
Indexing Social Semantic Data
Poster Abstract

George H. L. Fletcher Peter W. Beck
School of Engineering and Computer Science
Washington State University, Vancouver, USA

{fletcher, pwbeck}@wsu.edu

1. INTRODUCTION
Personal information management (PIM) is concerned with
automating the processes of collecting, organizing, and se-
curely storing personal data such as music, text documents,
spreadsheets, email, financial and medical records, book-
marked webpages, calendars, notes, address books, pictures,
chat logs, etc. [6, 7]. PIM systems must support non-
technical casual users in capturing, querying, and explo-
ration of this wide variety of semantically rich personal data.
PIM systems must also facilitate seamless sharing of per-
sonal data in web-scale social collaboration networks. PIM
is an area of intense interdisciplinary investigation and is a
vital facet of the social semantic web vision [7].

To be successful, PIM solutions must be built on top of a
robust data management infrastructure. Such an infrastruc-
ture must efficiently and unobtrusively support the require-
ments of PIM. At present, the design of data management
infrastructures for PIM is in its infancy [6]. In particular, in-
dexing, a fundamental data management technology, is still
not well understood in this domain. Indexes are necessary
for efficient querying and exploration of data. This poster
will describe our ongoing efforts to design index structures
specifically tailored to the social semantic data managed by
PIM systems.

2. RDF AND BASIC GRAPH PATTERNS
The W3C data model RDF and its query language SPARQL
have emerged as the standards for representing and querying
social semantic data [4, 6]. In RDF, information resources
are represented by URIs and relationships between resources
are captured as triple statements. Figure 1 illustrates a small
subset of a personal triple store. In SPARQL, queries over
triple stores are posed in an SQL-like syntax.

Example 1. Consider the query “What are the dates and
types of documents on which McShea was a performer?” In
SPARQL, where variables are identified by a leading ?, this
query can be posed against the triple store in Figure 1 as
follows:

SELECT ?date ?type
WHERE { McShea performed ?doc .

?doc created_on ?date .
?doc type ?type }

The WHERE clause of the query specifies a basic graph pattern
(BGP), via a set of simple access patterns. BGP’s, which
are at the heart of all SPARQL queries, identify a subset of
related resources to be extracted from the RDF graph, which

is then returned as a set of variable mappings. In this case,
we have only one set of valid bindings for the output variables
specified in the SELECT clause: {?date : 26.10.08, ?type :
MP3}.
Intense research efforts are currently focused on BGP query
evaluation techniques (e.g., [8]). Complementing this on-
going research, we are interested in designing native RDF
index data structures to accelerate BGP query evaluation.

3. NATIVE RDF INDEXING
A BGP can be represented as a “join” graph, wherein each
simple access pattern in the BGP is a node and an edge ex-
ists between two nodes if they share a variable. For example,
the BGP of Example 1 can be visualized as in Figure 2. The
width k of a join graph is the length of the longest direct
path in the graph. In Figure 2, the graph has width k = 1.

(McShea performed v1)

(v1 created_on v2)

(v1 type v3)

Figure 2: Join graph of BGP of Example 1.

Figure 3 illustrates a slightly richer example join graph for
the query “Who has authored a document performed by
someone (socially) related to McShea?”; here, width k = 3.

(v1 authored v2)

(v3 performed v2)

(v3 v4 McShea)

(v4 isA socialAction)

Figure 3: A wider BGP join graph.

Clearly, with massive RDF databases, disk-based index data
structures are necessary to efficiently process “wide” BGP’s
(i.e., where k > 0) such as those in Figures 2 and 3. Cur-
rently, many RDF data management systems utilize index
structures which facilitate efficient look-up of individual sim-
ple access patterns. For example, [5, 11] use the classic
B+tree data structure for such look-ups. These “k = 0” ap-
proaches only support evaluation of BGP’s with join graphs
containing no edges. In this sense, these are not “native” in-
dexes since they do not reflect the inherent graph structure
of BGP’s and RDF data. Recently, there have been pro-
posals for native k = 1 index data structures, e.g., [1, 10];

˘
〈Yamada, authored, doc1〉,
〈Yamada, knows, McShea〉,
〈knows, is a kind of, social action〉,
〈Herzog, authored, doc2〉,
〈Herzog, authored, doc3〉,
〈McShea, performed, doc3〉,
〈McShea, past action, authored〉,
〈doc1, type, PDF〉,
〈doc1, rating, 4/5〉,
〈doc2, type, MP3〉,
〈doc3, type, MP3〉,
〈doc3, created on, 26.10.08〉

¯
(a) A triple graph

PDF

doc3doc2

MP3

Yamada Herzog McShea

social
action

26.10.08

doc1

type

knows

authored performed

created on

past action
is a kind of

4/5

rating

(b) A visualization of this graph

Figure 1: A small subset of a personal triple store.

however, these have either focused on specific join patterns
or are limited to main-memory data structures. Indexing
techniques have also been developed for special classes of
larger patterns, e.g., [9]; such techniques, however, do not
support processing of the full variety of BGP join patterns.

The development of native disk-based index data structures
for wide BGP’s is crucial. Recently, a robust generic method-
ology for designing indexes has been developed for XML
data [3]. This approach hinges on coupling query language
induced partitions of the database with a structural parti-
tioning of the database. Such partitions are the basis of en-
gineering index data structures which are ideally suited for
efficient query processing. Through a theoretical analysis,
we have shown that such an approach can also be success-
fully leveraged in the development of native indexes for RDF
data [2]. Indeed, we have characterized the partition on re-
sources induced by various k-width fragments of BGP, for
k > 0. Evaluation of k-width bounded BGP’s with arbitrary
join patterns can be directly computed on these partitions.

4. POSTER PRESENTATION
We are currently investigating the theoretical foundations
and practical engineering of disk-based native indexes for
efficient evaluation of wide BGP’s over massive collections
of social semantic triple data.1 We have successfully de-
signed, implemented, and empirically evaluated an efficient
disk-based k = 1 index data structure, thus demonstrating
the feasibility of native indexing of RDF for an important
fragment of BGP. Will we discuss how this data structure ef-
ficiently supports the full range of k = 0 and 1 join patterns
in our poster. Based on this empirical investigation and on
the theoretical foundations established in [2], we are now de-
signing and evaluating a robust disk-based index data struc-
ture to accelerate processing of k > 1 BGP’s. The balance of
the poster will highlight our progress on this investigation.

The development of native indexes significantly advances the
state of the art in RDF data management. Such indexes will
serve as a key component in the engineering of successful
PIM (and, more broadly, semantic web) systems. The poster
will present the current results of our ongoing research into

1We are using the DBPedia (http://wiki.dbpedia.org) and
UniprotRDF (http://dev.isb-sib.ch/projects/uniprot-rdf)
datasets in our experiments, each of which is on the order
of 108 triples.

the development of efficient disk-based RDF indexes. We
hope to receive critical feedback from the community during
our presentation.

5. REFERENCES
[1] D. J. Abadi, A. Marcus, S. Madden, and K. J.

Hollenbach. Scalable Semantic Web Data Management
Using Vertical Partitioning. In VLDB, pages 411–422,
Vienna, 2007.

[2] G. H. L. Fletcher. An Algebra for Basic Graph
Patterns. In LID, Rome, 2008.

[3] G. H. L. Fletcher, D. Van Gucht, Y. Wu, M. Gyssens,
S. Brenes, and J. Paredaens. A Methodology for
Coupling Fragments of XPath with Structural Indexes
for XML Documents. In DBPL, pages 48–65, Vienna,
2007.

[4] C. Gutiérrez, C. A. Hurtado, and A. O. Mendelzon.
Foundations of Semantic Web Databases. In ACM
PODS, pages 95–106, Paris, 2004.

[5] A. Harth, J. Umbrich, A. Hogan, and S. Decker.
YARS2: A Federated Repository for Querying Graph
Structured Data from the Web. In ISWC, Busan,
Korea, 2007.

[6] W. Jones and J. Teevan, editors. Personal
Information Management. University of Washington
Press, Seattle, 2007.

[7] m. c. schraefel. What is an Analogue for the Semantic
Web and Why is Having One Important? In ACM
Hypertext, pages 123–132, Manchester, UK, 2007.

[8] M. Stocker, A. Seaborne, A. Bernstein, C. Kiefer, and
D. Reynolds. SPARQL Basic Graph Pattern
Optimization Using Selectivity Estimation. In ACM
WWW, pages 595–604, Beijing, 2008.

[9] O. Udrea, A. Pugliese, and V. S. Subrahmanian.
GRIN: A Graph Based RDF Index. In AAAI, pages
1465–1470, Vancouver, B.C., 2007.

[10] C. Weiss, P. Karras, and A. Bernstein. Hexastore:
Sextuple Indexing for Semantic Web Data
Management. In VLDB, Auckland, New Zealand,
2008.

[11] G. Wu, J. Li, and K. Wang. System Π: a Hypergraph
Based Native RDF Repository. In WWW, pages
1035–1036, Beijing, 2008.

