
SemTree: Ontology-Based Decision Tree Algorithm for
Recommender Systems

Amancio Bouza, Gerald Reif, Abraham Bernstein, Harald Gall
Department of Informatics University of Zurich
{bouza, reif, bernstein, gall}@ifi.uzh.ch

ABSTRACT
Recommender systems play an important role in support-
ing people when choosing items from an overwhelming huge
number of choices. So far, no recommender system makes
use of domain knowledge. We are modeling user prefer-
ences with a machine learning approach to recommend peo-
ple items by predicting the item ratings. Specifically, we pro-
pose SemTree, an ontology-based decision tree learner, that
uses a reasoner and an ontology to semantically generalize
item features to improve the effectiveness of the decision tree
built. We show that SemTree outperforms comparable ap-
proaches in recommending more accurate recommendations
considering domain knowledge.

Keywords
Recommender System, Ontology-Based Decision Tree, User
Model, Feature Creation, Semantic Web, Ontology

1. INTRODUCTION
People are overwhelmed with the amount of items offered
by online stores or webguides. Thus, recommender systems
play an increasingly important role in supporting people get-
ting items they like (e.g. music, movies, locations). In gen-
eral, different people do not share the same taste and inter-
ests. Therefore, using average product rating over all users
is not expressing a single user opinion adequately. A good
example showing the benefit of a recommender system is the
Amazon online store. Amazon supports people finding in-
teresting items by providing recommendations like: ”People
that bought product X, also bought product Y ”.
However, the existing recommender systems do not consider
domain knowledge to improve the accuracy and effective-
ness of recommender systems. An item can be expressed
simply by a feature vector where each dimension represents
an item feature. The values in the feature vector are boolean
and denote if the item provides those features or not. With
ontologies item features and relations among them can be
expressed machine readable and therefore can be used to
compute recommendations.
We assume that item features are not independend from
each other from a user perspective and therefore doing rea-
soning on item features can gain more information about the
user’s preferences. We therefore propose an algorithm that
builds user model based on the overall rating of the item. To
build the user model the algorithm considers a domain on-
tology to semantically interprete the features. The features
are instances of concepts in the ontology. The main idea is
that making an assertion about a superclass of a feature can

gain more information then the assertion about the single
feature.

2. RELATED WORK
Different approaches exists that predict an item rating by
summing the existent ratings and weight each rating with
the associated user similarity [4]. Other recommender sys-
tems use item co-occurence in purchases [6] and rank them
by the frequency they appear together.
In Quickstep, an ontology is used for user profiling [5] for re-
search papers. Quickstep learns by observing user behaviour
in which research domain a user is interested and provides
other papers of that research domain as recommendations.
In [3] domain ontologies are used to extract feature to de-
scribe items. The extracted features are then applied to
machine learning algorithms. In our approach we already
have the features but we are generalizing features during
the learning process to improve the result.

3. APPROACH
Our recommender system basically consists of two parts: the
user model builder and the recommendation generator. In
order to provide the user with recommendations, the user
has to rate a couple of items first. The user model builder
uses the feature vectors of the rated items in combination
with the user’s ratings to learn what combination of fea-
tures leads to which rating. The result is a user model that
expresses the user preferences. To provide the user with
recommendations the recommendation generator takes all
feature vectors of not yet rated items and predicts on the
basis of the learned user model the user’s rating for them.
The computed ratings are used to rank the items.

3.1 User Model Builder
The user model builder learns a decision tree using the fea-
ture vectors of each item and ratings to classify them. In the
following the pseudo code in Listing 1 shows the recursively
process of selecting the feature with the highest information
gain to build the decision tree node. In a first step, the
algorithm calculates for every feature its information gain
by splitting the (item) instances into two sets. The first set
contains all item instances that provide the feature and the
second set contains all item instances that do not. In a sec-
ond step, the algorithm gets a list of superclasses for every
feature and analogously calculates the associated informa-
tion gain. In depth, the algorithm splits the item instances
into two sets again. The first set contains item instances
that provide at least one feature that is an instance of the

superclass. The second set contains all item instances that
do not provide any feature that are instances of the super-
class.
Next, the feature or feature-superclass with the highest in-
formation gain is used as decison tree node and to split the
item instances into the two sets. For both sets of item in-
stances the algorithm continues to select the feature or su-
perclass with the highest information gain to build a new
subtree recursively until no splitting of the item instances
are possible.

Listing 1: Pseudo code
public Spl i tModel b u i l d C l a s s i f i e r (i n s t anc e s)
{

For each f e a tu r e in f e a tu r e v e c t o r
Spl i tModel s = new Spl i tModel (f e a tu r e) ;
s . c a l cu l a t e In f oGa in (i n s t anc e s) ;
l i s t . add (s) ;

For each f e a tu r e get s up e r c l a s s e s
For each sup e r c l a s s in s up e r c l a s s e s

Spl i tModel s = new Spl i tModel (s up e r c l a s s) ;
s . c a l cu l a t e In f oGa in (i n s t anc e s) ;
l i s t . add (s) ;

Spl i tModel b e s t Sp l i t = se lectBestMode l (l i s t) ;
In s tance s [] subse t s = b e s t Sp l i t . s p l i t (i n s t anc e s) ;

For each in s t anc e s in subse t s
Spl i tModel node = b u i l d C l a s s i f i e r (i n s t anc e s) ;
this . addChild (node) ;

return b e s t Sp l i t ;
}

3.2 Recommendation Generator
The recommendations are made by classifying the items by
the learned user model. To provide the user with a recom-
mendation list all items are classified by the learned user
model and ranked on the basis of the predicted ratings.

4. EVALUATION
We evaluated our approach quantitatively and calculated the
mean average error (MAE) and the root mean square error
(RMSE), two common metrics to evaluate the accuracy of
recommender systems [2]. The MAE sums the difference
between the predicted rating and the real rating and nor-
malizes it. On the other site, the RMSE squares the error
before summing and normalizing it. The RMSE weights the
size of an error made higher and therefore is a better indi-
cator of the error sizes done.
We used the Netflix Prize dataset [1] that originally consists
of 17700 movies, 480189 users and 100480507 ratings from 1
to 5 on an integer scale. To enrich this dataset with movie
informations we used the movie genre information from the
IMDb (The Internet Movie Database) to build the feature
vectors. Since movie titles tend to be used by several movies
we made the restriction as necessary and sufficent that movie
titles are exactly the same and the difference of the movie
years are minimal because the year information were some-
times wrong in one of the two datasets. With this restriction
we identified 10210 netflix movies in the IMDb. Therefore
our evaluation dataset for the evaluation consists of 10210
movies, 479453 users and 83412500 ratings. Since we are
evaluating a machine learning algorithm we used the probe
set, that is provided by Netflix, as test set and the evalua-
tion dataset without the test set as training set.

Table 1: Evaluation of Recommender Systems
Algorithm RMSE MAE
SemTree 1.1223011 0.8175
J48 1.3171503 0.9109841
AverageRating 1.0943271 0.8194
RandomGenerator 1.9295140 1.5443373

As we can see in Table 1 a simple randomly choosen rat-
ing performs worst as expected. The predicted ratings by
the J48 algorithm from the WEKA project [7] perform bet-
ter then the random generator. SemTree outperforms the
J48 algorithm. However, we expect better recommendations
by enriching the ontology with more movie informations.
Therefore we can conclude that using domain knowledge
learning a user model improves the accuracy of predictions.

5. CONCLUSIONS
We have proposed an ontology-based decision tree algorithm
that uses a domain ontology and a reasoner to split in-
stances with more generalized features (superclasses of fea-
tures) then the features in cases where generalized features
in form of superclasses perform better. The evaluation has
shown that our approach outperforms other approaches. For
future work we intend to use more movie information and
compare our approach with more recommender systems.

6. ACKNOWLEDGMENTS
This work was partially supported by the Innovation Pro-
motion Agency CTI Switzerland.

7. REFERENCES
[1] J. Bennett and S. Lanning. The netflix prize. KDD Cup

and Workshop, 2007.

[2] J. L. Herlocker, J. A. Konstan, L. G. Reveen, and J. T.
Riedl. Evaluating collaborative filtering recommender
systems. ACM Transactions on Information Systems,
2001.

[3] D. Kudenko. Ontology-based constructive induction
(extended abstract).

[4] D. Lemire and A. Maclachlan. Slope one predictors for
online rating-based collaborative filtering. In
Proceedings of SIAM Data Mining (SDM’05), 2005.

[5] S. E. Middleton, N. R. Shadbolt, and D. C. de Roure.
Ontological user profiling in recommender systems. In
ACM Transactions on Information Systems, 2004.

[6] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl.
Item-based collaborative filtering recommendation
algorithms. In Proceedings of the 10th international
conference on World Wide Web, 2001.

[7] I. H. Witten and E. Frank. Data Mining - Practical
Machine Learning Tools and Techniques. 2005.

