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Abstract. This paper studies the implication relations between the
AGM postulates (�7) and (+̇7) under non-classical logics, namely in-
tuitionistic logic, paraconsistent logic, G3 and G3'. In order to do so,
some theorems on the implication relations between such postulates are
drawn for logics with a special set of axioms. These are later used to
deduce similar results under the four logics of interest. Then we discuss
a possible solution for our lack of su�cient conditions for the implication
relations to hold under some of the studied logics.

1 Introduction

On one hand, the well known AGM theory of belief revision breaks the problem
of de�ning belief revision operations into two parts: a set of rationality postulates
and constructions (i.e. a framework for de�ning e�ective methods) for operators
that aim to ful�ll such postulates. This theory also assumes some underlying
logic that includes classical propositional logic and that is compact1.[1]

On the other hand, besides classical logic, there exist the so called non-
classical logics. The motivations for creating and studying them are varied. Ex-
amples of such logics are intuitionistic logic, paraconsistent logic, G3 and G3'.

Here we present the �rst results of a research aimed to help �nding a way
of using the AGM theory of belief revision (if possible) under the non-classical
logics mentioned. The research is focused only on studying the implication re-
lations between the rationality postulates, with the primary objective of �nding
su�cient conditions for these implications to hold under those logics. The two
results are (i) what are su�cient conditions for the AGM postulate for contrac-
tion (�7) to hold if the AGM postulate for revision (+̇7) holds, and (ii) what are
su�cient conditions for the AGM postulate for revision (+̇7) to hold if the AGM
postulate for contraction (�7) holds.

Since the rationality postulates are the foundation of any construction for a
contraction or revision operation [1], the ultimate contribution of this research is
knowledge that facilitates any attempts to create or adapt constructions under
the logics considered.

1 Compact as mentioned in remark 10.



The structure of the paper is as follows. Section 2 recalls some logic no-
tions and basic notations. Section 3 brie�y describes the motivation behind non-
classical logics and introduces the logics studied. Section 4 summarizes the AGM
theory and broadens the motivation for this research. Our contribution is given
in section 5.

We build on the AGM theory of belief revision [1] and works on non-classical
logics [2,3]. The reader may also refer to [4], which is an excellent reference on
this theory of belief revision and played an important role in inspiring this work.
Finally, we borrow most of our background and notations from [5,6,7].

2 Background

This section is intended to remark our de�nition of logic and some relevant
properties on the notions of logical consequence relation and logical consequence
operator implied by such de�nition. The properties will be particularly important
in section 5.

2.1 Formal Propositional Language

In order to talk about a logic, one must �rst have a way of coding propositions.
Thus we de�ne a formal propositional language together with its alphabet :

De�nition 1. [3] The alphabet Σ is the countable set built from: a countable set
of elements called atoms; the binary connectives ∧ (conjunction), ∨ (disjunction)
and → (implication); the unary connective ¬ (negation); and the auxiliary sym-
bols for opening and closing parenthesis.

De�nition 2. [7] The formal propositional language P is the set whose ele-
ments, called formulas, are strings over Σ built recursively using the following
rules:

1. If α is an atom, then α ∈ P.
2. If x, y ∈ P, then (x ∧ y) , (x ∨ y) , (x→ y) ∈ P.
3. If x ∈ P, then ¬x ∈ P.

We will denote atoms with the Greek letters α, β and γ. Similarly, we will
denote formulas with the letters a, x and y. The notation x↔ y will be used to
abbreviate (x→ y) ∧ (y → x).

Auxiliary parenthesis will sometimes be omitted in the writing of formulas.
In those cases the usual precedence for connectives applies: ¬, ∧, ∨, → and ↔
should be processed in that same order.

When dealing with formulas, it will be useful to have a name for any set of
formulas, thus:

De�nition 3. A theory is a subset of P.

We will use each of the symbols R, S and T to represent any theory. Similarly,
T ′ will stand for any �nite theory.



2.2 Logic

One important de�nition to keep in mind is that of logic. In this paper a logic
is considered simply as a formal theory :

De�nition 4. [7] A formal theory or logic F is built from:

1. A countable set SsF of symbols called the symbols of F . Each �nite sequence
of symbols will be called an expression of F .

2. A subset SwffF of the expressions of F called the set of well-formed for-
mulas of F .

3. A subset ΩF of SwffF called the set of axioms of F .

4. A �nite set {X1, X2, . . . , Xn} of n-relations over SwffF
2, called rules

of inference. For each w ∈ CfbfF , if there are f1, . . . , fm ∈ CfbfF and
j ∈ {1, . . . , n} such that ⟨f1, . . . , fm, w⟩ ∈Xj, then w is a direct consequence
of f1, . . . , fm by virtue of Xj.

Moreover, from now on the following assumptions are made for all logics:

1. SsF = Σ

2. SwffF = P

3. The set ΩF is closed under substitution: if a formula x is in ΩF , then any
other formula obtained by replacing all occurrences of an atom α in x with
another formula y is in ΩF too [2].

4. The only rule of inference is modus ponens: the n-relation over P de�ned as:

M.P.
def

= {⟨x, y, z⟩ ∈ P ×P ×P ∣ y = x→ z} .

There are several other ideas related to the concept of logic. Amongst them,
proof and logical consequence are of our immediate interest. The former is the
base for the later, while the later, together with our de�nition of logic, imply
certain relevant properties presented in the next subsection.

De�nition 5. [7] A proof or deduction in a formal theory F for w ∈ SwffF
from Γ ⊆ CfbfF is a �nite sequence f1, . . . , fn, where f1, . . . , fn ∈ CfbfF , that
satis�es the following two conditions:

1. fn = w

2. For each j ∈ {1, . . . , n} one of the following conditions is satis�ed: fj ∈ Γ
or fj ∈ ΩF or fj is a direct consequence of some of the previous well-formed
formulas in the sequence by virtue of some rule of inference of F .

De�nition 6. [6] A w ∈ CfbfF is a logical consequence in the formal theory F
from a Γ ⊆ SwffF if there is a proof in F for w from Γ .

2 I.e. subsets of the Cartesian product of SwffF with itself n times.



2.3 Consequence relations and operations

Another important concept that should be borne in mind is that of a consequence
relation:

De�nition 7. [5] A (logical) consequence relation ⊢F is a binary relation such
that

⊢F
def

= {⟨T, x⟩ ∈ ℘ (P) ×P ∣ x is a logical consequence in F from T}

where F is a logic, ℘ (P) stands for the power set of P and ℘ (P) × P denotes
the Cartesian product of ℘ (P) and P.

Subscripts (as in ⊢F ) may be omitted from now on whenever there is no
confusion about the underlying logic.

The notation T ⊢ x will be used to denote ⟨T, x⟩ ∈⊢. Similarly, T ⊬ x will
be used to denote ⟨T, x⟩ ∉⊢. In the case that T = ∅, we will write ⊢ x to denote
that ∅ ⊢ x, and we will use ⊬ x to denote that ∅ ⊬ x.

There are two kinds of consequence relations that are relevant to this work,
namely:

De�nition 8. [5] A consequence relation is an abstract consequence relation if
it has the following properties:

If x ∈ T , then T ⊢ x .

If S ⊢ x and S ⊆ T , then T ⊢ x .

If T ⊢ x and for every y ∈ T , S ⊢ y, then S ⊢ x .

De�nition 9. [5] A consequence relation is a �nitary consequence relation if
in addition to being abstract it satis�es:

If T ⊢ x, then there is a �nite set T ′ ⊆ T such that T ′ ⊢ x .

Remark 10. The condition introduced in de�nition 9 is usually called compact-
ness.

Proposition 11. [6] All consequence relations assumed in this paper are �ni-
tary consequence relations.

Proof. The proof is straightforward given the de�nition of consequence relation
and the de�nition of logic.

The last two de�nitions are used in proofs in section 5, and so is a certain kind
of consequence operator. This is the motivation for the following two de�nitions:

De�nition 12. [5] A (logical) consequence operator is a function Cn⊢ ∶ ℘ (P)→
℘ (P) such that

Cn⊢ (T )
def

= {x ∣ T ⊢ x} .



The reader should note that whenever a consequence operator Cn⊢ is de�ned
from a consequence relation ⊢F dependent upon a logic F , we will write CnF
instead of Cn⊢F .

Remark 13. [5] By de�nition 12 and set theory, clearly

x ∈ Cn⊢ (T ) if and only if T ⊢ x

therefore both notations will be used interchangeably.

De�nition 14. [5] A consequence operator is an abstract consequence operator
if it has the following properties:

T ⊆ Cn (T ) .

Cn (Cn (T )) = Cn (T ) .

If S ⊆ T , then Cn (S) ⊆ Cn (T ) .

Proposition 15. A consequence operator is abstract if and only if the conse-
quence relation used to de�ne it is abstract.

Proof. Using set theory, it is a simple exercise to show this.

To end this section, we introduce one last de�nition that will prove useful
later:

De�nition 16. A cn-theory is a theory closed under a consequence operator.

The symbol A will be used to denote any cn-theory: i.e. A = Cn (T ), for some
T , possibly A itself.

3 Studied Logics

Classical logic was created as a model for studying the truth of propositions
[2]. Our main interest in this work is in non-classical logics. Such logics arise
from certain modeling needs, for instance: the need of modeling possibility and
necessity, the need for allowing inconsistency or the need for establishing truth
in a constructive manner [7,2]. The second is the case of paraconsistent logic and
G3', while intuitionistic logic and G3 �t into the third category.

In this section we present some logics of interest to this work and a way to
compare them. De�nitions of the logics are borrowed from [3].

De�nition 17. Pos (short for positive logic) is the logic whose set of axioms
ΩPos has the following elements:

α → (β → α) .

(α → (β → γ))→ ((α → β)→ (α → γ)) .



(α → γ)→ ((β → γ)→ (α ∨ β → γ)) .

α ∧ β → α .

α ∧ β → β .

α → (β → (α ∧ β)) .

α → α ∨ β .

β → α ∨ β .

De�nition 18. Cw is the logic whose set of axioms ΩCw has all the elements
of ΩPos plus the following two axioms:

α ∨ ¬α .

¬¬α → α .

De�nition 19. Pac (short for paraconsistent logic) is the logic whose set of
axioms ΩPac has all the elements of ΩCw plus the following axioms:

α → ¬¬α .

((α → β)→ α)→ α .

(¬α ∨ ¬β)↔ ¬ (α ∧ β) .

(¬α ∧ ¬β)↔ ¬ (α ∨ β) .

¬ (α → β)↔ (α ∧ ¬β) .

De�nition 20. Int (short for intuitionistic logic) is the logic whose set of ax-
ioms ΩInt has all the elements of ΩPos plus the following axioms:

¬α → (α → β) .

(α → β)→ ((α → ¬β)→ ¬α) .

De�nition 21. G3 (also known as the logic of here and there) is the logic whose
set of axioms ΩG3 has all the elements of ΩInt plus the following axiom:

(¬β → α)→ (((α → β)→ α)→ α) .

G3' is one last logic that we are interested in. A rigorous de�nition for G3'
is omitted here, but it su�ces to know than its set of axioms ΩG3′ has all the
elements of ΩCw plus another four. Such additional axioms can be found in [3].

Only the last four logics mentioned are of importance in the following sec-
tions. The others just provide insight for comparing those logics, as it will be
made clear shortly. The reader may refer to [2,3,7,8] for further reading.



3.1 Comparing logics

A usual way of comparing logics is by comparing their set of theorems:

De�nition 22. CnF (∅) is the set of theorems of logic F .

De�nition 23. [2] A logic F ′ is stronger than or equal to a logic F if CnF (∅) ⊆
CnF ′ (∅).

In our case, the following lemma is useful:

Lemma 24. Let F and F ′ be each any logic. If ΩF ⊆ ΩF ′ , then F
′ is stronger

than or equal to F .

Proof. This follows from the de�nition of proof (i.e. de�nition 5). A detailed
proof is omitted.

Example 25. Int is stronger than or equal to Pos, while G3 is stronger than or
equal to Int.

4 Taking AGM into Non-classical Logics

By AGM theory of belief revision we mean the theory developed by Alchourron,
Gärdenfors and Makinson in works like [4,9]. It is well known that their work
has been dominant in the �eld of belief revision [10].

The AGM theory assumes a formal propositional language3 as the means for
coding propositions and some underlying logic that includes classical proposi-
tional logic and that is compact. Moreover, the AGM theory encompasses three
di�erent belief change operations over cn-theories: expansion, where a formula
is introduced into a cn-theory together with all the formulas deducible from the
new cn-theory; contraction, that ensures a formula cannot be deduced from a
resulting cn-theory; and revision, which retracts everything in contradiction with
a new formula and subsequently expands the contraction with the new formula.
De�ning the �rst of them is trivial, while the other two have to undergo a more
elaborated process. [1]

The main focus of this theory of belief revision is de�ning revision and con-
traction. This process is split in two main parts: the AGM rationality postulates
(named after the three authors) and constructions (i.e. a framework for de�ning
e�ective methods) for operations that comply with those postulates. The former
is concerned with stating what an appropriate revision or contraction operation
is (i.e. the what); the later is intended to be the scheme of actual implementa-
tions of such operations (i.e. the how). Both parts are then equivalent by means
of what are called representation theorems. [1]

We dare to say that the postulates part is the more important of the two.
If we are to contribute to �nding a way of using this theory under non-classical
logics, the postulates can be used to �nd out if its rationale holds under such

3 For which some details are left open. We assume this language to be P.



logics in the �rst place. This is the reason why we have focused this research on
the rationality postulates only. It must be noted, however, that even if we were
successful, �nding a way for the equivalence of the two main parts of this theory
of belief revision to hold is yet another issue (which we conjecture would require
less e�ort) in the way to reaching the overall goal.

Moreover, the postulates are further divided in postulates for contraction and
postulates for revision, and for each case there is a basic set of postulates and a
supplementary set [1]. The basic set for the contraction postulates is as follows
[4]:

A � x is a cn-theory whenever A is a cn-theory. (�1)

A � x ⊆ A . (�2)

If x ∉ Cn (A) , then A � x = A . (�3)

If x ∉ Cn (∅) , then x ∉ Cn (A � x) . (�4)

If Cn ({x}) = Cn ({y}) , then A � x = A � y . (�5)

A ⊆ Cn ((A � x) ∪ {x}) whenever A is a cn-theory. (�6)

Since only two more postulates will be needed by the forthcoming results, the
supplementary set for contraction and the complete set for revision are omitted
here. Nevertheless, the reader can �nd both sets of postulates in [4].

The theory of belief revision also considers ways of bridging, so to speak, the
postulates for contraction and the postulates of revision. This is done by means
of two identities: the Levi identity and the Harper identity [4]. The former is of
interest to this paper:

A+̇x = Cn ((A � ¬x) ∪ {x}) . (Levi)

In [1] such bridging between AGM postulates for revision and contraction
means that if we were to create a construction for a revision or for a contraction
operation, this would yield a construction for the other. In other words, one
set of postulates is equivalent to the other. This equivalence, however, appears
to be known only in the case of classical logic. Thus we will not assume that
any parts of the sets of postulates for contraction and revision are equivalent in
other logics. Indeed, discovering a way for the equivalence between the two sets
of postulates to hold in other logics is the core of our research: their equivalence
is what we consider indicates that the postulates hold.

The research we have carried so far has studied the implication relations be-
tween two AGM (supplementary) postulates and, therefore their possible equiv-
alence. We have focused primarily on �nding su�cient conditions for such rela-
tions to hold. These two postulates are:

A+̇ (x ∧ y) ⊆ Cn ((A+̇x) ∪ {y}) for any cn-theory A. (+̇7)

(A � x) ∩ (A � y) ⊆ A � (x ∧ y) for any cn-theory A. (�7)

Their intention (aided by the rest of the supplementary postulates) is to spec-
ify the behavior of their corresponding operations when dealing with formulas
in conjunctive form [1].



Before ending this section, we must not forget to mention a useful lemma:

Lemma 26. Let the notation A�x stand for the set of formulas that is assigned
to A and x by a contraction operation � that satis�es the AGM postulate (�6)
and is de�ned for a logic with an abstract consequence relation. Then it holds
that: If {y} ⊢ x, then A ⊆ Cn ((A � x) ∪ {y}).

Proof. The proof is straightforward and thus is omitted.

5 On the Implication Relations between (�7) and (+̇7)

We studied several conditions for the implication relations between (+̇7) and
(�7) to hold. Amongst the conditions for each case there is a logic, which implies
certain properties.

In this section we present those two logics, describe brie�y their relevant
properties and enunciate the most important results on the implication relations.

5.1 Implication Relation from (+̇7) to (�7)

De�nition 27. Let LT1 be the logic whose set of axioms ΩLT1 has the following
elements:

α → (β → α) . (1)

(α → (β → γ))→ ((α → β)→ (α → γ)) . (2)

(α → γ)→ ((β → γ)→ (α ∨ β → γ)) . (3)

α ∧ β → α . (4)

α ∧ β → β . (5)

α → (β → (α ∧ β)) . (6)

α↔ ¬¬α . (7)

β → α ∨ β . (8)

(¬α ∨ ¬β)↔ ¬ (α ∧ β) . (9)

(¬α ∧ ¬β)↔ ¬ (α ∨ β) . (10)

α ∨ ¬α . (11)



Proposition 28. All of the following hold under LT1:

T ∪ {x} ⊢ y i� T ⊢ x→ y . (12)

If ⊢ x↔ y, then Cn ({x}) = Cn ({y}) . (13)

If T ∪ {x} ⊢ a and T ∪ {y} ⊢ a, then T ∪ {x ∨ y} ⊢ a . (14)

If T ∪ {x} ⊢ a, T ∪ {y} ⊢ a and (x ∨ y) ∈ T , then T ⊢ a . (15)

⊢ x↔ ¬ ((¬x ∨ ¬y) ∧ ¬x) . (16)

⊢ y↔ ¬ ((¬x ∨ ¬y) ∧ ¬y) . (17)

⊢ ¬ (¬x ∨ ¬y)↔ (x ∧ y) . (18)

Proof. Detailed proofs are omitted.
(12): Any logic that satis�es axioms (1) and (2) also satis�es (12) [3].
(13): Holds given the de�nition of abstract consequence relation, (12) and

axioms (4) and (5).
(14): Holds given the de�nition of abstract consequence relation, axiom (3),

(12) and set theory.
(15): Holds given (14) and set theory.
(16), (17) and (18): It is a simple exercise to prove each under LT1.

Remark 29. (12) is usually called deduction theorem (as in [3]), while (14) is
usually called introduction of disjunctions in the premises (as in [4]).

Theorem 30. Let the notation A � x stand for the set of formulas that is as-
signed to A and x by a contraction operation � that satis�es AGM postulates
(�1), (�2), (�5) and (�6), the Levi identity and is de�ned over the logic LT1.
Such contraction operation satis�es (�7) if it satis�es (+̇7).

Proof. Let us assume (+̇7). We need to show that (�7) holds. Let

a ∈ ((A � x) ∩ (A � y)) . (19)

By the previous and set theory, to prove (�7) it su�ces to show

a ∈ A � (x ∧ y) . (20)

Also by (19) and set theory, both of the following hold

a ∈ A � x . (21)



a ∈ A � y . (22)

With the help of (�5), (13) and (16), (21) becomes

a ∈ A � ¬ ((¬x ∨ ¬y) ∧ ¬x) . (23)

Using only set theory, de�nition of abstract consequence operation, (Levi) and
(+̇7),

A � ¬ ((¬x ∨ ¬y) ∧ ¬x) ⊆ Cn ((A+̇ (¬x ∨ ¬y)) ∪ {¬x}) . (24)

Then, by (23), (24) and set theory, it can be deduced that

a ∈ Cn ((A+̇ (¬x ∨ ¬y)) ∪ {¬x}) . (25)

Based on (22), (17) and a similar reasoning as the one developed from (23) to
(25),

a ∈ Cn ((A+̇ (¬x ∨ ¬y)) ∪ {¬y}) . (26)

By set theory, de�nition of abstract consequence operation and (Levi),

(¬x ∨ ¬y) ∈ A+̇ (¬x ∨ ¬y) . (27)

Recalling that x ∈ Cn (T ) i� T ⊢ x and based on (25), (26) and (27), (15) can
be used to obtain

a ∈ Cn (A+̇ (¬x ∨ ¬y)) . (28)

Given (28), by de�nition of abstract consequence operation, (Levi), (9), (18),
(13) and (�5), it can be turned into

a ∈ Cn ((A � (x ∧ y)) ∪ {¬ (x ∧ y)}) . (29)

By (21), (�2), (�6) and set theory,

a ∈ Cn ((A � (x ∧ y)) ∪ {(x ∧ y)}) . (30)

We know that, by (11), ⊢ (x ∧ y) ∨ ¬ (x ∧ y), so by (�1) it holds that

((x ∧ y) ∨ ¬ (x ∧ y)) ∈ A � (x ∧ y) . (31)

Again, by x ∈ Cn (T ) i� T ⊢ x, (29), (30) and (31), (15) can be used to get

a ∈ Cn (A � (x ∧ y)) . (32)

Which by Cn (Cn (T )) = Cn (T ) and (�1) shows (20). ◻

Given the previous result, the de�nition of Pac and lemma 24, we have as a
direct consequence the following corollary:

Corollary 31. Let the notation A � x stand for the set of formulas that is as-
signed to A and x by a contraction operation � that satis�es AGM postulates
(�1), (�2), (�5) and (�6), the Levi identity and is de�ned over the logic Pac.
Such contraction operation satis�es (�7) if it satis�es (+̇7).



Remark 32. A similar result could not be veri�ed for the other logics mentioned
earlier due to the steps taken in the proof of theorem 30. Speci�cally (16), (17)
and (18) do not hold for Int, G3 or G3'4: only the → side of (16), (17), and the
← side of (18) hold for Int and G3; also, so to speak symmetrically, only the ←
side of (16), (17), and the → side of (18) hold for G3'. Moreover, it is well known
that (11) is not a theorem of Int or G3 (see [3]), which is needed by the proof
of theorem 30. In the light of this situation, the validity of a similar result as
corollary 31 under Int, G3 or G3' remains unknown.

5.2 Implication Relation from (�7) to (+̇7)

When studying the implication relation from (�7) to (+̇7), we found out that
the assumption of Int as the underlying logic provides su�cient properties for
this implication to hold.

Remark 33. The same as in LT1, the deduction theorem, the theorem of intro-
duction of disjunctions in the premises and propositions (13) and (15) hold in
Int.

Proposition 34. In addition to the properties mentioned by the previous re-
mark, the following hold in Int:

⊢ ¬x↔ ¬ (x ∧ y) ∧ (¬x ∨ y) . (33)

Cn (R ∪ T ) ∩Cn (S ∪ T ) ⊆ Cn ((Cn (R) ∩Cn (S)) ∪ T ) . (34)

Cn (A ∪ {x ∧ y}) ⊆ Cn ((A � (¬x ∨ y)) ∪ {x ∧ y}) . (35)

Proof. Detailed proofs are omitted.
(33): It is a simple exercise to prove under Int.
(34): Holds given the de�nition of �nitary consequence relation, the theorem

of introduction of disjunctions in the premises and the axioms of Int dealing with
conjunctions and disjunctions.

(35): Clearly {x ∧ y} ⊢ ¬x ∨ y holds under Int, so by de�nition of abstract
consequence relation, lemma 26 and set theory, (35) is easy to prove.

Theorem 35. Let the notation A � x stand for the set of formulas that is as-
signed to A and x by a contraction operation � that satis�es AGM postulates
(�1), (�2), (�5) and (�6), the Levi identity and is de�ned over the logic Int.
Such contraction operation satis�es (+̇7) if it satis�es (�7).

Proof. Let us assume (�7). We need to show that (+̇7) holds. Let

a ∈ A+̇ (x ∧ y) . (36)

4 This is assured by the use of truth tables (see [3]).



By the previous and set theory, to prove (+̇7) it su�ces to show

a ∈ Cn ((A+̇x) ∪ {y}) . (37)

Based on (Levi), the de�nition of abstract consequence relation and the axioms
of Int dealing with conjunctions, the previous proposition is equivalent to

a ∈ Cn ((A � ¬x) ∪ {x ∧ y}) . (38)

Thus, to prove (+̇7) it su�ces to show proposition (38). But by (33), (13), and
(�5) the following proposition is equivalent to (38), so it su�ces to show it in
order to show (+̇7):

a ∈ Cn ((A � (¬ (x ∧ y) ∧ (¬x ∨ y))) ∪ {x ∧ y}) . (39)

Taking into account (�7), set theory and the de�nition of abstract consequence
operation, it can be shown that

Cn (((A � ¬ (x ∧ y)) ∩ (A � (¬x ∨ y))) ∪ {x ∧ y})

⊆ Cn ((A � (¬ (x ∧ y) ∧ (¬x ∨ y))) ∪ {x ∧ y}) . (40)

With the de�nition of abstract consequence operation, set theory, (�1), (34) and
the previous step, it can be shown that

Cn ((A � ¬ (x ∧ y)) ∪ {x ∧ y}) ∩Cn ((A � (¬x ∨ y)) ∪ {x ∧ y})

⊆ Cn ((A � (¬ (x ∧ y) ∧ (¬x ∨ y))) ∪ {x ∧ y}) . (41)

By (41) and set theory, to prove (39) it su�ces to show both of the following:

a ∈ Cn ((A � ¬ (x ∧ y)) ∪ {x ∧ y}) . (42)

a ∈ Cn ((A � (¬x ∨ y)) ∪ {x ∧ y}) . (43)

It is easy to realize that (42) follows from (Levi) and (36). Then, by (�2), set
theory and de�nition of abstract consequence operation,

Cn ((A � ¬ (x ∧ y)) ∪ {x ∧ y}) ⊆ Cn (A ∪ {x ∧ y}) . (44)

A direct consequence of (42), set theory and the previous is

a ∈ Cn (A ∪ {x ∧ y}) . (45)

Finally, by the previous proposition, (35) and set theory it is easy to see that
(43) holds. ◻

Given the previous result, the de�nition of G3 and lemma 26, we have:

Corollary 36. Let the notation A � x stand for the set of formulas that is as-
signed to A and x by a contraction operation � that satis�es AGM postulates
(�1), (�2), (�5) and (�6), the Levi identity and is de�ned over the logic G3.
Such contraction operation satis�es (+̇7) if it satis�es (�7).

Remark 37. A similar result could not be veri�ed for the other logics mentioned
earlier due to the steps taken in the proof of theorem 35. Speci�cally, only the
← side of (33) does not hold for Pac or G3'.



5.3 Avoiding the Problems Found Going from (�7) to (+̇7)

Given the primary objective of this research (i.e. �nding su�cient conditions for
the implication relations to hold), the author is focused on discovering further
useful assumptions. In this subsection we discuss an option that seems promising
and is left for future work.

When analyzing the proofs of theorems 30 and 35, one can eventually pose
the question of how would the proofs be a�ected by assuming some containment
relation between contractions of the same cn-theory with respect to formulas
related in some way. Amongst various candidates for solving this question, the
following two examples are particularly interesting at �rst glance:

If {x} ⊢ y, then A � y ⊆ A � x . (�5′)

If {x} ⊢ y, then A � y ⊇ A � x . (�5′′)

With (�5′) and using a slightly di�erent logic than Pos, it would be pos-
sible to deduce similar results as corollary 36 for Pac and G3'. Unfortunately
(�5′) turns out to be in contradiction with the postulates for contraction: one
fundamental assumption of it is that x ∉ A � y whenever {x} ⊢ y and ⊬ x, but
at the same time it can be shown, using (�1), (�2) and (�6), that if ⊢ y, then
A � y = A.

In the case of (�5′′), we conjecture that it will not have similar problems
as (�5′). With the help of (�5′′) it would be possible to bypass some of the
problems encountered in �nding similar results as corollary 31 for Int, G3 and
G3'.

6 Conclusions and Future Work

We have introduced some non-classical logics and summarized the AGM theory
of belief revision. We have shown several implication relations between the AGM
postulates (+̇7) and (�7). Finally, we have given an example of an open issue
regarding the quest for additional conditions for the implication relations to
hold.

Future work will focus on currently open issues and on studying the possible
equivalence of other AGM postulates, such as (+̇8) and (�8), under the logics
already studied.
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