
Structural Graph-Based Representations Used
for Finding Hidden Patterns

Ivan Olmos1, Jesus A. González2

1 Universidad Autónoma de Puebla,
Av. San Claudio y 14 Sur, Ciudad Universitaria,

Puebla, México
ivanop rkl@yahoo.com.mx

2 Instituto Nacional de Astrof́ısica, Óptica y Electrónica,
Luis Enrique Erro No. 1, Sta. Maŕıa Tonantzintla, Puebla, México

jagonzalez@inaoep.mx

Abstract. In graph-based data mining (GBDM) tasks, an accurate data
representation is fundamental for finding hidden patterns. However, there
does not exist a standard representation to describe structural data be-
cause of the specific domain characteristics. Then, different graph topolo-
gies could be used as data representation, which is a challenge for GBDM
tools. In this paper we explore a methodology for discovering hidden
patterns in domains where is used a graph based representation. Our
methodology is divided in three phases: first, we propose a formal graph
notation used to symbolizes our graphs; second, we perform the data
mining phase using the SI-COBRA and the SUBDUE tools; finally, we
show how could be interpreted the outputs of these tools. We performed
a set of experiments in two different domains where our methodology
was applied: the web log and the SAT domains. With these examples we
show how it is possible to symbolize our graphs with our notation, and
also perform the GBDM task with the selected tools.

1 Introduction

The main problem in data mining (DM) tasks consists of the extraction of useful
knowledge. This task is performed discovering similarities between objects from
real and theoretical domains [1]. For almost all cases, original data is transformed
into a suitable representation, so that it can be processed. One of the most im-
portant challenges is to preserve its original information because the success in
the DM task depends of this [2]. In order to achieve it, different data represen-
tations have been studied with the aim of finding the the most suitable for each
domain [3, 4]. Unfortunately, each domain has its own data characteristics, so it
is necessary to propose particular representations for each domain.

Graphs are a powerful and flexible knowledge representation used to model
simple and complex structured domains [3]. The representation power and flex-
ibility is the main advantage of why the graph-based representation model has
been adopted by researchers in different areas such as machine learning and DM
[3, 1].

Graph mining is a widespread studied problem, where several works have
been developed, each of them with different objectives. For example, Subdue [3]
and gSpan [2] are algorithms that finds hidden patterns in labeled graphs, but
the first one implements a computationally-constrained beam search with the
aim to reduce the computational cost and the second one explore any possible
pattern with a list-code representation. There are algorithms capable to find
specific patterns in labeled graphs, based on the subgraph isomorphism problem
(SIP), such as SI-COBRA [9]. Some algorithms impose topological restrictions
on the input graphs [5]. There are other graph projects such as Ullman [6], VF2
[7] and Nauty [8] that are not able to work with labeled graphs, because many
of them are oriented only to solve mathematical problems.

On the other hand, in these researchers have been proposed different graph
notations. The most widely used graph notation for graphs is G = (V,E), where
V is a set (not empty) of vertices and E is a set of edges, E ⊆ V × V . However,
this notation is not suitable for DM, because data information is represented
through labels that are attached to the vertices and edges. In works oriented to
GBDM, appears other notations where labels are represented in different ways.
For example, in gSpan a graph is represented by a 4-tuple G = (V, E,L, l),
where L is a set of labels and l is a assigning function of labels. On the other
hand, Bunke and Jiang [14] proposed a similar notation, where G = (V, E, α, β),
but the assigning functions of vertices and edges labels are separated in two
functions, α and β.

Based on the above mentioned, in this work we explored a standard method-
ology that could be applied in data mining tasks. Our methodology is based on
three phases. We first used a flexible notation for representing labeled/unlabeled
graphs, that help us to formalize our graph representations. Second, we proposed
to use data mining tools capable to work with labeled graphs (the SI-COBRA [9]
and the SUBDUE [3] tools) without topological restrictions, which are capable
to discover or search hidden patterns in graphs. And finally, an interpretation
phase, which describes the way in which the algorithms outputs should be in-
terpreted.

With the aim to show the flexibility of our methodology, we performed a
set of experiments in two different domains: the web log and the SAT domains.
The web log domain was used to discover hidden patterns that represents user’s
behavior in a web site. This means that at the beginning of the task we did not
know the structure of the patterns to be found. On the other hand, we were
interested in finding if specific structures exists in SAT instances that represents
solutions of the problem..

The paper has the following structure. Section 2 gives the basic graph no-
tation of our methodology. In section 3 are introducing the graph based data
mining tools used in this work. The graph-based representation proposed for the
web log and the SAT domains are introduced in Section 4. In Conclusion we
discuss obtained results and impact of our work.

2 Graph Notation

As we mentioned before, graphs have been used in several research areas. Dif-
ferent authors define a graph with some variations, according to their require-
ments. Based on ideas of previous works [2, 14], we propose to use a formal
graph notation capable to represent labeled/unlabeled graphs with a 6-tuple
G = (V, E, LV , LE , α, β), where:

– V = {vi|i = 1, . . . , n} is the fi-
nite set of vertices, V 6= ∅, and
n = #vertices in the graph

– E ⊆ V ×V is the finite set of edges,
E ⊆ {e = {vi, vj}|vi, vj ∈ V, 1 ≤
i, j ≤ n}

– LV is a set of vertex labels
– LE is a set of edge labels
– α : V → LV is a function assigning

labels to the vertices
– β : E → LE is a function assigning

labels to the edges

It is important to stress that this graph notation is very flexible, because it
is possible to represent any graph topology with only three simple steps:

1. The indexing phase, where is associated an unique key or identification to
any vertex and edge belonging to the graph. This step is performed with an
arbitrary enumeration, represented by a numerical subscript associated to
each vertex and edge.

2. Establish the set of vertices and edges labels, represented by LV and LE .
These sets could be defined by extension or generalization.

3. Define the labels functions. In this step, we establish an association between
elements of the graphs (vertices and edges) with their respective labels. This
association is represented by the functions α and β for vertices and edges
respectability.

Note that indices attached in the indexing phase must not be used as identifier
because they do not represent data information, despite these values are unique
for each vertex and edge.

Before to introducing examples were we used this notation, we present some
important graph topologies. There exist four well known graph-topologies used
for data representations: chain (Fig. 1.a), wheel or ring (Fig. 1.b), tree (Fig. 1.c)
and star (Fig. 1.d). Based on these topologies, it is possible to construct new
hybrid topologies, such as a backbone (Fig. 2.a), a backbone-tree (Fig. 2.b), a
wheel-star (Fig. 2.c), a semi-wheel star with trees (Fig. 2.d), a wheel-star with
trees (Fig. 2.e), and a fully connected graph (Fig. 2.f).

Based on these topologies, we introduce some examples where is used our
notation. For the sake of simplicity, we assume that the input data come from
of the most common data structure: a table, see Fig. 3.

First, we define what a table is. Let A = {A1, . . . , Am} be a set of ”m”
attributes (an attribute is a descriptive property or characteristic of an object),
where the domain of Ax ∈ A is denoted by D(Ax). A table <, defined over
A is a set of rows called registers ℘ where < = {℘ : ℘ =< l1, . . . , lm >}, and
∀li : li ∈ D(Ai), 0 < i ≤ m. We consider that all registers ℘ ∈ < are indexed

a) b) c) d)

Fig. 1. Four Basic Graph Topologies: a) Chain, b) Wheel or Ring, c) Tree, and d) Star

a) c) d) e)b) f)

Fig. 2. Different Hybrid Topologies: a) Backbone, b) Backbone-tree, c) Wheel - Star,
d) Semi-Wheel-Star with Trees, e) Wheel-Star with Trees, and f) Fully Connected
Graph

with a numerical value x, represented by ℘x, with the aim to uniquely identify
any register of the relation.

OUTLOOK TEMP HUMIDITY WINDY PLAY

sunny hot high FALSE no

sunny hot high TRUE no

overcast hot high FALSE yes

rainy mild high FALSE yes

rainy cool normal FALSE yes

rainy cool normal TRUE no

overcast cool normal TRUE yes

Fig. 3. Example of a Relational Data Table for the Enjoy Sport Domain.

Example 1: Chain topology. Consider the table < = {℘1, . . . , ℘7} of Fig.
3, where A = {Outlook, Temperature, Humidity, Windy, Play} and D(Outlook) =
{sunny, overcast, rainy}, D(Temperature) = {hot,mild, cool}, D(Humidity) =
{TRUE, FALSE}, and D(Play) = {no, yes}. If we would like to represent
each ℘x ∈ < with a chain topology (℘x =< lx,1, . . . , lx,m >, lx,j ∈ D(Aj),
1 ≤ j ≤ m), then we generate a set G = {G1, . . . , G7}, where ∀℘x ∈ < : ℘x is
represented by Gx. As an example, the first register ”sunny, hot, high, FALSE,
no” is represented by G1 = (V1, E1, LV1 , LE1 , α1, β1) such as is shown in Fig.
4 a), where vertices and edges are indexing from left to right (this indexing
could be performed in a different way). Then, V1 = {vj |j = 0, . . . , 5} and
E1 = {e = {vj , vj+1} : 0 ≤ j ≤ 4}.

Â
instance

instance

instance in
st

an
ce

in
stan

ce

instance

in
st

an
ce

attributes

O
U

T
L

O
O

K

TEM
P

HUMIDITY

W
IN

D
YP

L
A

Y

sunny

hot

high

false

no

sunny hotnext highnext false no
next next

v1 v2 v3 v4 v5

e1 e2 e3 e4

sunny hotTEMP highHUMIDITY

sunny hotTEMP highHUMIDITY

overcast coolTEMP
normal

HUMIDITY

Â OUTLOOK

OUTLOOK

OUTLOOK

a) b)

c)

Fig. 4. Example of a Reduction from a Table: a) Chain Topology; b)Star Topology; c)
Hybrid Representation.

After that, LV1 and LE1 are defined. In our case, LV1 = {sunny, hot, high, FALSE, no},
whereas LE1 = {next} (but it is possible to select any other label). Finally, we es-
tablish the association between vertices / edges and their labels such as is shown
in Fig. 4 a). Then, α1 = {α1(v1) = sunny, α1(v2) = hot, α1(v3) = high, α1(v4) =
FALSE, α1(v5) = no} and β1 =: E1 → LE1 , where β1(vj , vj+1) = Aj+1, 0 ≤
j < m.

Example 2: Star topology An alternative way for representing < is through
a graph with a star topology (Fig. 1 d. shows the basic geometric form of a star).
Consider that we would like to represent our graph such as is shown in Fig. 4 b).
The idea consists of representing with a central node the name of the relation,
and its registers with branches based on chains. Evidently, the formal notation
of each branch is easy to build based on idea of Example 1. Therefore, the full
graph is building with the union of the chains plus the central node with its re-
spective edges. Formally, let < be a relation with n registers and m attributes A
= {A1, . . . , Am}. Let Gx = (Vx, Ex, LVx , LEx , αx, βx) be a graph representation
for the x− th register ℘x ∈ <, where:

– Vx = {vj |j = 1, . . . ,m}
– Ex = {e = {vj , vj+1} : 1 ≤ j ≤

m− 1}
– LVx = D(A1) ∪ · · · ∪D(Am)
– LEx = {A1, . . . , Am}

– αx : Vx → LVx , where αx(vj) =
lx,j , 1 ≤ j ≤ m

– βx : Ex → LEx , where
βx(vj , vj+1) = Aj+1, 1 ≤ j < m

Let Gset = {G1, . . . , Gn} be a set of graphs, where Gx ∈ Gset is the graph-
based representation of ℘x ∈ <. A graph-based star representation of < is a
graph G = (V, E, LV , LE , α, β), where:

– V = {v0} ∪
⋃

x:Gx∈Gset
Vx

– E =
⋃

x:Gx∈Gset
Ex ∪ {ei : 0 < i ≤ n}, where ei = {v0, v

i
1}, vi

1 is the vertex
v1 of Gi, Gi ∈ Gset.

– LV = D(A1) ∪ · · · ∪D(Am) ∪ {<}
– LE = {A1, . . . , Am}
– α =

⋃
x:Gx∈Gset

αx ∪ {α(v0) = <}
– β =

⋃
x:Gx∈Gset

βx ∪ {β({v0, u}) = A1, α(v0) = <, u ∈ V, u 6= v0}
Example 3: Hybrid Star Topology Based on Example 2, it is possible

to derive a new and more complex structure, where each branch is also a star,
which represents registers with their respective attributes. This idea is shown in
Fig. 4 c), where the first register of Fig. 3 is represented. Based on this idea, the
formal representation of this topology is defined as follows. Let < be a relation
with n registers and m attributes A = {A1, . . . , Am}, where each register ℘x ∈ <
(1 ≤ x ≤ n) is represented by ℘x =< l(x,1), . . . , l(x,m) >. A graph-based hybrid
star representation of < is a graph G = (V, E, LV , LE , α, β), where:

– V = VInst ∪ VAttrib ∪ {v<}, where VInst = {v(i,j) : 1 ≤ i ≤ n, 1 ≤ j ≤ m},
VAttrib = {v1, . . . , vn}

– E = E1 ∪ · · · ∪ En ∪ E′, where:
• ∀Ei ∈ E, 1 ≤ i ≤ n : Ei = {{vi, v(i,j)} : v(i,j) ∈ VInst, vi ∈ VAttrib, 1 ≤

j ≤ m}
• E′ = {{v<, vi} : v< ∈ V, vi ∈ VAttrib, 1 ≤ i ≤ n}

– LV = D(A1) ∪ · · · ∪D(Am) ∪ {<, attributes}
– LE = {A1, . . . , Am} ∪ {instance}
– α : V → LV , where:

• α(v(i,j)) = l(i,j) if v(i,j) ∈ VInst, 1 ≤ i ≤ n, 1 ≤ j ≤ m
• α(vi) = attributes if vi ∈ VAttrib, 1 ≤ i ≤ n
• α(v<) = <

– β : E → LE , where:
• β({vi, v(i,j)}) = Aj , 1 ≤ i ≤ n, 1 ≤ j ≤ m, vi ∈ VAttrib, v(i,j) ∈ VInst

• β({v<, vi}) = instance, v< ∈ V, vi ∈ VAttrib

With these examples, we illustrated the flexibility of the proposed notation
for representing different graph topologies in a formal way. In areas such as
GBDM this notation could be used to characterize patterns in a formal way.

Based on our notation, the next step in our methodology is the GBDM phase.
Since we are considering graphs without topological restrictions, then we used
the SI-COBRA and the SUBDUE data mining tools that support this type of
graphs. A brief description of these algorithms is introduced in Section 3.

3 Two Algorithms to Work with Labeled Graphs

In this section we introduce two algorithms to work with labeled graphs and
solve the SI and the GBDM problems. The first one is the SI-COBRA algo-
rithm [9] that we use to solve the subgraph isomorphism problem with directed-
undirected, labeled-unlabeled graphs. This algorithm is useful for problems where

it is necessary to test if there exists a substructure in a set of data (represented
by graph G) with an equal topology with respect to a specific structure to search
for (represented by graph G′). The second one is the SUBDUE algorithm [3],
which is capable to find common structures in a set of input graphs. Subdue is
able to work with directed-undirected, labeled-unlabeled graphs. This algorithm
is useful in tasks where we work with structural domains and it is necessary to
perform a data mining process using a graph based representation.

3.1 The SI-COBRA Algorithm

The SI-COBRA algorithm [9] finds the instances of a graph G′ in a graph G,
where a linear sequence of codes is used to represent the graphs. This algorithm
starts by building a graph model of G′, represented by a linear sequences of codes,
called DFC ′. The DFC ′ model is a sorted sequence of codes, where the degree
of the vertices, the numbers of instances of each label and the lexicographic order
based on LV EV .

Based on DFC ′ (the model of G′), the matching process tries to build a
linear sequence DFC of G, using a step by step expansion without candidate’s
generation based on backtracking, punning phases and a width-depth search. The
size of DFC must be the same of DFC ′ and the corresponding codes entries
must also be identical. If DFC could be generated, then a subgraph isomorphic
to G′ is found. This idea is shown in Fig. 5. This algorithm is complete, and it
is possible to find all the instances of a graph G′ in a graph G, just by leaving
the algorithm run over all the possibilities.

A B
a a

C

C

aa

1 2 3

4 A B
a a

C

C

aa

5 6 3

4

B

a

2
a

C

1

C
a

7

A

a

8

a

aa

(2,1,L (1),F)VAV

(1,4,L (2),F)VAV

(4,2,L (3),B)VAV

(2,3,L (3),F)VAV

(2,5,L (1))VAV (2,8,L (1))VAV

(5,4,L (2))VAV (8,1,L (2))VAV (8,7,L (2))VAV

(1,2,L (3))VAV (7,2,L (3))VAV

(6,5,L (1))VAV

(5,4,L (2))VAV

(4,6,L (3))VAV

(6,3,L (3))VAV (6,1,L (3))VAV

G’
Gi

DFC’

DFC

Fig. 5. Example of a Width-Depth Search using LV EV Codes

In this section, we showed a brief description of the SI-COBRA algorithm. In
section 3.2 we present a description of the SUBDUE algorithm, which is capable
to solve the GBDM problem.

3.2 The SUBDUE Algorithm

Subdue [3] is a Data Mining tool that achieves the mining task using a model
evaluation method called ”Minimum Encoding” that is a technique derived from
the minimum description length principle [10] and chooses as best substructures

those that minimize the description length metric that is the length in number
of bits of the graph representation. The number of bits is calculated based on
the size of the adjacency matrix representation of the graph. According to this,
the best substructure is the one that minimizes I(S) + I(G|S), where I(S) is the
number of bits required to describe substructure S, and I(G|S) is the number of
bits required to describe graph G after being compressed by substructure S.

The main discovery algorithm is a computationally constrained beam search.
The algorithm begins with the substructures matching a single vertex in the
graph. These substructures are then expanded by a vertex and an edge or by
an edge in all the possible ways according to the input graph and this process
is repeated with the generated substructures. The algorithm searches for the
best substructure until all possible substructures have been considered or the
total amount of computation exceeds a given limit. The best substructure found
by Subdue is used to compress the input graph, which can then be input to
another iteration of Subdue. After several iterations, Subdue builds a hierarchical
description of the input data where later substructures are defined in terms of
substructures discovered on previous iterations.

Fig. 6 shows a simple example of Subdue’s operation. Subdue finds four
instances of the triangle-on-square substructure in the geometric figure. The
graph representation used to describe the substructure, as well as part of the
input graph, is shown in the middle.

object

object

triangle

squareon

shape

shape

4 instances of

Vertices: objects or attributes
Edges: relationships

Fig. 6. Subdue’s Example.

4 Graph-Based Representations for Two Real World
Domains

In sections 2 and 3 we introduced a formal graph notation and describe data
mining tools that could be used as part of our methodology for discovering
hidden patterns. In this section we explain with examples how our methodology
is applied to two real world domains.

4.1 Graph-Based Representation for the SAT Problem

The satisfactibility problem, or SAT for short, has been studied in different re-
search areas where it is necessary to find or prove non-contradictory states. The

SAT problem consists of a set of m boolean variables and a set of n clauses
in conjunctive normal form (CFN), where the goal of the problem is to de-
termine whether there exists a true assignment to the variables such that the
formula becomes satisfied. One way to solve instances that come from a SAT
problem consists of transforming the SAT instance into a graph and find a so-
lution through the SIP. Traditionally this process is performed with unlabeled
graphs, where is search for a clique and #vertices = #clauses [13]. However,
this representation is not the best for the SIP because during the search process
combinations that do not represent any possible solutions are explored. With
the aim to reduce this problem, in this work we propose to use labeled graphs.
We start with a brief introduction to the SAT problem and then we describe its
graph based representation.

Let U = {u1, . . . , um} be a set of boolean variables. A clause over U is a set
of literals over U (u and ū are literals if ui is a variable over U), where the literals
are joined by disjunctions. For example, {u1, ū2, u3} is a clause with 3 literals.
A clause C is satisfied by a truth assignment if and only if ∃ux ∈ C : t(ux) = T ,
t : U → {true − T, false − F}. A set of clauses Ĉ = {C1, . . . , Cn} over U is
satisfiable if and only if ∀Cx ∈ Ĉ : ∃u ∈ Cx : t(u) = T , that is, there exists some
truth assignment of U that satisfies all clauses in Ĉ. The problem to find a truth
assignment that satisfies Ĉ over U is known as satisfiability or SAT, for short.

As an example, consider that there exist a set of clauses Ĉ = {C1, C2, C3},
C1 = {a, b̄}, C2 = {c, ā}, C3 = {b, c}. Clearly, solutions of this examples are
{a, c}, {a, c, b}, {b̄, c} and {b̄, ā, c}. In these solutions we can see that they have
1, 2 or 3 literals. However, any SAT solution always include a literal per each
clause. For example, the solution {a, c} means that the literal c appears in C2

and C3. Therefore, every SAT solution with n clauses has n literals.
Because of this, it is possible to represent Ĉ with a graph Ĝ, where each

literal is represented by a vertex in the graph, all vertices that come from the
same clause have an unique label, and there exists an edge between each pair
of vertices if they come from different clauses and the corresponding literals
(associated to the vertices) are not the same or if they are the same, then both
of them are negated or non-negated (restriction 1). Based on this idea, clauses
Ĉ = {C1, C2, C3} of our example are represented by the graph of Fig. 7 a), where
each possible solution is represented by a clique. As an example, the solution
{a, c} is represented by v1, v3 and v6, which are liked by edges {v1, v3}, {v3, v6}
and {v6, v1}. Then, it is possible to represent a SAT problem with two graphs Ĝ
and G′, where Ĝ represents the clauses of the SAT problem, and G′ the structure
of any valid solution. This idea is shown in Fig. 7 b) and c).

This idea could be generalized for any k-SAT problem. Let (U, Ĉ) be an
instance of k-SAT. If Ĉ over U is satisfiable, this means that ∃ux ∈ C : t(ux) = T ,
∀Cx ∈ Ĉ. That is, ∀Cx, Cy ∈ Ĉ, if u ∈ Cx and w ∈ Cy, are literals solutions of
Ĉ, then t(u) = t(w) = T . Considering the above mentioned, we define a graph
representation of Ĉ as follows.

Let Ĉ = {C1, . . . , Cn} be a set of clauses over U = {u1, . . . , um}. A graph-
based representation of Ĉ is a graph Ĝ = (V,E, LV , LE , α, β) where:

a b

c

b

c

a

v v

v

vv

v

1 2

3

45

6

1 1

3

3

2

2

v v

v

vv

v

1 2

3

45

6

1

3 2

G’ G
C1

C2C3

a)
b) c)

v1

v2
v

3

Fig. 7. Example of a Reduction from a 2-SAT Instance to a SI Instance.

– V =
⋃

x:Cx∈Ĉ

Vx, where Vx = {vi : f(x, u) = vi, ∀u ∈ Cx}, i = 1, . . . , k,

k = 2 for 2-SAT, k = 3 for 3-SAT and so on. f(x, u) is a function where
x represents the index of Cx and u is a literal in Cx. f maps each pair of
inputs to a vertex vi

– E = {{vi, vj} : vi, vj ∈ V and
a) if vi ∈ Vx, then vj /∈ Vx

b) if f(x,w) = vi and f(y, u) = vj , then u 6= w̄}
– LV = {1, 2, 3, . . . , n}, |LE | = 1
– α : V → LV , where: α(vi) = x if f(x, u) = vi

– β : E → LE

Note that each literal in each clause Cx ∈ Ĉ is mapped to one vertex in Ĝ.
Also, each clause Cx derives a set of vertices Vx, where each vertex v ∈ Vx has
the label x and V comes from the union of the sets Vx. On the other hand, E is
built based on restriction 1.

Now, we show how a SAT-problem can be reduced to an instance (G′, G) of
the SI-problem. First, we define the graph G = Ĝ and G′ = (V ′, E′, L′V , L′E , α′, β′),
where: V ′ = {v′i : i = 1, . . . , n} (n is the number of clauses), E′ = {{v′i, v′j} :
i 6= j}, L′V = LV , L′E = LE , α′ : V ′ → L′V where α(vi) = i and β′ : E′ → L′E .
Note that G′ is a fully connected graph with n vertices, because we need to find
a subgraph where there might exist an edge between each pair of vertices and a
vertex represents one literal for each clause. Therefore, G′ represents a possible
solution of (U, Ĉ). Then, we build an instance (G′, G) of the SI-Problem where
we want to decide if ∃S : S subgraph of G and S isomorphic of G′. If (G′, G) is
a yes-instance of the SI-Problem, then S satisfies Ĉ through the literals repre-
sented by the vertices in G′. So, Ĉ is satisfiable and the SAT-instance (U, Ĉ) is
also a yes-instance.

Since we need to solve the SIP on labeled graphs, we propose to use the
SI-COBRA algorithm. The first step is to represent the instance (G′, G) with
a text file where some lines represent vertices (the syntax of these lines is ”v
id label”, where ”id” is the index value and ”label” is its label) and others
represents edges (the syntax is ”e v1 v2 label”, where ”v1” and ”v2” are the
vertices that define the edge and ”label” is its label). For example, clauses of
Fig. 7 are represented in the SI-COBRA input format as in shown in Fig. 8.
Note that all edge’s labels are represented with ”1” but could be selected any

other value. After running SI-COBRA, we found four different subgraphs that
are isomorphic to G′, which are shown in Fig. 8 b). The interpretation of these
results is easy: consider ”Graph 1” of Fig. 8 b). Since we know that f(1, a) =
v1, f(1, b̄) = v2, f(2, c) = v3, f(2, ā) = v4, f(3, b) = v5 and f(3, c) = v6 (see the
example of Fig. 7), then we conclude that v1 is associated to literal a, v3 with c
and v5 with b. Then, we conclude that Ĉ is satisfiable with literals a, b and c.

v 1 1
v 2 2
v 3 3
e 1 2 1
e 2 3 1
e 3 1 1

v 1 1
v 2 1
v 3 2
v 4 2
v 5 3
v 6 3

e 1 3 1
e 1 5 1
e 1 6 1
e 2 3 1
e 2 4 1
e 2 6 1
e 3 5 1
e 3 6 1
e 4 6 1
e 4 6 1

G’ G RESULTS
Graph 1:
vertices (G’) <--> vertices(G)
{v1, v2} <--> {v1,v3}
{v2, v3} <--> {v3,v5}
{v3, v1} <--> {v5,v1}
Graph 2:
vertices (G’) <--> vertices(G)
{v1, v2} <--> {v1,v3}
{v2, v3} <--> {v3,v6}
{v3, v1} <--> {v6,v1}

Graph 3:
vertices (G’) <--> vertices(G)
{v1, v2} <--> {v2,v3}
{v2, v3} <--> {v3,v6}
{v3, v1} <--> {v6,v2}
Graph 4:
vertices (G’) <--> vertices(G)
{v1, v2} <--> {v2,v4}
{v2, v3} <--> {v4,v6}
{v3, v1} <--> {v6,v2}

a) b)

Fig. 8. Example of an Input and Output of the SI-COBRA Algorithm based on 7.

4.2 Web-Log Domain

Web sites design and administration is becoming a complex task as a consequence
of the large amount of data that is kept in them [11]. An accurate design considers
the users access to the web site, with the aim to improve the user satisfaction at
web site navigation time. This information is available in the web sites servers
because all received visitors are recorded in the web access log [11]. This file
contains information divided in a set of entries, where each entry has the fields: IP
(remote host name IP), login (remote login name), request (request line exactly
as it came from the client) and others. Fig. 9 shows three lines of a web log file.

Fig. 9. Three Lines of a Web Log File.

The first step for transforming a web log L into a graph-based representation
is to remove useless data from the web log file. This phase is called data clean-
ing, and commonly entries that represent images, audio files, scripts, system
messages, and filed requests are removed [12].

The second step consist of designing the way in which a web log could be rep-
resented through graphs. In this step is take into account the patterns to search

for. For example, if we need to find the most visited resources in the web site,
then the most important files to use are the host ”IP” address and the ”Request”
fields. With the aim to identify those resources, first we establish a possible visit
pattern. One of the most common is to know the sequence of resources visited
of the site. For this problem, we propose two graph representations: chains and
stars. If we used a chain topology, each vertex could symbolizes full or partial
paths. For the sake of simplicity, consider that each vertex represents a full access
path and all of them are linked by edges (labeled with ”follows”) in a sequence.
This idea is shown in Fig. 10 a). Based on our methodology, we can formalize this
representation as follows: let L = {L1, . . . , Ls} be the set of entries from a web
log file grouped by their IP’s, where ∀Lx ∈ L : Lx = {lj : j ≤ #entries in L with
the same IP}, lj =< ui, tj , rsx, [...] >. A graph-based sequential representation
of Lx ∈ L is a graph Gx = (Vx, Ex, LVx

, LEx
, αx, βx), where:

– Vx = {vi : i = 1, . . . , |Lx|}
– Ex = {{vi, vi+1} : i = 1, . . . , |Lx| −

1}
– LVx = {rsj : rsj is defined in

lj ∈ Lx}

– LEx
= {follows}

– αx : Vx → LVx , where α(vi) = rsj

if rsj is defined in li ∈ Lx

– βx : Ex → LEx , where
∀{vi, vi+1} ∈ Ex : β({vi, vi+1}) =follows

rs1

follows follows follows
rs2 rss

~jaime
follows

subpage subpage

start

link link

start

~jaime

imagenes

neutrall.jpg

archivos_too

UML

tarea3.pdf

UML_tutoriales.html

L1 L2

r [1]
1

follows follows follows

r [2]
1

r [1]
n

su
b

p
a

g
e

su
b

p
a

g
e

su
b

p
a

g
e

r [1]
2

r [2]
2

r [2]
n

start

link link link

b) c)

a)

subpage subpage

subpage

subpage

~jaime

archivos_too

UML

tarea3.pdf

subpage

subpage

subpage

Fig. 10. Representations for a Web Log File.

This representation is oriented to find continuous access sequences but it does
not alternate resources. In order to overcome this problem, we propose an alter-
native representation where the access path rs is decomposed in its hierarchical
levels creating sequences rs = < rs[1], rs[2], . . . , rs[m] >, where m is the depth of
the path. As an example, resource rs = ”/ jaime/archivos too/UML/UML tutoriales.html”
is decomposed into rs =< rs[1] = ” jaime”, rs[2] = ”archivos too”, rs[3] =
”UML”, rs[4] = ”UML tutoriales.html” >. Moreover, all path resources are

linked by a central node called ”start”, hence it is possible to find accessed re-
sources in a non-sequential way. This idea is shown in Fig. 10 b). As an example,
L1 of Fig. 10 c) represents the first two lines of Fig. 9, because they have the
same IP and L2 represents the third line.

Formally, this representation is divided in two parts: the graph representa-
tion of a path resource divided in its levels, Representation 1, and the graph
representation of a web log (similar to the Example 3), Representation 2.

Representation 1 of a Web log Let rsx = \path1\path1\ . . . \pathm be
a resource represented by its WWW address path with m levels of depth that
come from an entry lk =< ui, tj , rsx, [...] > from a web log file. A graph-based
representation of rsx is a graph Gx = (Vx, Ex, LVx

, LEx
, αx, βx) where:

– Vx = {vi : i = 1, . . . , m}
– Ex = {{vi, vi+1} : i = 1, . . . ,m−1}
– LVx = {pathi : i = 1, . . . , w},

where w ≤ m
– LEx

= {subpage}

– αx : Vx → LVx
, where αx(vi) =

pathi, i = 1, . . . , m
– βx : Ex → LEx , where
∀{vi, vi+1} ∈ Ex : β({vi, vi+1}) =
follows, i = 1, . . . , m− 1

Representation 2 of a Web log Let L = {L1, . . . , Ls} be a set of entries
grouped by their IP’s from a web log file, where ∀Lk ∈ L : Lk = {lk,j =<
ui, tj , rsx, [...] >, j ≤ w} (w = #entries in L with the same IP). Let Gk,j =
(Vk,j , Ek,j , LVk,j

, LEk,j
, αk,j , βk,j) be the graph-based representation of resource

rsx recorded in lk,j ∈ Lk, where its set of vertices is Vk,j = {vk,j
1 , . . . , vk,j

n }. A
graph-based hierarchical representation of Lk is a graph Gk = (Vk, Ek, LVk

, LEk
, αk, βk),

where:

– Vk =
⋃

i=1,...,w Vk,i ∪ {v0}
– Ek =

⋃
i=1,...,w Ek,i ∪ {{v0, v

k,i
1 } : i = 1, . . . , w} ∪ {{vk,i

1 , vk,i+1
1 } : i =

1, . . . , w − 1}
– LVk

=
⋃

i=1,...,t LVk,i
∪ {start}

– LEk
= {subpage, link, follows}

– αk : Vk → LVk
, where αk =

⋃
i=1,...,w αk,i ∪ {αk(v0) = start}

– βk : Ek → LEk
, where

⋃
i=1,...,w βk,i ∪ {βk({vk,i

1 , vk,i+1
1 }) = follows, i =

1, . . . , w − 1} ∪ {βk({v0, v
k,i
1 }) = link, i = 1, . . . , w}

The next step in our methodology consist of finding the hidden patterns.
With the aim to show this, we worked with a web log that come from of the
computer science department at the INAOE web site. We used 11 different web
log files with 25,000 to 300,000 records each one. In this problem we used the
SUBDUE system as data mining tool, because we did not known any possible
patterns a priori. The SUBDUE system reports the discovered patterns divided
in iterations, where each pattern is reported based on the vertices and edges
indices used in the input graphs, and the number of instances per each pattern
is reported too. In the first iteration are discovered patterns based on the original
input graphs, but in the next iterations the original input graphs are compressed
[3].

We performed a set of experiments looking for the most visited pages. Some
of these results are shown in Fig. 11. We found patterns with a variable length.
As an example, in Fig. 11 a) represents a pattern with 6 vertices. Moreover,
SUBDUE reports that this pattern appear 48 times. Based on this result, we
conclude that these users first visited page ”/univ/” and then visited pages
”/univ/logo.html”, ”/univ/blanco.html” and so on. It is evident that this result
is easy to understand. Therefore, this representation is suitable to find sequential
patterns describing the path followed by users throughout the web site.

/univ//univ//univ/logo.html

/univ/blanco.html

/univ/titintro.html

/univ/indice.html

/univ/introduccion.html

follows

follows

follows

follows
follows virtual

Tutorjava2

swing

subpage

subpage

/univ//univ/

/univ//univ/

/univ//univ/

follows

follows

/titintro.thml

/indice.thml

/Introduccion.thml
subpage

subpage

subpage

a) b) c)

Fig. 11. Discovered Substructures in a Web Log File based on a Chain Topology.

However, if our interest is to find more complex access patterns including
jumps between pages (as an example, a user could visit a web page from another
page located in the same server using a hyperlink, but the new page might not
keep the same path of the previous one), we use Representation 2. As an example,
with this representation we found the graphs shown in Fig. 11 b) and c). Note
that some edges are labeled as ”follows” and others with the ”subpage” label.
This means that vertices linked with a ”follows” edge have a higher hierarchy
(these pages represent a home page) than vertices linked with a ”subpage” edge
(these pages do not represent a home page).

With these simple examples, we showed how our methodology help us to find
hidden patterns in graphs. Moreover, we propose a notation that could be used
to formalize graph-based representations without topological restrictions.

4.3 Conclusions

In this work we explored a GBDM methodology that could be used in many
problems where it is not possible to use specialized tools with specific graph
topologies. In our methodology we proposed to use a standard graph notation
(useful for representing labeled graphs) and the SI-COBRA and the SUBDUE
systems as data mining tools. Finally, we showed some examples where a graph-
based representation is used in two domains: web log and SAT.

In this work we presented two different graph-based representations for the
web log domain, with the aim to discover those most visited resources. In our
experiments we found that the SUBDUE algorithm and our proposed represen-
tations were an accurate combination to find the most visited resources of the
site, where the highest visit frequency was 120.

For the SAT problem, we proposed a transformation process that help us to
find solutions of SAT instances based on the subgraph isomorphism problem,
where labeled graphs and the SI-COBRA algorithm were used. In our results
we can see that any valid solution is reported by the SI-COBRA algorithm. In
future works, we will prove the correctness of this approach.

Finally, we want to stress the importance of selecting accurate tools for
searching of finding patterns. In this sense and based on our experience, the
SI-COBRA and SUBUDE systems are powerful tools for labeled graphs, which
could be used in data mining task where a graph-based representation is suitable
for our data.

References

1. Kuramochi, M.; Karypis, G. An Efficient Algorithm for discovering Frequent Sub-
graphs. Tech. Report. Dept. of Computing Science, University of Minnesota. June
(2002).

2. Xifeng, Y. Jiawei H. gSpan: Graph - Based Substructure Pattern Mining. Technical
Report. University of Illinois. (2002).

3. Cook, D. J.; Holder, L. B. Substructure discovery using minimum description length
and background knowledge. Journal of Artificial Intelligence Research, 1:231-255,
1994.

4. Inokuchi, A and Washio, T Motoda. Complete Mining of Frequent Pattern from
Graphs: Mining Graph Data. Machine Learning, Kluwer Academic Publishers. 321-
354 (2003).

5. E. Luks. Isomoprhism of Bounded Valence can be tested in Polynomial Time.
Journal of Computer and System Sciences 25 (1982) 42 65.

6. Ullman, J. R. An Algorithm for subgraph Isomorphism. Journal of the Association
for Computing Machinery, Vol. 23, Issue 1, 31-42, 1976

7. L. P. Cordella; et. al. An improved algorithm for matching large graphs. Proceed-
ings of the 3rd IAPR-TC15 Workshop on Graph-Based Representations in Pattern
Recognition.

8. D. M. Brendan. Practical graph isomorphism. Congressus Numerantium, 30:45/87.

9. Olmos, Ivan. Gonzalez, Jesus A., Osorio, Mauricio. Subgraph Isomorphism Detec-
tion using a Code Based Representation. Proceedings of the 18th International
FLAIRS Conference, 2005.

10. Rissanen, J. Stochastic Complexity in Statistical Inquiry. World Scientific Publish-
ing Company (1989).

11. Nanopoulos, A. Katsaros,; Manolopoulos, D. Y. Effective Prediction of Web-user
Accesses: A Data Mining Approach. Proceeding WEBKDD Workshop, San Fran-
sisco, CA. (2001).

12. Tanasa, D. and Trousse, B. Advanced Data Preprocessing for Intersites Web Usage
Mining. IEEE Intelligent Systems. Vol. 19, Issue 2 (2004) 59 - 65.

13. Garey, M.R.; Johnson, D.S. and Stockmeyer, L. Some Simplified NP-complete prob-
lems. Annual ACM Symposium on Theory of Computing. Proceedings of the sixth
annual ACM symposium on Theory of computing. Pp. 47-63, 1974.

14. Bunke, H and Jiang, X. Graph Matching and Similarity. Teodorescu, H.-N.,
Mlynek, D., Kandel, A., Zimmermann, H.-J. (eds.): Intelligent Systems and In-
terfaces. Kluwer Academic, 2000.

