycle, extraction ontologies are an interesting al-

ternative for WIE when there are no or little training data. State-of-the-art ontological

engineering techniques can be employed to ease their development. Fair evaluation of

their performance however needs to take into account a larger context of their creation.

The research was supported by the EC, FP6-027026, Knowledge space of semantic

inference for automatic annotation and retrieval of multimedia content—K-Space.
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Abstract. This paper addresses a subtask of relation extraction, namely 

Relation Validation. Relation validation can be described as follows: given an 

instance of a relation and a relevant text fragment, the system is asked to decide 

whether this instance is true or not. Instead of following the common 

approaches of using statistical or context features directly, we propose a method 

based on textual entailment (called ReVaS). We set up two different 

experiments to test our system: one is based on an annotated data set; the other 

is based on real web data via the integration of ReVaS with an existing IE 

system. For the latter case, we examine in detail the two aspects of the 

validation process, i.e. directionality and strictness. The results suggest that 

textual entailment is a feasible way for the relation validation task. 

Keywords: Relation Validation, Textual Entailment, Information 

Extraction

1   Introduction and Relation Work 

Information extraction (IE) has been a hot topic for many years both in the area of 

natural language processing. An important task involved is relation extraction, which 

automatically identifies instances of certain relations of interest in some document 

collection, e.g. work_for(<person>, <company>, <location>). 

Conventional IE systems are usually domain-dependent and adapting the system to 

a new domain requires a high amount of manual labor, such as specifying and 

implementing relation-specific extraction patterns or annotating large amounts of 

training corpora. A new trend in information extraction is trying to collect information 

directly from the web and “understand” it (Etzioni et al., 2005; Banko et al., 2007). 

One crucial point for such relation extraction systems is to be able to estimate the 

quality of the extracted instances. Web documents are relatively noisy compared with 

corpora constructed for particular usages. Therefore, a careful evaluation (or 

validation) step is needed after the extraction process. 

Another effort made by researchers developing unsupervised IE systems, e.g. 

Shinyama and Sekine (2006), Xu et al. (2007), and Downey et al. (2007). Here, the 

evaluation of those newly obtained instances with a good confidence score has a great 

impact on the final results (Agichtein, 2006). This also adds more burdens to, in our 

context, the validation module. 



As far as we know, Relation Validation has not been addressed as an independent 

subtask of relation extraction in the literature, though many researchers have already 

mentioned the importance of the estimation metrics. The SnowBall system (Agichtein, 

2006) has applied an Expectation-Maximization method to estimate tuple and pattern 

confidence, which might lead to the problem of overly general patterns. The 

KnowItAll system (Etzioni et al., 2005) has extended PMI (Turney, 2001) and used 

heuristics like signal to noise ratio to test the plausibility of the candidates. The 

former is computationally expensive; and the latter shifts the problem onto the 

statistical distributions, which might not be correct. The REALM system (Downey et 

al., 2007) has combined HMM-based and n-gram-based language models and ranked 

candidate extractions by the likelihood that they are correct. This captures the local 

features quite well, but may lose long distance linguistic dependencies. Consequently, 

instead of applying methods of analyzing context or statistical features directly as the 

previous work, we propose a novel strategy to deal with this validation step – via 

textual entailment. On the one hand, it allows more syntactic/semantic variations for 

instances of certain relations; on the other hand, a domain-independent credibility is 

provided. 

The Recognizing Textual Entailment (RTE) task was proposed by Dagan et al. 

(2006) and refined by Bar-Haim et al. (2006). It is defined as recognizing, given two 

text fragments, whether the meaning of one text can be inferred (entailed) from the 

other. The entailment relationship is a directional one from Text – T to Hypothesis – 

H. We have developed our Relation Validation System (ReVaS) based on our 

previous work on RTE (Wang and Neumann, 2007a). Both the main approach 

involved and the evaluation results have shown a precision-oriented character of our 

RTE system. Especially for IE relevant data, we have achieved a large improvement 

on covered cases, compared with baselines and also state-of-the-art systems. This 

motivates us to apply our RTE system to tasks requiring high precision, e.g. answer 

validation for question answering (Wang and Neumann, 2007b), and relation 

validation for information extraction (this paper). 

2   The System Description 

Fig. 1 shows the architecture of the ReVaS system integrated with an IE system. 

ReVaS consists of a preprocessing module, an RTE core engine (Tera – Textual

Entailment Recognition for Applications), and a post-processing module. As an add-

on component for the original IE system, ReVaS glues the instances of relations into 

natural language sentences (i.e. hypotheses) using hypothesized patterns, checks the 

entailment relation between the relevant documents and the hypotheses, and annotates 

a confidence score to each instance, so as to perform the validation step. 

2.1 The RTE Core Engine 

The RTE core engine contains a main approach with two backup strategies 

(Anonymous, 2007a). In brief, the main approach firstly extracts common nouns 

between T and H; then it locates them in the dependency parse tree as Foot Nodes



(FNs). Starting from the FNs, a common parent node, which will be named as Root
Node (RN), can be found in each tree; Altogether, FNs, the RN, and the dependency 

paths in-between will form a Tree Skeleton (TS) for each tree. On top of this feature 

space, we can apply subsequence kernels to represent these TSs and perform kernel-

based machine learning to predict the final answers discriminatively. 

The backup strategies will deal with the T-H pairs which cannot be solved by the 

main approach. One backup strategy is called Triple Matcher, as it calculates the 

overlapping ratio on top of the dependency structures in a triple representation; the 

other is simply a Bag-of-Words (BoW) method, which calculates the overlapping ratio 

of words in T and H.

2.2 The Relation Validation Procedure 

Since the input for the RTE system is one or more T-H pairs, we need to preprocess 

the output of the IE system. Usually, the output is a list of relations and the 

corresponding NEs, together with the text from which the relations are extracted. For 

instance, consider the following text, 

“The union has hired a number of professional consultants in its battle with the 

company, including Ray Rogers of Corporate Campaign Inc., the New York labor 
consultant who developed the strategy at Geo. A. Hormel & Co.'s Austin, Minn.,

meatpacking plant last year. That campaign, which included a strike, faltered when 
the company hired new workers and the International Meatpacking Union wrested 

control of the local union from Rogers' supporters.”
And the target relation type obtained might be birthplace relation, which is 

between a Person Name (PN) and a Location Name (LN). Back to the text, several 

PNs and LNs could be found, 

PN: “Ray Rogers”, “Rogers”

LN: “New York”, “Austin”, “Minn.”

Consequently, the possible NE pairs with birthplace relation are, 

<PN, LN>: <“Ray Rogers”, “New York”>, <“Rogers”, “Austin”>, … 

Fig. 1. The architecture of the integration of ReVaS with an IE system 



Assume that those instances are extracted from the text by a relation extraction 

system. Now our task is to check each of them whether the relation holds for those 

NE pairs. 

The adaptation into an RTE problem is straightforward. Using NE pairs with 

relations, we can construct the following sentences using simple natural language 

patterns, 

“Ray Rogers is born in New York.”
“The birthplace of Rogers is Austin.”

…

These sentences serve as the H in a T-H pair, and the T is naturally the original 

text. Thus, several T-H pairs can be constructed accordingly. Afterwards, the RTE 

system will determine a confidence score to each instance of relations, together with a 

judgment of validated or rejected under a certain threshold, which can be learned 

from another corpus or set manually. 

The main difference of our RTE-based validation module from other common 

evaluation metrics is that we can obtain semantic variations via textual entailment. 

Though the patterns we are using to construct the hypotheses are rather simple, the 

entailment-based validation process makes it more semantically flexible than the 

direct feature-based similarity calculation (cf. Wang and Neumann 2007a). 

3   The System Evaluation 

In order to fully evaluate our ReVaS system, we have set up two different 

experiments: one is to test the system independently based on an annotated data set; 

the other is to integrate ReVaS into an existing IE system as a validation component 

and test it on real web data. 

3.1. The Experiment on Annotated Data 

The data set we have used for this experiment is from the BinRel corpus (Roth and 

Yih, 2004), which contains three parsed corpora with NEs and binary relations of NEs 

listed after each sentence: 1) the kill relation corpus; 2) the birthplace relation corpus; 

and 3) the negative corpus (i.e. there are NEs annotated, but no instances of such two 

kinds of relations). 

We have used the original texts as Ts, and combined NEs using simple patterns of 

the kill relation and the birthplace relation into Hs. In detail, a positive kill T-H pair 

will be an existing kill relation between two NEs, which are both PNs; a negative one 

will be two PNs with no kill relation in-between (similar to Yangarber et al. (2000)). 

The positive birthplace cases are similar to the example mentioned in 2.2, and 

negative ones contain other relations between the PN and the LN, e.g. workplace

relation. 

In all, 918 kill pairs (268 positive cases) and 849 birthplace pairs (199 positive 

cases) have been constructed from the corpus. The evaluation metrics here is the 

accuracy. 10-fold cross validation has been performed and the results are shown in 

the following table, 



Table 1 Results of the Relation Validation Task 

Systems kill relation birthplace relation 

BoW (Baseline1) 72.0% 75.0% 

Triple (Baseline2) 70.3% 76.4% 

Main + Backups 84.1% 86.5% 

As we described in 2.1, the RTE system consists of a main approach plus two 

backup strategies. We take the two backup strategies as two baseline systems for 

comparison. 

3.2. The Experiment on Web Data 

To further test our ReVaS system, we have integrated it into an existing unsupervised 

IE system IDEX developed in our lab (Eichler et al., 2008). If a topic (in form of 

keywords) is given to IDEX, it will use it as a query to a search engine on the World 

Wide Web. The retrieved documents will be analyzed using a dependency parser and 

an NE recognizer. The relations of NEs are identified via locating NEs in the 

dependency parse tree and finding the common parent node, which is normally a verb. 

The extracted instances of relations will be further clustered into different relation 

groups. 

We have collected in all 2674 instances of binary relations from the IDEX system, 

including various relation types. The following table gives out some examples, 

Table 2 Output examples of the IDEX system 

Relation NE1 NE2 

located Berlin Germany 

working Tricon Bangkok 

say Britons Slovakians 

… … … 

Being different from the annotated data set, these instances of relations returned by 

IDEX are all positive examples for the system. However, even with the clustering, it 

is not trivial to identify the names of relation types. To make full use of the data, we 

hypothesize a relation type first and then check each instance whether it is of this 

relation type. Therefore, instances consistent with this relation type are positive cases 

(as a gold standard here), and all the other instances are negative ones. 

The evaluation metrics we have applied are precision and relative recall (Frické, 

1998). The reason for using relative recall instead of normal recall is that we do not 

know how many instances of one particular relation we can find from the web. Thus, 

we take one setting of our system as a reference (i.e. its recall is assumed as 1.0) and 

other settings’ recalls will be compared to it. The precision is more interesting to us in 

this validation task, since it tells us how accurate the system is. 

Two aspects we want to analyze based on the experiments, i.e. directionality and 

strictness.

A relation is said to be directional if the action of that relation is from one NE to 

the other, i.e. the NE pair is asymmetric; a relation is non-directional if the pair is 

symmetric. As we know, some relations containing two NEs with the same type are 



directional1, e.g. kill(PN1, PN2), is_located_in(LN1, LN2); while some are not, e.g. 

friend_of(PN1, PN2). Therefore, in practice, once we obtain the two NEs and relation 

in-between, we have to check both directions, i.e. relation(NE1, NE2) and 

relation(NE2, NE1). If the hypothesized relation is directional, only one of them 

passes the check; if it is a non-directional one, both of them pass; and all the other 

cases are negative instances. 

The other aspect is strictness. The ReVaS system could be set up with different 

thresholds for the confidence scores from the RTE system, which leads to different 

effects of validation. Generally speaking, the stricter the system is, the fewer results 

will be validated, but the higher accuracy it will have. This strictness will reflect on 

the relation validation task as the tolerance of semantic variation among all the 

instances.

For the RTE system, we have combined the main approach with two backup 

strategies (the same ones as before in 3.1) by taking average of them. The main 

approach will contribute 1.0 – positive, 0.0 – negative, or 0.5 – not covered. The 

baseline system here is the Bag-of-Words system. Figure 2 above shows the system 

performance with hypothesized relation types is_located_in and say_about.

For each relation, we have tested the system with four different thresholds (i.e. 

strictness) for the confidence score, i.e. 0.9, 0.8, 0.7, and 0.6. We have taken the 

threshold 0.6 as a reference, namely its recall is set to be 100.0%. Then other recall 

scores are the percentage of the number those settings correctly validate divided by 

the number the reference setting correctly validates. Two lines respectively represent 

the precisions with NE errors and without. We will present a detailed error analysis 

and discussion in the following section. 

3.3 Discussions 

After taking a close look at the results, our system can successfully capture some 

linguistic variations as we expected. For example, the following example which can 

be correctly validated by our system indicates the implicit is_located_in relation 

                                                          
1 Those relations with different NE types are naturally directional. 

Fig. 2. The results of our system on is_located_in

relation and says_about relation 
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between the two NEs, “…The City Partner Hotel am Gendarmenmarkt offers our 
guests a personal home in the heart of Berlin.” Using parsing instead of extracting 

statistical features also helps us to jump over the apposition to identify the say_about 
relation, “Randall Lewis, a spokesman for the Squamish First Nation, said CN ...”

As shown in the two graphs above, errors concerning wrong NEs have occupied a 

large portion of all the errors. For instance, “CCNB office and core facility The CCNB 

Core Facility will be centrally located in a designated building on the Campus of the 
Charité in Berlin Mitte.” The partial recognition of the NE “Berlin Mitte” makes the 

validated relation trivial, though correct. Another interesting example is “She received 
her PhD from the University of Wisconsin-Madison in 1997.” Although “PhD” is not 

an NE, the is_located_in relation still holds. 

Errors concerning relations mainly fall into the following two categories: 1) similar 

relations, e.g. between birthplace relation and workplace relation, “…David W. 

Roubik, a staff scientist with the Smithsonian Tropical Research Institute in Balboa,

Panama.” and 2) the depth of analyzing modifiers, e.g. “Geography Setting Berlin is 
located in eastern Germany, about 110 kilometers (65 miles) west of the border with 

Poland.”
The complexity of real web data also impairs the performance. For instance, the 

following paragraph is extracted from a blog, 

“But the end of Zoo Station is the end of yet another era in Berlin, the '60s through 

the '80s, and one can only wonder where the junkies in west Berlin will congregate 
after it's gone. posted by Ed Ward @ 1:22 AM 2 comments 2 Comments: At 3:08 PM, 

Daniel Rubin said... First time I saw the Hamburg Bahnhof it was like a scene from 
a horror movie - - all these grizzled creatures staggering around as the loudspeakers 

blasted Mozart…”

In the RTE system, we have a method to deal with cross-sentence relations, by 

adjoining tree skeletons of different sentences. However, this makes the situation 

worse, when we want to figure out who (“Ed Ward”, “Daniel Rubin”, or even 

“Mozart”) says about what (“Zoo Station”, “Berlin”, “Hamburg Bahnhof”, or 

“Mozart”). Here, the structure tags of the web document might help to separate the 

paragraphs, but it needs further investigations. 

4   Conclusion and Future Work 

We have presented our work on a subtask of information extraction, i.e. relation 

validation. It is rarely addressed as a separate task as far as we know. The novelty of 

our approach is to apply textual entailment techniques to deal with the validation task. 

Due to the precision-oriented method of our RTE system, experiments on both 

annotated data and web data with an integration of an existing IE system have shown 

the advantages of our approach. The results suggest textual entailment as a feasible 

way for validation tasks, which requires a high confidence. 

In principle, our approach can be applied for validating more complex relations 

than binary ones. Either decomposing the complex relations into several binary ones 

or extending our tree skeleton structure is a possible way. Furthermore, the 

entailment-based confidence score can be directly used as a criterion for relation 



extraction. The method is exactly the same: to make a hypothesized relation and then 

extract “validated” instances from the texts. Apart from these, our method might also 

be an interesting way to automatically evaluate the outputs of different information 

extraction systems. 
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