
Users’ Practices and Software Qualities: a Dialectical
Stance

 Alessandro Pollini
Interaction Design Area,

Communication Science Dpt.,
University of Siena

Via Roma 56, 53100, Siena
0039 0577 270565

pollini@media.unisi.it

ABSTRACT
The Ubiquitous Computing technology in practice is often
characterized by users that experience recurring breakdowns,
standards’ incompatibility and a proliferation of interfaces when
using, accessing and trying to connect different devices (e.g. PCs,
cameras, printers, and phones). Such interconnected devices
populate ordinary Ubiquitous Computing scenarios.
The focus of the present research is on how software architecture
can support Ubiquitous Computing applications and how people
might use these technologies to enhance their practices and reach
personal goals. Architectural support is indeed needed for
designing embedded, distributed, intelligent and interactive
systems, which need communication through middleware
components.
Use practices and Architectural Qualities have been investigated
in the Active Surfaces case study. Active Surfaces is an embedded
and modular system of tiles aimed at supporting therapeutic use
practices and special needs. The design and developmental
process is articulated on the relationship and the exchange
between key users practices and architectural qualities.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Contructs and
Features – abstract data types, polymorphism, control structures.

General Terms
Design, Performance, Experimentation.

Keywords
Software architecture, Ubiquitous computing, Usability, User
requirement, Participatory Design.

1. INTRODUCTION
Design and development of software architectures for ubiquitous
systems have been a major concern in academic research and
industry [1] and how architectures impact real use and usability

have also become issue of research interest. Usability benefits
have been widely applied to individuals performing on a desktop
computer but need now to be re-examined within the context of
distributed, interactive, networked and embedded applications.
Usability studies, which traditionally approach aspects specific to
a given task or application, have to be reinterpreted and adapted
to Ubiquitous Computing application systems, wherein networks
of laptops, PDAs, wearable computers, mobiles and other
distributed devices are constructed, de-constructed and integrated.
Designers and developers must also find ways in which sensitive,
responsive and intelligent UbiComp technology can also become
usable, i.e. noticeable, comprehensible, adaptable and easy to
control. That is why usage and usability concerns need to be
reconsidered outside of the desktop metaphor. Achieving usability
traditionally depended on how the functions provided by the
system were understandable and clearly visible through the user
interface. In this paradigm users have many input and output
peripheral devices and the overall system interface must be
adequate for their needs. There is a multitude of interfaces and
usability issues for each mobile device of the distributed and
ubiquitous system, and this requires a unique and enabling
software architecture that must be designed according to users’
needs.
In this paper we primarily discuss the interplay between software
architecture development and users practices by focusing on the
architectural qualities peculiarity of designing ubiquitous systems
for users with special needs and diverse abilities through the case
of Active Surfaces, a modular system of tiles used for play and
therapy in water.
Active Surfaces relies on the service-oriented architecture
developed in the EU funded IP PalCom, Palpable Computing [2].
We will discuss the interplay between users’ practices and
software architecture development by experimenting with the
Active Surfaces with therapists and children with special needs.
By focusing on those attributes that support palpable use of
technology, that we henceforward call Qualities, we also consider
the architectural attributes required by usable ubiquitous
technology.

2. ARCHITECTURE AND USE Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

The software architecture has been explored and experimented in
different application prototypes related to the Health Care and the
Landscape Architecture domains [2]. Each general scenario is
characterized by an application prototype in which the
architecture, or part of it, has been experimented. The application
prototypes served as testbeds for the development of the

I-USED’08, September 24, 2008, Pisa, Italy

architecture and as case studies that provide the requirements
coming from the field studies.
The architectural qualities have been introduced and described as
the meeting point between architecture and use/application. The
peculiarity of these non-standard architectural qualities is that
they both evolve and gain meaning through software development
and investigation of key user practices to account for.
In fact the architectural qualities and the user practices are
tightly coupled and represent the two perspectives adopted in this
research: the software architecture engineering and the interaction
design perspective.
In order to better focus on users and architecture it is necessary to
describe the Active Surfaces application prototype. The concept,
the system and the architecture are described below.

2.1 Active Surfaces
Active Surfaces is a modular system constituted by physical and
interactive units, the tiles. They are interactive modules that
activate the surfaces of the swimming pool by making the
environment featured with a network of distributed interactive
components [3][4]. In particular, the prototype as developed in
this research affords the horizontal configuration of the tiles on
the water surface.

Figure 1. The current Active Surfaces prototype

The tiles constitute a network of physical (and software) objects
that communicate and exchange data. Each Active Surfaces tile is
thought of as a modular unit that can communicate with the others
through its six sides. These entirely homogeneous devices, the
tiles - which have exactly the same physical characteristics and
computation and communication resources - are assembled. Each
tile is an independent, physical, tangible object that can be picked
up and moved around, and the interaction between the tiles is
coherent and straightforward: all the tiles can communicate with
their adjacent neighbours. They are, in fact, able to recognize
their relative position as being essentially positioned and
orientated in a sequence of tiles.
The Active Surfaces is highly scalable in respect to computational
power and number of components. In fact it can scale up or down
(vertically) by adding or removing resources to a single node in a
system, typically involving the addition or removal of CPUs or
memory to a single tile. Active Surfaces can also scale out
(horizontally) by the addition of more nodes to a system, such as
adding new tiles to the distributed system.
The concept emphasizes issues related both to the use, such as
physical manipulation, positioning and emergent uses of the

system, and the architectural platform, like the networking and
dynamic assembly of tiles that is configured purposely [3][4].

3. SPECIAL NEEDS AND USERS’
PRACTICES
In order to better focus on use practices as they emerge in the
Active Surface application prototype it is thus necessary to
describe the target users profiles - that is, the therapists and
caregivers together with the disabled children - their needs,
wishes and abilities [4].
Together with the study of the domain and a survey of the
enabling technologies [5], fieldwork has been carried out with the
aim of directly exploring the field of therapeutic intervention in
water. The fieldwork has been conducted in two settings for
psychomotor therapy in water, the Disabled Children Parents
Association, Siena and the D. Chiossone Institute in Genova. We
adopted ethnographic methods - such as field observation and
interviews - and design methods - such as user workshops and
creative brainstorming. The ethnographic activities attempted to
observe and reveal relevant issues related to the environment (the
features of the water, the physical structure of the swimming
pool), the actors (therapists, disabled children, parents), the tools
(objects, toys and water noodles) and, above all, the activities (the
procedures, the different phases, the practices). We have
addressed the whole practice starting from the planning, entering
the activity and proceeding with the evaluation phase [5].
We will exclusively focus here on the overall description of users’
needs and therapists practices in order to understand the
implications they have on software architecture development.

Figure 2. Playing domino like games with Active Surfaces

The main actors of this therapeutic setting are the children with
special needs. Children with very diverse profiles actually benefit
from therapeutic play in the water. The users we have observed
can be summarized in three main groups described below:
Autistic Spectrum Disorders and Other Affective and Socio-
Relational Disturbances. People with autism have impaired social
interaction and social communication and have a limited range of
imaginative activities. People with autism have a tendency toward
repetitive behaviour patterns and resistance to any change in
routine. They need to be instructed and supported during the
game, otherwise they very quickly return to their own solitary
‘obsessive activities’.
Physical and Motor Disabilities and Cerebral Palsy. These
children have limitation or an impossibility of movement,
restrictions in force, abnormal postures, the presence of

neurological movement disorders such as dystonia, tremor, ataxia,
etc. Children with cerebral palsy can be severely impaired in
playing by their motor disability, but also by speech and
communication disabilities, and sensory impairments (visual
and/or hearing).
Mental Retardation/ Intellectual Disabilities/ Learning
Disabilities. Children with mental retardation (also referred to as
intellectual disabilities or learning disabilities, for example
children with Down’s syndrome), have a reduced capacity for
attention and might not understand the meaning of the proposed
activity. They might not understand the meaning of language and
many of them have speech limitations too.

3.1 Key Practices
The therapists and trainers are the other main actors of this
setting. They essentially have the role of facilitating the playful
physical, social and emotional experience. They have to mediate
the social relationships, the experience in the water and offer a
reassuring presence to the child. They are the scaffolds that allow
the child to express and freely explore the space of the pool. The
therapists have to facilitate the activity, and not impose rules or,
on the opposite extreme, abandon the child without a guide. Even
when the child would like to explore by herself the therapist
should also be present and support her independent action. The
intervention is considered successful when the therapist interprets
the meanings of the behaviors of the child. Having an intimate
knowledge of the child is central to achieving this interpretation.
The outcomes of this activity resulted in key observations that
have informed the whole design process. They can be summarized
as follows:

Looking for creative solutions: The therapists usually deal with
dynamic settings and changing conditions. This implies the
ability to manage and rearrange the available resources in
purposeful and creative ways.

Dynamic configuration of the tools: In dealing with
continuously changing conditions and rehabilitation demands,
the therapists should always find new solutions for adapting
their tools and the environment to the patients and for
maintaining their attention throughout the session.
Consequently a core characteristic is that the tools have to be
easily re-configurable and adaptable to this evolving situation.

Resource availability and opportunities for action: The
therapist needs to feel in control of the available resources and
how they might be adopted, changed and exploited. As in
many workplaces, since their attention is exclusively directed
to the patients, the resources the therapists use have to be
ready at hand and immediately understandable.

Exploration and performance: This practice facilitates and
encourages exploratory experimentation by users. Tools have
to be used, customized and altered according to established
degrees of freedom and constraints.

The key therapist practices are among the outcomes of the field
exploration of the application sites and have continuously
informed the development of the software architecture.

4. RESEARCH METHODOLOGY
Dealing with diverse and special users requires that methods and
experimental environments would be appropriate, i.e. non-

obtrusive, able to be personalized, adaptable, and capable of
anticipating emerging user needs [6].
A wide variety of methods have been used throughout the
iterative design life cycle [5]. These methods pertain to Human
Computer Interaction, Participatory Design and Software
Architecture Engineering. In particular we integrated a
participatory design perspective with a co-evolutionary approach
to interaction design and we explored this methodology in the
domain of software architecture design. The process is co-
evolutionary since architectural development, site exploration,
activity analysis and concept design have been carried out in
parallel so that each path of the process can inform, without
constraining, the others.
We especially highlight on how the use of scenarios helped the
structuring of data gathered through activity analysis, the
envisioning of the role and functionalities of the system, and the
assessing and validating the envisioned solutions from an
architectural perspective (see [7][8] for scenario-based evaluation
methods).
Throughout this research the scenarios are used to step through
the software architecture and to document the consequences of
architectural solutions from a user perspective. Different kinds of
scenarios drove the research process: Activity scenarios,
Envisioning scenarios, Prototype scenarios and Qualities
scenarios [5]. We will focus here on Activity and Qualities
scenarios that better represent the dialogue between Application
and Architecture.
Activity scenarios stem from the fieldwork and activity analysis.
They are grounded and built on data collected with ethnographic
observation and user research. Activity scenarios account for
concrete use episodes and key practices. We used the Activity
Scenarios to understand, as thoroughly as possible, what is
relevant and appropriate in the specific domains of use, which in
this case study was the therapeutic practice in the water. These
issues have thus been evolved into user requirements that
informed the definition of the envisioned solutions at the software
architectural level.
The key User Practices also were the criteria to define the
experimental plan with the architectural prototype and the
evaluation framework. In fact in this research experimental
architectural prototypes have been used to conduct experiment on
the architectural qualities that we have analyzed, in particular
those observable at run-time (like performance) [9]. The
experimental architectural prototypes allowed concrete
measurements to be made under a range of different situations
that might be also defined in terms of Qualities scenarios. They
will be described in Par. 6.1.
Qualities scenarios consist of a slight adaptation of the quality
attribute scenarios [1][10] that are a way to make the Qualities for
palpable systems operational. They are short technical scenarios
referred to specific Qualities. Qualities scenarios provide a way to
concretely measure whether the architecture fulfils the
requirements of the scenario. It states measurable properties of an
architecture by defining metrics to be used in performance testing
of the architecture. These scenarios allowed us to experiment with
and evaluate specific features of the technology by testing the
Qualities of the software architecture.

5. ARCHITECTURAL QUALITIES
In the multiple iterative cycles of the process followed in this
research, scenarios have been used to bridge the use practices and
the architectural development. The key practices have been
discussed in terms of system use and from the software
architecture perspective. The Architectural Qualities are
summarized below:

USERS PRACTICES ARCHITECTURAL
QUALITIES

Looking for creative solutions Assemblability

Dynamic configuration of the
tools

Adaptability

Resource availability and
opportunities for action

Resource Awareness

Exploration and performance Experimentability

Table 1. From Users Practices to Architectural Qualities
Each Quality comes from an iterative design and development in
which user participation and technological challenges were
interwoven strands of the whole process.

Assemblability. Each Active Surfaces tile is identical and
interchangeable and can run any piece of code that is passed to it
through a neighbour, included the game logics. They can be
assembled in many different formations that take into account the
tiles’ communication capabilities and the surfaces on which they
have to be placed. Each formation of tiles is instantiated as a
functional and physical Assembly of devices and services. The
Assembly takes form as the users construct it by means of the
Assembler Tile. The Assembly can then be dynamically altered
and adapted over time. Despite the stability it has when it is
created, the Assemblies can be easily deconstructed and re-
constructed in a different formation being supported by flexible
ad-hoc networks that can be controlled and configured by end
users.

Adaptability. The Active Surfaces system consists of a set of
tiny, resource constrained computers that can be arranged together
to create a physical network. Because the tiles can only
communicate with their close neighbours, there is an explicit and
consistent discovery and communication framework underpinning
the whole system. The tiles can be arranged in three-dimensional
patterns, like squares in a crossword puzzle, and tiles, which are
stacked one on top of the other, communicate through the top and
the bottom. The network can be easily reconfigured by picking up
a tile and moving it; this movement immediately changes the
feedback that is provided.

Resource Awareness. The tiles are embedded systems with
powerful and limited resources at the same time, such as available
energy, available memory or communication bandwidth. Because
of the limitations of these devices they represent a concrete
challenge for the developers of the software architecture. In
Active Surfaces a game application can exist within a network,
rather than on a single unit or a central mainframe. Through the
networking among the tiles and the instantiation of the assembly,
they can discover the resources present in the system and debug
the behaviour of such resources in order to overlook malfunctions
or degraded individual or generalized performance. The resources
are monitored and managed throughout time.

Experimentability. Active Surfaces can be thought of as a toy
problem to experiment the software architecture because of its
peculiar characteristics, as a modular system made of small easy
to handle units. The tiles can be experimented with and tested
without altering the structure of the system or causing any
malfunctions or error. Indeed, Active Surfaces has to operate even
despite the presence of an error in the use. An error is a condition
of exception resulting from some deviation from the expected
behaviour, which leads to a fault or failure, and the design of the
architecture aims at minimizing the eventual adverse
consequences of accidental or unintended actions.
These Qualities should not be considered in isolation, but rather
as interwoven contributory factors that exhibit dependencies and
influences on one another. The purpose of the Qualities is to
capture the essence of what defines the nature of usable, easily
perceivable and understandable (in a word, palpable) ubiquitous
computing applications.

6. EXPERIMENTING WITH THE
SOFTWARE ARCHITECTURE
The goal of this experimental phase is to describe the behaviour
of the Active Surfaces system by measuring the performance of
the architectural prototypes. The Qualities scenarios help in
describing the performance in terms of more informative detailed
statements. These statements allow quantifiable arguments about
a system to be made [10].
Empirical testing is possible when relevant requirements and
architectural components have been identified and prototypes
have been developed. In particular the Active Surfaces
architectural prototypes, described in the following paragraph,
were used to observe, explore and evaluate the Architectural
Qualities.

6.1 Architectural Prototypes
Prototypes of software components with different levels of
accuracy and completeness have been used throughout the
process. Their usage in architectural development provided the
opportunity to have intermediate embodiments of the systems’
functionality even if not supposed to represent any final or
complete stage.
The Active Surfaces system underwent a concurrent development
either within the Simulation Framework and the Hardware
Platform. The hardware platform selected for the Embedded
Architectural prototype is the UNC20 microcontroller. With such
small microprocessor only the PalVM, the Virtual Machine
developed within the PalCom project [2], is supported as a
runtime engine.
The embedded architectural prototype has been built to learn
about the PalVM platform and the serial communication over IR.
The testing aims at discriminating whether there are restrictions in
the PalCom open architecture or if the constraints are due to the
current hardware implementation (e.g IR communication
implemented over serial port).

Figure 3. PalCom tile stack

The middleware management layer, which consists of managers
handling resources, services, assemblies, and contingencies,
requires too great a memory footprint to fit into the 8MB memory
of the UNC20. Therefore, the software for the tiles has been
developed to run on a standard PC with simulated infrared
communication in concurrence with the development of the
hardware for the tiles and the optimization of the middleware
management layer. On the desktop machine the simulated
framework runs on top of Sun’s JavaVM.
The tiles deployed as simulated devices on a desktop machine are
expected to have an optimal performance and can still exhibit a
certain level of experimentability through the simulated game
with a graphical user interface. In fact the therapists had the
valuable opportunity to exploit the opportunities provided by the
middleware managers, even if within the simulation framework
The architecture experienced on the Simulated Framework was
likely to inform the development of the embedded applications.

6.2 Performance Testing
The Performance Testing have been organized around tasks
designed in order to translate the Qualities, and therefore with a
relation to the Users’ Practices, in measures observable via
execution. The tasks aim at demonstrating how the existing
architectural components would behave in performing the Active
Surfaces scenario, e.g. performing the assigned activities.
The performance testing is based on a user-oriented perspective
and assumes human practice in the therapeutic setting. In
particular time responses, delays or frequency of errors have been
observed with respect to the requirements coming from the
activity analysis. For what regards timeliness, the major
requirements from the therapeutic activity in the water are the
duration of the whole session (45 minutes), the pace of the
interaction (cycles of 3 to 5 minutes games to the utmost)
intervened by the restless time pauses (2-3 minutes). These data
allowed us to define the baseline for the experiments [5].
In order to determine whether there are restrictions in the software
architecture or if the eventual constraints are due to the current
hardware implementation, we have organized testing around two
different conditions: 1) Tasks in which the performance is
influenced mainly by the software architecture currently running;
2) Tasks in which the performance is both influenced by the
architecture and mostly by the current hardware implementation
[10].
In particular the experimental tasks can be grouped into the
following areas. Each area represents a way to translate the
Architectural Qualities (in brackets) into less conceptual and more
verifiable evaluation tasks.

Communication and Discovery (Assemblability and Resource
Awareness)

Task (a), (a1): 1+1 tiles, one is still, the other is rotated to reach
the correct orientation for the side connection. In one case (a)
Two tiles are put together, in the other (a1) two correctly
connected tiles are kept apart.
Task (b), (b1): 1+2 tiles, one is still, the other two are rotated to
reach the correct orientation at the same time. In (b) three tiles are
put together, in (b1) three correctly connected tiles are kept apart.
Task (c), (c1): 1+3 tiles, one is still, the other three are rotated to
reach the correct orientation at the same time. In (c) four tiles are
put together, in (c1) four correctly connected tiles are kept apart.
The tasks are designed as two series each consisting of 10
repetitions of the tasks. In the first series the tasks are interrupted
by re-boot of the game services (Re-boot series), in the other
series the tasks are carried out continuously over time (Over time
series). The former case represent the normal performance the
tiles have on these tasks. The latter evidences how the
performance in these specific tests varies over time.

Re-configuration (Adaptability)
The tiles currently can run either fixed GameServices, like the
Jigsaw Puzzle Fish game (see Figure 1) and the Domino game
(see Figure 2); or open GameServices where the tiles are in
programming mode and learn how to configure by physical
programming-by-example. The tiles also run FeedbackServices,
like the actual LEDService or the possible VibrationService and
SoundService that can be developed in the future.
The Re-Configuration tasks can either mean: choosing among
existing pre-defined GameServices or the flexible use of single
services related to game configuration, e.g. tiles’ sequence,
sensing and feedback.
In one case the system should allow shifting between pre-defined
GameServices, i.e. different games that have already been
configured. In the second case the system should allow running
more services at the same time
That’s why we launched different services in parallel simulating
the two conditions described above. We are able to compare the
task under two different conditions represented by the
ist.palcom.tiles.test.fish.prc services, which involves IR
communication among the tiles; and ist.palcom.tiles.test.timer.prc
which doesn’t involve the use of IR communication.

Performance (Experimentability)
Performance comprises 1 task performed under both the
experimental conditions, with and without the use of
communication. Thus there is a set of 2 tasks that consist of
observing two GameServices running for 30 min.
As mentioned above, the overall session lasts 45 minutes and the
duration of a single game situation can be assumed to be 30
minutes at the very most. In fact even if it is possible that children
find some games very engaging, it is very hard to carry out the
same game for almost the whole session. Furthermore game
dynamics usually last few minutes.

7. RESULTS
In this paragraph a short summary of the gathered data is
presented. For an extensive overview of the results see [5].
The results related to Communication and Discovery are
presented regarding the two series of gathered data (Re-boot and

Over Time series), the two main actions (Put Together and Put
Apart) and the scalability factor represented by the number of
tiles utilized (2, 3 or 4 tiles).

Conditions Tasks 2 Tiles 3 Tiles 4 Tiles

Put together 3.2 7 6.9
 Re-Boot

Put apart 7.6 9.8 12.5

Put together 3.5 7.6 7.5
 Over Time

Put apart 8.1 10.6 13.3

Table 2. Communication and Discovery. Summary of Results
The comparison among Communication and Discovery between 2
Tiles, among 3 Tiles and 4 Tiles, also gives a quantitative
measure of how horizontal scalability affects the performance of
the tiles system. Active Surfaces is conceived and designed as a
modular system that in future implementation will be made of 12
units. The experimental data suggest that the performance of
PalVM and the PalCom Communication components should be
improved to meet the requirements of a highly scalable system
and guarantee acceptable time responses as the number of the
modules increase.
Tasks related to Re-configuration show how the system supports
several services running in parallel and also creative combinations
and adaptations of the tiles system. This can be done by shifting
among these pre-defined solutions or by flexibly combining
single services related to game configuration (e.g. game logics,
sensing and feedback).
The eventual shifting among GameServices would be affected by
the time required by new services to start, about 10 sec. As we
observed through the activity analysis, the pace of the activity in
the Active Surfaces scenario would impose a quicker response
time for the re-configuration of the system. It is estimated to be no
more than 10 sec in order to really provide the user with the
experience of ready-at-hand tools. The results show that there is
still not adequate support for the multiple services combination,
i.e. more than three services running).
Regarding the combination of services, all the VM versions well
support two services running in tandem both in tasks involving
the use of IR communication or not. Simultaneously running two
services, the system coherently exhibits the behaviours defined by
the two services. Three services running in parallel are also
supported but it seems to affect the behaviour of the tiles by
decreasing the overall performance of the PalVM-release. These
results are close to what happen with running one service alone
and this could prove valuable support for re-configuration.
Tasks regarding the Performance over long periods of time show
that the current implementation restricts the overall performance
of the tiles. In fact, the performance through the LightUp
GameService proved to be optimal, while tasks involving the
communication modules resulted in a series of malfunctions that
negatively affected the overall performance.
The results of the experiments allowed us to revise and elaborate
on the initial formulation of the Qualities. For the Architectural
Qualities revised see [5].

8. CONCLUSION
In discussing software architecture development and users’
practices we have described the integration among the traditional
ethnographic studies, participatory design methods and
naturalistic experiments to inspire, inform and evaluate the design
of software architectures [9]. This approach has already been
adopted for the design of ubiquitous computing technologies [11]
while it seems to be still fully appreciated in software architecture
design [11].
Recently there has been a growing interest in understanding
specific evaluation problems that arise from the use of Ubiquitous
Computing systems [12]. In such paradigm software and hardware
resources are distributed throughout the physical world and this
impacts individual and social behaviours. Different evaluation
criteria have been outlined, user attention (focus and overhead),
the adoption of the system (value and availability) and the
qualities of the interaction (physically embeddedness, dynamic
input/ output, multiple devices, multiple users). Criteria related to
the use and the person, such as understanding, control, accuracy,
appropriateness, and customization, are also discussed.
This study helped us to figure out the complexity of such intricate
stage where persons and computational resources influence one
each other. With this research we wanted to highlight on
multifaceted aspects interwoven in the interplay between real use
and software development.
We observed that the introduction of UbiComp technology
affected and changed users’ activities and that, at the same time;
they became responsible for maintaining, controlling and
changing it. The system architecture / use relationship is
dialectical since on one hand, technology enhance certain
practices by enabling novel use opportunities, on the other hand
user-specific dynamics provoke, inspire and inform the
emergence of unpredicted architectural solutions.
In this paper we showed how such interplay took place through
the whole research process, i.e. through design and development
strategies that accounted for the special needs of the involved
users and challenged the development of the system architecture.
We wanted to give a feeling of this multiplexed process by
describing the design of the experiments and the results. Data
gathered during the activity analysis and activity modeling
provided the backbone to define the experimental plan and the
baseline for the evaluation of the system.
We empirically investigated the dialogue between user studies
and software development by means of operative choices. We
tried to bridge these two different fields and to take advantage of
the methods of each domain. This study also resulted in the
investigation of newly emergent interwoven processes that make
use and architecture meeting at the edge, where software
Qualities and Users’ Practices juxtapose and evolve tightly
coupled.

9. ACKNOWLEDGMENTS
Thanks to Prof. Patrizia Marti, Alessia Rullo and Erik Grönvall as
they were a part of the research group for the duration of the
PalCom project. Thanks to the collegues at the Computer Science
Dpt, Univeristy of Aarhus that played a fundemental role in the
software architecture development.

10. REFERENCES
[1] John, B. E.; Bass, L. (2001) Usability and software

architecture. In Behaviour and Information Technology, 20
(5) pp. 329-338

[2] Palcom Project Website, http://www.ist-palcom.org/
[3] Grönvall, E., Marti, P., Pollini, A., Rullo, A. (2006) Active

surfaces: a novel concept for end user composition,
NordiCHI 2006, Oslo, Norway, 14-18 October, 2006.

[4] Pollini A., Grönvall E. (2006) Constructing assemblies for
purposeful interactions. In Proceedings of Mobile Interaction
in the Real World Workshop, MUIA06 at MobileHCI 2006,
8th International Conference on Human Computer
Interaction with Mobile Devices and Services. 12 September
2006. Espoo, Finland.

[5] Pollini A., (2008) Experimenting with an Ubiquitous
Computing Open Architecture. Ph.D. Thesis, University of
Florence, Italy, 2008.

[6] Emiliani, P. L., Stephanidis, C. (2005) Universal access to
ambient intelligence environments: opportunities and
challenges for people with disabilities. IBM Syst. J. 44, 3
(Aug. 2005), 605-619.

[7] Kazman, R., Barbacci, M., Klein, M., Carriere, S. J., Woods,
S. G. (1999) Experience with Performing Architecture

Tradeoff Analysis, In proc. of the 1999 International
Conference on Software Engineering, pp. 54-63, 1999.

[8] Bengtsson, PO. (2002) Architecture-Level Modifiability
Analysis. ISBN: 91-7295-007-2, Blekinge Institute of
Technology, Dissertation Series No 2002-2, 2002.

[9] Bardram, J. E., Christensen, H. B., and Hansen, K. M. (2004)
Architectural Prototyping: An Approach for Grounding
Architectural Design and Learning. In Proc. 4th Working
IEEE/IFIP Conference on Software Architecture, pp. 15-24,
2004.

[10] Bass, L., John, B. E. (2003) Linking usability to software
architecture patterns through general scenarios. Journal of
Systems and Software, 66 (3), 187-197.

[11] Edwards, W. K.; Bellotti, V.; Dey, A. K.; Newman, M.
(2003) Stuck in the Middle: The challenges of user-centered
design and evaluation for infrastructure. ACM Conference
on Human Factors in Computing Systems (CHI 2003); 2003
April 5-10; Fort Lauderdale; FL. NY: ACM; 2003; 297-304

[12] Scholtz, J., Consolvo, S. (2004) Toward a Framework for
Evaluating Ubiquitous Computing Applications. IEEE
Pervasive Computing Magazine, Vol. 3, No. 2 (Apr-Jun
2004), pp. 82-8.

	1. INTRODUCTION
	2. ARCHITECTURE AND USE
	2.1 Active Surfaces

	3. SPECIAL NEEDS AND USERS’ PRACTICES
	3.1 Key Practices

	4. RESEARCH METHODOLOGY
	5. ARCHITECTURAL QUALITIES
	6. EXPERIMENTING WITH THE SOFTWARE ARCHITECTURE
	6.1 Architectural Prototypes
	6.2 Performance Testing

	7. RESULTS
	8. CONCLUSION
	9. ACKNOWLEDGMENTS
	10. REFERENCES

