
Fostering Remote User Participation and Integration of
User Feedback into Software Development

Steffen Lohmann
University of Duisburg-Essen

Interactive Systems and Interaction Design
Lotharstr. 65, 47057 Duisburg, Germany

steffen.lohmann@uni-due.de

Asarnusch Rashid
Research Center for Information Technology

Information Process Engineering (IPE)
Haid-und-Neu Str. 10-14, 76131 Karlsruhe, Germany

rashid@fzi.de

ABSTRACT
Permanent involvement of end users in software development is
both highly recommended and highly challenging. Against the
background of our results and experiences from two research
projects, we summarize several key issues and design concerns
that need to be considered when integrating users and their
feedback into software development.

Categories and Subject Descriptors
K.6.3 [Software Management]: Software development. D.2.1
[Requirements/Specifications]: Elicitation methods. D.2.2
[Design Tools and Techniques]: User interfaces. H.5.2 [User
Interfaces]: User-centered design. H.1.2 [User/Machine Systems]:
Human factors. I.3.6 [Methodology and Techniques]: Interaction
techniques.

General Terms
Design, Human Factors

Keywords
Remote User Participation, User-centered Software Development,
Distributed Participatory Design, User Interface Annotation

1. INTRODUCTION
Nowadays, software development is increasingly characterized by
evolutionary processes and short development cycles. Modern
software systems usually need continuous updating, improvement,
and customization. Perpetual usability evaluations and user
surveys are crucial to guarantee that a software system meets the
users’ needs. Development concepts such as Participatory Design
in Use [2] emphasize the importance of continuous user
participation. However, the spatial and temporal distribution of
system users often limits the possibilities for co-located methods
of participatory design. In many cases, user participation is only
remotely possible, e.g. via computer-mediated forms of commu-
nication.

Within the research projects SoftWiki [8] and CallaBaWue [3],
methods and tools have been developed that ease remote
participation of end users in the software development process, in
particular with respect to requirements elicitation and usability
evaluation. The basic toolset in both projects consists of a
collaboration platform and participation channels that enable
users to make suggestions for improvements concerning a certain
software product (cp. [4, 6]). During the development of these
methods and tools as well as in three usability tests and two case
studies (one short-term and one long-term) including over 50
participants in total, we got valuable insights regarding successful
forms of remote user participation as well as drivers for the
integration of user feedback into software development. In the
following, we summarize some key issues and design concerns
that need to be taken into account when involving distributed
users in software development.

2. DIMENSIONS FOR REMOTE
PARTICIPATION
Several important issues and conceptual aspects regarding the
integration of distributed users to improve software systems, such
as the reporting of bugs or remote usability evaluations, are
discussed in related work (e.g., [5, 1, 2]). On a general level, we
identified three dimensions that appeared to be central when it
comes to the implementation of computer-mediated user
participation in software development: degree of autonomy,
number of users, and level of collaboration.
The degree of autonomy can be divided in the two opposite
approaches of autonomous and event-driven participation.
Autonomous participation means that the user decides on his own
when to participate. A typical scenario would be that the user
expresses requirements whenever they appear in his daily use of a
software system. Event-driven participation forms, in contrast,
explicitly invite users to participate in certain situations or at
particular points in time. Our favorite solution is a combined
approach that regularly reminds the users that they can influence
the system design and inspires participation by providing certain
topic frames and at the same time allowing them to contribute at
any time, independently of the particular development status.
Especially the last aspect seems to be crucial, since we
experienced that test users very much liked the possibility of
being able to express requirements immediately whenever they
occur while interacting with the system.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

In addition, the optimal form of participation support relies
largely on the number of users that are expected to be actively

I-USED’08, September 24, 2008, Pisa, Italy

involved in the development. The higher the number of
participants, the more important are mechanism that guarantee
systematic and structured elicitation and analysis that can handle
large amounts of requirements. For instance, within the tool
OpenProposal [6], we made promising experiences with the
digital annotation of user interfaces that are automatically saved
as screenshots and send to the developers. In cases where large
numbers of users participate, automatic utilization of user
annotations proofed to be useful as in the tool Softfox [4] that
supports direct linking of user input to the application structure or
underlying system models, in particular if a model-driven
development [7] approach is being used.
A third design dimension concerns the level of collaboration, both
among users and between users and developers. A central
question is whether users provide requirements individually and
independently or if the requirements are collaboratively deve-
loped and improved. Within our research, we came to the result
that sophisticated solutions should collect the user at the point he
is willing to participate. For instance, a web platform can provide
collaboration support such as commenting, discussion, or
cooperative editing features as well as possibilities to rate, vote,
and link requirements. Embedded participation channels can be
moreover provided for those users who are willing to participate
but are not willing to deal with the collaboration platform.
However, some kind of awareness regarding already existing
requirements should be given in any case – this reduces the effort
for the user as he does not need to formulate a requirement a
second time that has already been expressed. Furthermore, the
amount of redundant requirements is reduced leading to lower
effort in analyzing the requirements.

3. FURTHER ASPECTS
Next to these basic design dimensions, we identified several
aspects that we regard as highly valuable for successful imple-
mentation of remote user participation in software development.
In the following, we summarize further key issues that can help to
lower the participation barrier and to better link user feedback
with the software product.

3.1 Reducing the Participation Barrier
Integration into the user’s environment: The participation
interfaces should at best be directly embedded into the user’s
system environment to establish an affordance always reminding
the user that involvement and thus system improvement is
possible. For instance, some kind of ‘participate’-button can be
constantly visible on the desktop or can be integrated into the
interface of the web browser or application of interest.

Lightweight Participation: It should be possible for the user to
participate whenever an idea for improvement comes to his mind,
resulting in only a marginal interruption of his actual activity or
workflow. At best, the user should decide what and how much
information he wants to provide. The initial input should be based
on a lightweight and informal process that can later be refined and
elaborated.

Simplicity and Assistance: All interactions with the user
interface should be as simple and self-explaining as possible in
order to encourage users getting involved. The interface should
not require to login each time the users express a requirement;
appropriate interaction support, such as automatic form filling or

system suggestions, should moreover be provided. The user
should furthermore not be enforced to provide extensive data or
make classification decisions that are cognitively challenging.
However, too much assistance, such as pre-defined templates or
automatic system proposals, can also have a negative impact on
the creativity of the user.

Transparency: In every situation, it must be clear to the user
what data is captured along with his input. Ideally, the user can
continuously track the progression of his requirements in the
development process. The user’s motivation is heavily based on
the fact that he recognizes how the system is improved as a
consequence of his input, which might lead to a personal benefit.

3.2 Linking User Input to Software Artifacts
Most user requirements refer to specific artifacts of the software
system. We found that both – users and developers – can benefit
from options allowing to implicitly or explicitly link requirements
to parts of the software system.
A key feature of our tools that has been rated as highly valuable
in user tests is the possibility to directly refer to elements of the
graphical user interface while formulating requirements. This is
either realized by digital annotation (in case of OpenProposal) or
by direct selection of web elements (in case of Softfox). The
assumption of this feature is that many software artifacts have a
representation in the user interface, in particular artifacts that end-
users refer to. On the one hand, references to the user interface
ease the requirements formulation for the user as he does not need
to textually describe the interface elements but can directly point
at them. Furthermore, this concretizes and illustrates his ideas for
improvement and can reduce typical problems that often arise
from text-only communication such as misconceptions due to
wrong word choice, incomplete data, or descriptions that are too
elaborate. On the other hand, the application context can provide
valuable assistance in systematically analyzing the user require-
ments; the analyst can, for instance, inspect all requirements at
once that refer to a certain element of the user interface.

4. CONCLUSION AND OUTLOOK
This position paper reported several aspects we experienced as
valuable to foster user participation in distributed settings and
help to integrate feedback in the software development process.
However, we have not discussed in what ways developers have to
rethink and change their habits to make remote user participation
successful. This remains a topic for future work.

5. REFERENCES
[1] Castillo, J.S., Hartson, H.R., Hix, D. 1998. Remote Usability

Evaluation: Can Users Report Their Own Critical Incidents?
In CHI'98 Human Factors in Computing Systems, 253-254.

[2] Draxler, S., Stevens, G. 2006: Getting Out of a Tailorability
Dilemma. In Informatik 2006 – Informatik für Menschen, 1,
LNI P-93, 576-579.

[3] CollaBaWue – research project, funded by the
Landesstiftung Baden-Wuerttemberg Foundation, see
http://www.collabawue.de/

[4] Lohmann, S., Ziegler, J., and Heim, P. 2008. In Engineering
Interactive Systems 2008, LNCS 5247, 221–228, in press.

[5] Nichols, D.M., McKay D., Twidale, M.B. 2003.
Participatory Usability: Supporting Proactive Users. In Proc
of 4th ACM SIGCHI NZ Symposium on Computer-Human
Interaction (CHINZ'03), 63-68.

[6] Rashid, A., Wiesenberger, J., Meder, D., Baumann, J. 2008.
In Proc of the PRIMIUM Subconference at the Multi-
konferenz Wirtschaftsinformatik (MKWI), CEUR-WS 328.

[7] Schmidt, D.C. 2006. Model-Driven Engineering. IEEE
Computer 39(2).

[8] SoftWiki – research project, funded by the German Federal
Ministry of Education and Research (BMBF), see
http://softwiki.de

	1. INTRODUCTION
	2. DIMENSIONS FOR REMOTE PARTICIPATION
	3. FURTHER ASPECTS
	3.1 Reducing the Participation Barrier
	3.2 Linking User Input to Software Artifacts

	4. CONCLUSION AND OUTLOOK
	5. REFERENCES

