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Abstract 

Bias is intrinsic to observation and reasoning in 
both humans and automated systems. Bayesian 
Belief Networks (BBNs) are well suited for 
representing these biases and for applying bias 
models to improve reasoning practices, but there 
are a number of different ways that bias can be 
represented and integrated into reasoning 
processes using BBNs. In this paper, we describe 
a number of methods to model biases using 
BBNs and discuss the strengths and weaknesses 
of each method. 

1. INTRODUCTION 
Bias is intrinsic to observation and reasoning. Though the 
concept carries connotations of human judgment, bias 
also applies to automated systems, introduced by the 
limitations of their capabilities. Reasoning about 
information that includes bias (i.e., processed information, 
whether from human of machine) requires reasoning 
about the information, itself, and about the biases that 
influenced it. Humans do this naturally. In rich human-to-
human interactions, each person derives an understanding 
of the biases involved from shared context and estimates 
of the other’s attitudes and beliefs. In other circumstances, 
such as shallow person-to-person interactions (e.g., 
reading a restaurant review from an unknown person) or 
interactions involving automated processes (e.g., getting 
directions from a GPS; incorporating human reports into 
an automated decision aide; integrating contributions 
from multiple sensor systems in a data fusion system), 
biases and their influences need to be made explicit. As 
Hastie & Dawes (2001) argue, incorporating an explicit 
model of biases and their influences into reasoning 
processes can lead to more robust and accurate reasoning 
in both humans and automated systems. 
Bayesian Belief Networks (BBNs) are well suited for 
modeling biases in automated processing systems and 
decision aides. Many factors contribute to bias, 
interacting in a complex manner with each other and with 
the overall bias. BBNs represent the type of probabilistic 

influences and causal relationships required to capture 
this interaction (Pearl & Russell, 2000; Pearl, 2001). 
Furthermore, the graphical nature of BBNs further 
supports the expression of these relationships by 
providing an intuitive method to capture contributing 
factors and influences. In addition to providing an 
applicable modeling approach for capturing biases, BBNs 
are already applied in many fields where consideration of 
biases has the potential to make significant contributions 
to performance and realism, such as military intelligence 
(Koelle et al., 2006; Pfautz et al., 2005a; Pfautz et al., 
2005b), medical diagnostics (Kononenko, 1993; 
Parmigiani, 2002; Nikovski, 2000), and human behavior 
modeling (Guarino et al., 2006; Hudlicka & Pfautz, 2002; 
Neal Reilly et al., 2007; Pfautz & Lovell, 2008). 
To advance the incorporation of bias models in these 
fields and others, in this paper we discuss the role of 
biases in the decision making process (which includes, for 
our purposes here, observation, reasoning, and decision 
selection), several ways bias can be modeled using BBNs, 
and the benefits and drawbacks of each of these methods. 

2. BACKGROUND 
The study of biases to date largely focuses on cognitive 
biases. Several attempts have been made to categorize 
different types of bias and to identify how they affect the 
decision-making process. One method for classification is 
to look at the source of the bias, for instance, dividing 
uncertainty into forms that come from computational 
models as opposed to human interpretation (Schunn, 
Kirschenbaum, & Trafton, 2003). Another method is to 
examine the use of bias and uncertainty in the decision-
making process, resulting in categories, which has 
resulted in categories such as executional uncertainty, 
goal uncertainty, and environmental uncertainty (Yovits 
& Abilock, 1974). Another set of classifications 
developed by Lipshitz and Strauss (1996) divides forms 
of uncertainty into inadequate understanding, lack of 
information, and conflicted alternatives. Similar 
taxonomies were developed by Schunn et al. (2003) and 
Klein (1998).  These taxonomies can prove to be useful in 
attempts to develop descriptive models of human 
reasoning.  For example, Lipshitz & Straus (1996) discuss 



five strategies for reasoning under uncertainty: 1) reduce 
uncertainty by collecting more information; 2) use 
assumptions to fill in gaps of knowledge; 3) weigh pros 
and cons; 4) forestall; and 5) suppress uncertain 
information. While these classifications of uncertainty 
and an understanding of biases they introduce to decision-
making have been useful in the development of models of 
human behavior, they may not generalize to other types of 
biases. 

3. ROLE OF BIAS 
For the purpose of incorporating consideration of bias into 
reasoning process, we are concerned with bias in two 
separate roles. First, because bias impacts the creation of 
the products of observations and reasoning processes, it 
must be accounted for in the interpretation of those 
products. Limitations, methods, and, in the case of 
humans, preferences and cognitive biases introduce a 
systematic modification into an observed product. This 
modification must be identified and defined to properly 
reason based on these products. Elaborating on the earlier 
example, consider a negative review of a French 
restaurant written by someone who dislikes French food. 
Whether he is cognizant of this influence or not, the 
product of his observation—the review—incorporates his 
pre-existing preference. To reason based on this review, 
anyone reading it needs to recognize and correct for the 
preferences of the reviewer. Automated systems may not 
have personal preferences, but their technical limitations 
can introduce similar biases. Consider a sensor that 
detects the presence of humans based on heat signatures. 
Because readings are based on the contrast between the 
person and the ambient temperature, this sensor has a 
higher occurrence of false negatives when the temperature 
is above body temperature. So, a reading showing no 
people present on a 100°F day may be disingenuous 
because it is the product of both the reading and the 
hidden bias introduced by its technical limitations. As 
with the previous example of human bias, the consumer 
of this automated report—human or automated system—
must reason about both the contributing bias and the 
information, itself, to accurately use the product.  
Second, bias impacts the reasoning process applied to 
make decisions based on information products. The 
consumer introduces its own systematic modification of 
the information based both on its own biases and on the 
perceived biases incorporated in the product. For 
example, the analysis system using reports from the heat 
sensor may incorporate the fact that it does not function if 
the temperature is over 100°F , and disregard the sensor’s 
information products on a particularly hot days. Similarly, 
the analysis may favor one sensor type over another for 
gathering specific information, regardless of specific 
conditions (e.g., an analysis system may trust a radar over 
an eye witness due to a bias against non-technical 
sources). In this role, bias is not considered solely in the 
context of information production (though this may be 

considered); these biases consider how the information is 
being used and the reasoning processes involved. 
These two roles are cyclic, as the results of a reasoning 
process can be viewed as its own information product. If 
there are known biases in that product, an estimate of 
those biases may become an element in a new consumer’s 
reasoning processes, alongside other reasoning biases of 
the consumer. When the information product being 
interpreted pertains to an observable truth (e.g., a sensor 
detecting some object), understanding the influence of 
bias allows the consumer to determine the accuracy of the 
product and to integrate that accuracy information into its 
own reasoning processes. When the product pertains to a 
subjective belief or assessment (e.g., an opinion about a 
restaurant), understanding the contributing biases allows 
the consumer to determine how to integrate those biases 
with its own biases. 
These two roles comprise use cases for bias models, each 
with their own concerns motivating different design 
decisions. In the interpretation role, a model of bias can 
serve as a mechanism to correct for biases. Here, the 
details of the sources of those biases may not necessarily 
be important. Rather, it is important to correct for errors 
caused by biases. In the reasoning role, a model can be 
used to self-regulate against the introduction of additional 
biases, as well as to increase the accuracy of the 
consumer’s estimation of biases contributing to a product, 
which allows information to be incorporated into the 
consumers own reasoning at the highest fidelity possible. 
Here, the details of the sources of those biases may be 
extremely important, as different meta-information and 
information may have a direct influence in the reasoning 
process. 

4. THE STRUCTURE OF BIAS 
As a concept, bias is closely related to meta-information. 
Meta-information is information about information. That 
is, information that serves to qualify and give context to 
other information. For example, if a sensor reading is 
information, the fact “the reading is two weeks old” is 
meta-information—information about the report. For a 
more extensive discussion of meta-information, see 
(Guarino et al., 2006). Whereas meta-information is a 
statement of fact (“the report is old”), bias is the effect 
meta-information has on observations and reasoning 
processes (“because the report is old, its contents are 
probably inaccurate”). Thus, information types can be 
divided into three levels:  
1) the information, itself (e.g., the contents of the report) 
2) meta-information (e.g., information about the report) 
3) biases (e.g., the impact information about the 

report—the meta-information—has on the 
information in the report) 

Biases are derived from meta-information by combining 
that meta-information with elements of the information. 



For example, a two week old sensor reading showing the 
location of people in an open setting would not convey 
their current location with high confidence, while a two 
week old sensor reading showing the location of buildings 
would represent their current position with a high degree 
of certainty. So, in this example, the bias (“the 
information in the reading is wildly inaccurate”) is 
derived from a factor of the information (“people move 
frequently”) combined with meta-information (“the report 
is ten days old”). This same logic holds for subjective 
assessments. In the restaurant review example,  
• Meta-information: The reviewer hates French food 
• Information: The restaurant is French 
• Bias: The reviewer was predisposed to hate the 

restaurant, regardless of its quality 
These definitions of information types and the derivation 
of bias are the basis for the structure of our bias models. 

5. BIAS MODELS 
In this section, we present a number of ways to model 
bias, and we discuss the advantages and disadvantages of 
each model in light of the roles of bias (see section 3) and 
additional concerns about model use and creation. Bias 
models vary along two dimensions: the level of detail 
expressed about the bias and the level of integration with 
the reasoning model to which it is meant to contribute. 

5.1 IMPLICIT BIAS MODEL 

The implicit bias model does not contain a representation 
of the bias in its structure. Instead bias is expressed in the 
relationship between nodes of the existing elements of the 
model. Insomuch as it exists anywhere, the bias exists in 
each node’s Conditional Probability Tables (CPTs). The 
effect this bias exerts on the product of the model—the 
observation, decision, behavior, etc.—is a change in the 
beliefs of the nodes. The bias, itself, is not explicitly 
represented separate from the state information of the 
model. For example, see Figure 5-1, an implicit bias 
model of our previous heat sensor example. 

 

Figure 5-1: Implicit bias model structure of the heat 
sensor example. Bias is represented only in the CPTs. 

The sole factor represented as contributing to whether 
people are present is the number of people detected by the 
sensor. The bias in this model is expressed as uncertainty 
in the outcome. For positive readings, the likelihood of 

people being present is high. Because there are conditions 
that can increase the likelihood of false negatives, though, 
a negative reading leads to a lower certainty of people not 
being present (see Figure 5-2). 

  
(a)       (b) 

Figure 5-2: (a) left, shows the high belief that people are 
present based on a positive reading of the heat-based 

sensor; (b), right, shows a less certain belief that people 
are not present based on a negative reading of the same 
sensor. The bias is reflected in the increased uncertainty 

due to the possibilities of false negatives. 

The implicit bias model reflects the simplest case. Though 
it does reflect the reality of the situation, this model is 
insufficient in most other ways. Because elements that 
contribute to the bias (i.e., meta-information) are not 
explicitly represented, the bias is reflected in a permanent 
change in confidence rather than reflecting specific 
conditions (e.g., because the ambient temperature is not 
explicitly represented, the confidence cannot change 
based on the specific value of that variable). Instead, this 
model merely represents that bias is possible in the 
reasoning process. This model may be sufficient for 
representing bias while interpreting data because the 
value of the relevant meta-information may not be 
available to the consumer. However, because it does not 
explicitly describe the contributing factors and applies the 
bias as a consistent change in certainty rather than on a 
case-by-case basis, it is ineffective at providing a nuanced 
bias model for reasoning. 

5.2 INTEGRATED BIAS MODEL 

In an integrated model, the factors that contribute to bias 
(i.e., meta-information) are explicitly represented as 
nodes in the network and are fully integrated into the 
model of the observation, reasoning process, behavior, 
etc. The bias—the effect of this meta-information—is still 
contained in the CPTs. Like the implicit model, there is a 
bias in the computational process, but that bias is not 
explicitly represented as a node in the BBN. Figure 5-3 
expands Figure 5-1 into an integrated model by adding 
Ambient Temperature as an input node. 



 

Figure 5-3: An integrated bias model of the heat sensor 
example. Meta-informational factors are represented. Bias 

is represented in the CPTs. 

This inclusion of factors that moderate biases allows the 
bias model to account for the exact value of relevant 
meta-information, allowing the bias to change 
dynamically (see Figure 5-4). Furthermore, because each 
factor is expressed independently, their combined effect 
on the reasoning process can be nuanced. 

 
(a) 

 
(b) 

Figure 5-4: Integrated bias model of the heat sensor 
example. In (a), a high ambient temperature increases 

uncertainty. In (b), a low ambient temperature decreases 
uncertainty. The bias reacts in real-time to conditions, 

increasing accuracy of the model. 

In an integrated bias model, factors contributing to bias 
are explicitly expressed, so these models are more 
accurate, and, therefore, better than implicit models in an 
interpretation role. However, as in the implicit model, the 
effect of these factors is still captured fully in the CPTs. 
For this reason, expansion of the model is difficult, as 
additions could require significant modifications to those 
CPTs. Therefore, in a reasoning role it is difficult to adapt 

parts of an integrated bias model for reuse in a larger 
reasoning model.  

5.3 CONSOLIDATED UNKNOWN BIAS MODEL 

In a consolidated unknown bias model, bias is expressed 
as a single node in the network, with connections to each 
of the nodes in the network. This single node is a “black 
box” meant to represent the amount of bias in the model 
with no concern for the cause of the bias (note: this node 
could be a placeholder for bias calculated using the 
standalone bias model discussed in sections 5.5 and 5.6). 
For an example of a consolidated unknown bias model, 
see Figure 5-5. 

 

Figure 5-5: A consolidated unknown bias model, where 
the strength of the bias present is represented by a single 

node, which connects to all elements of the reasoning 
model. 

This model does contain a mechanism to express bias in 
every part of the model, but it makes a large assumption 
about the distribution of that bias. The effect bias has on 
each element is expressed in the CPTs, which means that 
the specific effects of the bias strength is individual to 
each node, but the strength is shared. This model does 
represent the effect of bias on a gross level, so it can be 
used somewhat in an interpretation role, albeit with lower 
fidelity since all biases are expressed in a single 
dimension. The effect of the bias is hidden in the CPTs, 
and the factors that contribute to the bias are completely 
unstated, so in a reasoning role biases cannot be utilized 
by addition elements of a reasoning model. 

5.4 DISTRIBUTED UNKNOWN BIAS MODEL 

The distributed unknown bias model represents bias as a 
number of “black boxes”, each having an effect on one or 
more elements of the reasoning model. Again, as black 
boxes, the factors contributing to each bias are not 
explicit. Bias nodes provide an overall representation of 
the biases in the reasoning components to which they are 
attached. For an example, see Figure 5-6. 



 

Figure 5-6: A distributed unknown bias model, where bias 
is represented as a number of unknowns, each connected 

to elements of the reasoning model. 

Distributed unknown bias models are superior to 
consolidated unknown bias models because they express a 
more nuanced situation reflecting the susceptibility of 
various elements of the model to different biases. The bias 
nodes play a similar role to meta-information nodes in an 
integrated bias model, but, as black-box bias modules, 
they consolidate all factors contributing to a particular 
bias into a single node. In an interpretation role, these 
models are more useful than implicit bias models because 
at least some gauge of the strength of bias active in each 
element is present. However, unlike the integrated bias 
model, the meta-information factors that affect their 
strength are unknown. This reduces the already limited 
ability of bias factors in distributed unknown bias models 
to be integrated into an external reasoning model. Unlike 
the models representing meta-information factors 
explicitly, the ability to add factors is not a concern 
because they are aggregated together in a single node, so 
no CPTs need to be changed. However, without 
expressing the composition of the bias, the bias strengths 
and relationships are highly subjective. 

5.5 STANDALONE BIAS MODEL 

A standalone bias model expresses bias in an independent 
model separate from the reasoning model. This is distinct 
from the integrated model where factors are represented 
but are integrated with the reasoning model itself. The 
measure of bias resulting from this model can then be 
applied to the reasoning model, filling the black-box need 
of the consolidated or distributed bias model, or used 
alone. Bias is expressed explicitly as a single node. Each 
element in a reasoning model where bias is a factor would 
require an independent bias model. The mechanism by 
which each factor contributes to bias is hidden in the 
CPTs. For an example of a standalone bias model, in the 
heat-based human detector the meta-information factor 
“Ambient Temperature” could be expressed (alongside 
any other relevant factors) as explicit nodes. The effect 
that each factor has (i.e., that high temperature increases 
the uncertainty of negative readings) is still expressed 
only in the CPTs. This example is depicted in Figure 5-7. 

 

Figure 5-7: A standalone bias model of detection bias for 
a heat-based person detector. The product of this 

standalone model could then be applied in a reasoning 
model. 

Like the integrated model, because standalone bias 
models represent the contribution of each of a set of 
factors to a bias explicitly, these models can dynamically 
capture bias, providing greater accuracy. Expressing 
factors in a separate model allows them to easily be 
applied as a factor in a large or frequently changing 
model. For this reason, standalone bias models excel in 
circumstances where a bias model might be applied 
independently at multiple points in a reasoning process. 
For example, consider a data fusion application that 
receives sporadic inputs from a host of sensors. Rather 
than use a single monolithic model that integrates 
information from all sensors, standalone bias models 
could be used to dynamically assemble a model that 
represents only those sensors that are currently active. 
Because the majority of the sensors are silent at any given 
time, this improves the efficiency of bias application in 
such conditions. However, this autonomy has a tradeoff in 
that bias is consolidated into a single metric resulting in 
the influence of specific pieces of meta-information 
having limited nuance in their effect on the reasoning 
process. Furthermore, an element or even a network 
fragment might be repeated in multiple standalone models 
leading to wasteful repetitive computation. Nevertheless, 
due to the explicit representation of meta-informational 
factors and simple portability, this type of model applies 
well in both interpretation and reasoning roles. 

5.6 FULLY ENUMERATED STANDALONE BIAS 
MODEL 

Fully enumerated standalone bias models explicitly 
represent both the meta-information that causes the bias 
and the element that defines how that meta-information 
contributes to bias (as discussed in Section 4). Rather than 
a single model for each bias type as with the standalone 
bias model, fully enumerated standalone bias model have 
a single model for each element of the information that, 
when paired with meta-information, could introduce a 
bias. These models express all factors contributing to bias 
and the bias itself as elements in the network, rather than 
being contained in the CPTs. For an example of fully 
enumerated standalone bias models, see Figure 5-8. 



 
(a) 

 
(b) 

Figure 5-8: Fully enumerated standalone bias models for 
(a) bias related sensors whose performance is affected by 

temperature, and (b) bias related to sensors whose 
performance is affected by power supply. 

Similar to the way standalone bias model can be applied 
dynamically based on the biases present, fully enumerated 
standalone bias models can be applied based on the 
definition of the system creating the product. So, a system 
using these needs a model for each possible property of 
the data sources. It can then apply them based on the 
definition of each source. For example, in a fusion system 
designed to dynamically calculate bias for any 
configuration of sensors, a bias model could be 
automatically assembled for each sensor based on the 
operating characteristics of that sensor. The heat sensor, 
defined as requiring low temperature, would incorporate 
biases related to that requirement. Because these networks 
determine the bias introduced by each factor separately, 
their integration into a reasoning process can be more 
nuanced than representations that consolidate bias into a 
single measure. This, along with the transparency of 
contributing factors, makes them ideal in a reasoning role. 

6. CONCLUSIONS 
There are numerous ways to represent bias as a BBN, 
each of which has its own strengths and weaknesses. 
Models of bias provide a mechanism to correct for bias to 
increase accuracy and to integrate biased information into 
human and automated reasoning processes. The most 
advantageous form of model for a particular situation 
depends on its intended use. 
By systematically examining the composition of bias, we 
have identified factors in its composition. The various 
model types we discussed make use of this definition by 
incorporating various factors at a range of fidelities, 
making specific elements more or less accessible. 
Additionally, we have defined two separate roles bias can 
play in reasoning processes. These roles form the basis for 
use cases, which we have used to evaluate each of the 
types of models. Of the models discussed, the more 

nuanced the application of bias to elements that 
contributed to the production of information, the greater 
the benefit in accurately interpreting the product of 
reasoning processes without introducing additional biases. 
To reason based on those products, those models that 
include the greatest level of detail and autonomy for 
factors that contribute to bias can be more easily and 
accurately integrated into reasoning processes. 

7. DISCUSSION 
This set of bias representations encapsulates a significant 
range of capabilities and tradeoffs. Among the most 
prominent difference between these representations is the 
degree of specificity about the sources of bias. In certain 
applications, like accounting for bias from a technical 
sensor, these bias factors can be easily identified and 
described. In others, like accounting for bias in human 
reasoning, these sources are obscured and can only be 
hypothesized through intense effort, and are largely 
unverifiable. In light of these impediments, going forward 
we need to determine what guidelines could be 
established to govern the applicability of different styles. 
How can uncertainty about the causes of bias be 
mitigated? Is there a way to create representations that 
don’t incorporate unspecified sources of bias, but that are 
applicable in situations where those sources are vaguely 
defined? Or, are there ways to use black box bias 
measures without fully sacrificing the attribution that 
identifying specific sources provides? Is this attribution of 
bias to particular sources necessarily important (e.g., for 
accountability, trust)? What conditions of use make 
attribution important (e.g., frequent updates, logic 
exposed to the user)? The complexity of specificity 
results, too, in a gain in precision in the end bias measure. 
Can factors contributing to bias be calculated precisely 
enough to warrant this precision in the end product? 
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