
A CG query engine based on
relational power context families

Bernd Groh and Peter Eklund

Knowledge, Visualization and Ordering Laboratory
Griffith University

PMB 50, Gold Coast Mail Centre, QLD 9726, Australia
{b.groh, p.eklund}@gu.edu.au

Abstract. This paper presents a CG query engine which is based on the
idea of power context families stored in a relational database. It describes
the methodology used and aims to demonstrate how this methodology
can replace the need of a CG subsumption engine with a simple query
engine. It shows how ontologies are used as conceptual scales in order
to achieve this goal. It further integrates the WebKB-2 ontology server,
addresses the techniques adapted and presents an implementation of the
engine in form of a C API.

1 Introduction

This paper reports on the integration of the WebKB-2 [6–11] ontology server1

and relational power context families [3, 14]. Although a large part of the work
has been done, the project is still in progress and the paper can only be consid-
ered work-in-progress. The functionality of the WebKB-2 ontology server has
been implemented as a C API with a relational database backend. The ontology
is stored, just like the knowledge base, as a relational power context family and
is used automatically by the API functions. Once a graph is added to the knowl-
edge base, the function not only stores the original graph, but all graphs which
are more general. The ontology therefore takes the place of a conceptual scale
in FCA terms. If the graph [CAT: Tom]→(ON)→[MAT] is added to the knowledge
base and the ontology contains the information CAT < ANIMAL (meaning CAT is
a subtype of ANIMAL, ANIMAL a supertype of CAT) then the graph [ANIMAL:

Tom]→(ON)→[MAT] is automatically stored in the knowledge base, as well as any
more general graph. This method has two disadvantages. First, the size of the
knowledge base increases by a factor d, where d is the average depth of the
ontology. As an example, d is around 7 for WordNet 1.62 hierarchy of nouns.
Second, each update of the ontology requires an update of the knowledge base.
This method has advantages, firstly, the query [ANIMAL: ?]→(ON)→[MAT] can be
retrieved directly, as it is an explicit fact in the knowledge base. The subtypes
of ANIMAL do not need to be investigated. [ANIMAL: Tom]→(ON)→[MAT] is a
1 http://www.webkb.org/webkbShared.html
2 http://www.cogsci.princeton.edu/˜wn/

33



direct result of the query. The original graph and all more general graphs up to
the query graph (in fact up to the top element) can be retrieved in one addi-
tional direct query. As a result, a subsumption engine, using this methodology,
reduces to a simple query engine. Therefore, we anticipate an increase in speed.
Furthermore, in this way it is possible to use a standard relational database to
implement a conceptual graph subsumption engine. This has been done and is
presented in Section 2 of the paper.

To test our hypothesis, two ontologies have been initialized, the WordNet 1.6
hierarchy for nouns and the WebKB-2 ontology. In addition, a parser is provided
that allows the creation of a conceptual scale in the form of a relational power
context family from the parsable3 output of the WebKB-2 ontology server.
A C API has been implemented that allows us to add and remove terms and
relations between terms to and from the ontology, with automated update of the
knowledge base, or alternatively the option of a later update through an explicit
function call. The API also contains functions to add a conceptual graph to the
knowledge base in linear form, automatically considering the ontology. This is
shown in the following sections.

The final stage of this work is a performance comparison with WebKB-2

and an evaluation of the advantages and disadvantages of both systems. Also,
a complexity analysis of the algorithms will be considered. This will be done in
future work.

2 Methodology

As mentioned above, the methodology applied allows the reduction of a sub-
sumption engine to a simple query engine. The subsumption is embedded in the
knowledge base. An ontology can be used as a conceptual scale and is stored
as a power context family in a relational database. Whenever new knowledge
is added to the knowledge base the conceptual scale is considered. If, for ex-
ample, the graph [CAT: Tom]→(ON)→[MAT] is added to the knowledge base the
conceptual scale is used as follows – using the WebKB-2 ontology.

For the type CAT the formal context of the conceptual scale is shown in
Fig. 1, the diagram of the concept lattice is shown in Fig. 3.

For the type MAT the formal context of the conceptual scale is shown in
Fig. 2, the diagram of the concept lattice is shown in Fig. 4.

The relation is directly added to the context K2 as shown in Table 1. We
do not use the unique names assumption for alphabetic strings of short length,
such as Tom. In large knowledge bases it is unlikely that every Tom refers to the
same individual. Therefore, further occurences of individuals, described by an
alphabetic string will be hash-indexed to generated symbol names, for example,
Tom#1, Tom#2 and so on. This is explained in more detail in the next section.

As Figs. 3 and 4 show, there are several interpretations of the terms CAT
and MAT.
3 http://www.webkb.org/doc/F languages.html

34



Fig. 1. Formal context of the conceptual scale for CAT.

35



Fig. 2. Formal context of the conceptual scale for MAT.

The options for CAT are:
1. #true cat: feline mammal usually having thick soft fur and being unable to
roar; domestic cats; wildcats; synonyms: cat

36



Fig. 3. Diagram of the concept lattice of the conceptual scale for CAT.

Fig. 4. Diagram of the concept lattice of the conceptual scale for MAT.

2. #big cat: any of several large cats typically able to roar and living in the wild;
synonyms: cat
3. #Caterpillar: (trademark) a tractor that is driven by caterpillar tracks; syn-
onyms: cat

37



Relation Instance1 Instance2

ON Tom#127 #3487146

Table 1. Rows added to K2.

4. #cat-o’-nine-tails: a whip with nine cords; “British sailors feared the cat”;
synonyms: cat
5. #cat: a spiteful woman gossip; “what a cat she is!”
6. #hombre: an informal term for a youth or man; “a nice guy”; “the guy’s only
doing it for some doll”; synonyms: guy, cat

The options for MAT are:
1. #mat/2: a piece of thick padding up on the floor for gymnastic sports
2. #mat/3: a thick flat pad used as a floor covering
3. #mat: a border or background for a picture; synonyms: matting
4. #place mat: table linen for an individual place setting; synonyms: mat
5. #lusterlessness: the property of having little or no contrast; synonyms: flat-
ness, mat, matt, matte
6. #matt: not reflecting light; not glossy; “flat wall paint”; “a photograph with a
matte finish”; synonyms: flat, mat, matte, matted

There are several approaches to restricting choice against these options. One
could define rules over relations, this is how it is done in WebKB-2. It is known,
for example, that the relation ON requires spatial entities as instances. There-
fore, the options #lusterlessness and #matt, given in Fig. 4, cannot apply in
conjunction with the ON relation. The next section addresses this issue. At the
moment the first meaning is used, with a warning message to the user that there
have been multiple alternatives and that the first has been selected. The next
section addresses alternative options.

To add the types, the conceptual scales in Fig. 3 and Fig. 4 are used, not
to select the specific meaning of the term, but to add the specific term to the
knowledge base. Not only with the attribute at the specific node, but with the
intent. The rows added to K are shown in Table 2.

The disadvantage of this method is that the knowledge base increases in size
by a factor d, the average depth of the ontology. For the WebKB-2 ontology
this factor is greater than 7. Another disadvantage is that whenever the ontology
is updated, the knowledge base has to be updated as well. The advantage here is
that the subsumption engine over the knowledge base reduces to a simple query
engine. A query [ANIMAL: ?]→(ON)→[MAT], which is equal to [#animate being:

?]→(ON)→[#mat/2] would directly retrieve [ANIMAL: Tom#127]→(ON)→[MAT].
It wouldn’t be necessary to investigate all subtypes of ANIMAL. As most ontolo-
gies are a tree-like partially ordered structure – a term has many more subtypes
than supertypes – it is reasonable to believe that storing all supertypes within
the knowledge base is generally more efficient than having to investigate all sub-

38



Type Instance

#true cat Tom#127

#felid Tom#127

#carnivore/2 Tom#127

#placental mammal Tom#127

#mammal Tom#127

#craniate Tom#127

#chordate Tom#127

#animate being Tom#127

#life form Tom#127

pm#entitiy that can be alive Tom#127

#entity Tom#127

pm#physical entity Tom#127

pm#spatial entity Tom#127

pm#entity Tom#127

pm#thing Tom#127

#mat/2 #3487146

#sports equipment #3487146

#equipment #3487146

#instrumentality/2 #3487146

#artifact #3487146

#physical object #3487146

pm#entity that cannot be alive #3487146

#entity #3487146

pm#physical entity #3487146

pm#spatial entity #3487146

pm#entity #3487146

pm#thing #3487146

Table 2. Rows added to K.

types within the query. This has the effect of an increase in size of the knowledge
base compared to a decrease in query response time and performance scalability.
Anecdotally, storing the type hierarchy in this way, is the way it has been done
in FCA for many years and has proven to be a good solution. Any relational
database with an ODBC driver can be used to implement a CG subsumption
engine, no specifically designed database or knowledge base is required.

3 Ontology and Knowledge Base

It is possible to create your own ontology, all you have to do is call a specific
C API function to add and remove terms or add and remove relations between
terms. The functions allow us to either say whether registered knowledge bases
should be updated immediately – by the function – or not. In this case another
function has to be called later on to bring registered knowledge bases up to date.

39



Two ontologies have been initialized. The WordNet ontology, which contains
the entire WordNet 1.6 hierarchy for nouns, clean from cycles and self-referents,
but using WordNet terminology. The second is the WebKB-2 ontology. This
includes the WordNet hierarchy for nouns, but adapted to a certain degree using
a somewhat different terminology4. Nevertheless it is more suitable for working
with CG’s. Section 5 talks in more detail about the WebKB-2 ontology, as it is
used for a comparison of both systems.

A parser is also provided, explained in the next section, that automatically
creates an ontology in form of a relational power context family from the parsable
output format to obtain from the WebKB-2 ontology server.

Both, the ontology and the knowledge base are stored in relational power
context families as Tables 1 and 2 show. For the ontology a row is displayed in
Table 3.

Relation Instance1 Instance2

< #true cat #felid

Table 3. Row of the ontology with a subtype relation.

To have both in the same format also has the advantage that both can be
investigated in the same way by other tools, either by Toscana [13] or by possi-
ble extensions of Toscana [4, 5], or by other tools, like CEM [1], understanding
that specific database format. The only difference between the ontology and the
knowledge base is how they are used by the C API functions.

If a term is added to the ontology, this is done in exactly the same way as
adding a term to the knowledge base. The difference is that the function to add
a term to the ontology has the option of updating the knowledge base, while
the function to add a term to the knowledge base uses information from the
ontology.

In our example [CAT: Tom]→(ON)→[MAT], the following would happen. First
the function splits the graph into tokens and uniquely identifies individual ref-
erents. We do not use the unique names assumption, as it is unlikely in large
databases that names, using alphabetic strings of short length, like Tom, would
uniquely refer to the same individual, as mentioned before. Therefore a function
is provided to explicitly express that one term is identical to another and identi-
cal names are hash-indexed. If the Tom with the highest index is Tom#126, the
individual Tom would be converted into Tom#127. Later on all Tom#127 could
be converted into Tom or Tom#33. This already shows the advantage an inter-
active version would have. All Tom’s could be listed and displayed to the user
and s/he could select the specific Tom with a mouse click, or remain undecided.

4 The precise content is described by Martin and Eklund [11] (ICCS 2001) and also
methodologically by Martin [8] (ICCS 2000).

40



Individual referents which are not given, will be created in the same manner,
i.e., as was the case with MAT. If the highest index is #3487145 the next index
is set to #3487146. The ontology does not contain a hierarchy for relations, only
for types. Therefore the relation can be added directly to the knowledge base,
as Table 1 shows.

Next, types have to be uniquely identified. From the ontology, all types
with the name CAT, or that are synonym to CAT will be retrieved. That is
#true cat, #big cat, #Caterpillar, #cat-o’-nine-tails, #cat and #hombre in that
order. Here another advantage of an interactive system becomes clear. The user
could be given all the possible types with explanation to make a selection, or s/he
could be presented with the diagram in Fig. 3 and then click the specific concept
to make a selection. In an API we have to rely on more similar matters, like
selecting the first term and return a warning to the user about our selection and
the multiple alternatives. An API requires a more specific input, like [#big cat:

Tom]→(ON)→[MAT] , if Tom should happen to be a big cat. The same goes for
MAT. All types with the name MAT or synonym to MAT will be retrieved
from the ontology. That is #mat/2, #mat/3, #mat, #place mat, #lusterlessness
and #matt in that order. Also here, the first term will be selected and a warn-
ing will be returned to the user. Our initial graph [CAT: Tom]→(ON)→[MAT] is
therefore equal to [#true cat: Tom]→(ON)→[#mat/2] , even though most people
are more likely to associate it with [#true cat: Tom]→(ON)→[#mat/3]. This is
something that has to be done interactively and is therefore more a software and
user-interface development issue than part of our current research. An interactive
tool could however use the diagrams in Figs. 3 and 4.

There is one other approach, not to select, but to further restrict possible
types. A set of rules that defines signatures to relations has been applied in
WebKB-2. We know, for example, that both referents of the relation ON have
to be spatial entities, as mentioned before. This is defined in the WebKB-2

ontology as follows:

ON(spatial_entity,spatial_entity);

But we might also know a lot more about cats on mats. Of course those rules
cannot be rules to cover the whole world, but to cover a certain context. Such
sets of rules are currently being considered, but are more an aspect of future
work.

Once types have been uniquely identified, all the supertypes of those types
will be retrieved. Tom#127 will be added as an instance of all supertypes of
#true cat and #3487146 will be added as an instance of all supertypes of #mat/2
as Table 2 shows.

4 Parser

The parser has been developed using Lemon
5. It allows the parsing of the

WebKB-2 ontology server parsable output format, as well as the linear CG
5 http://www.hwaci.com/sw/lemon/

41



notation. It can easily be updated to parse other formats, like CGIF. This shows
another advantage of the ontology and the knowledge base having the same for-
mat, you can use the same parser. You could also parse the ontology in linear
CG format.

The WebKB-2 parsable output looks as follows (truncated to fit the page):

#true_cat__cat__true_cat (^feline mammal usually having thick soft fur an

< #felid,

> #domestic_cat #wildcat,

N #feline;

#felid__feline__felid (^any of various lithe-bodied round-headed fissi

> #true_cat #big_cat,

p #paw,

M #Felidae;

#carnivore/2 (^terrestrial or aquatic flesh-eating mammal; terrestr

> #fissiped_mammal #canid #felid #bear/2 #viverrine #musteli

M #Carnivora,

N #carnivorous/a2;

#placental_mammal__placental__placental_mammal__eutherian__euthe

> #livestock #bull/3 #cow/2 #yearling/2 #buck #doe #inse

M #Eutheria;

#mammal (^any warm-blooded vertebrate having the skin more or

> #female_mammal #prototherian #metatherian #placental_m

p #coat/2 #hair/2,

M #Mammalia;

Any given output can be parsed and can form an ontology in form of a rela-
tional power context family. Instead of having to define ontologies for different
contexts, WebKB-2 can be used to produce specific ontologies and then the
parser can be used to create the relational power context families from it.

The lemon-grammar for the WebKB-2 output looks as follows:

ontology ::= expressions.

expressions ::= expressions expr.

expressions ::= .

expr ::= term description date relationlist SEMI.

{ addSignature(); }

term ::= id signature.

id ::= ID(a).

{ setId(a->str_val()); }

signature ::= LEFT ID(a) COMMA ID(b) RIGHT.

{ setSignature(a->str_val(), b->str_val()); }

signature ::= .

42



description ::= DESCRIPTION(a).

{ setDescription(a->str_val()); }

description ::= .

date ::= DATE(a).

{ setDate(a->str_val()); }

date ::= .

relationlist ::= relation targets relationsublist.

relationlist ::= .

relationsublist ::= relationsublist COMMA relation targets.

relationsublist ::= .

relation ::= RELATION(a).

{ setRelation(a->kind()); }

targets ::= targets target.

targets ::= targets startexclusion targetset endexclusion.

targets ::= .

startexclusion ::= LLEFT.

{ setExclusion(); }

endexclusion ::= RRIGHT.

{ resetExclusion(); }

targetset ::= targetset target.

targetset ::= .

target ::= ID(a) creator.

{ addRelation(a->str_val()); }

creator ::= LEFT ID RIGHT.

creator ::= .

The advantage of Lemon is that you can call functions within the grammar.
The functions used above are API functions which are connected to the ODBC
API. On startup an SQL statement is initialized as follows:

INSERT INTO [K2] (Relation, Instance1, Instance2) VALUES (?, ?, ?);

The question-marks will be associated with variables. The above set-functions
set those specific variables, while add-functions execute the statement. Whatever
values are in the variables on execution, are added to the knowledge base. In
this way the parser can be adapted to different input formats, only by defining
the grammar of the input format and the call of the specific API functions,
when they have to be applied. This is the same way the parser for the linear CG
notation is written and this is the way it could be done for CGIF, Frame-CG or
other formats, using the existing API.

Using this parser, in combination with WebKB-2, is a good and easy way
to create user-defined ontologies.

5 Comparison with WebKB-2

The final stage of our work is a comparison to the WebKB-2 ontology server.
Therefore, the WebKB-2 ontology server has to be presented in more detail.

43



WebKB-2 is initialized with the natural language ontology WordNet and
has its own top-level ontology. As to see in Figs. 1, 2, 3 and 4 as well as Ta-
ble 2, the ontology contains types that start with # and types that start with
pm#. The id before the # refers to the user who created the term. The creator
is wn by default. All types starting with # are types of the WordNet ontol-
ogy, all types starting with pm# are types of the top-level ontology, created by
Philippe Martin. Every user gets a unique id, that is exactly how it is realized
in our work. The ontology contains 94,500 nouns, 66,000 categories referred to
by nouns, 21,000 adjectives and 7,900 categories referred to by adjectives. As
in our work, the domain ontology is a large database and new categories can
be added at any time. This being the case, the ontology cannot be stored di-
rectly within the schema of an object-oriented database. WebKB-2 uses a GPL
licensed object-oriented main-memory database system called FastDB

6 with a
C++ API. We use a standard relational database via a ODBC connection with
a C API. We have to expect that WebKB-2 will outperform our approach, as
the database is a main-memory database system and faster than a standard re-
lational database, which is disk-based. There is, however, a disk-based database
version called GigaBASE that can be used with the same API. We are currently
investigating that option to have a more meaningful comparison. The compari-
son to the FastDB version will be done for completeness.

There are two main points to the comparison of the two approaches:
1. Graph Search
2. Subsumption

Subsumption is necessary for graph search via generalization and special-
ization. WebKB-2 allows the minimal common supertypes of two categories
to be returned from the ontology server. The minimal common supertype of
#true cat and #mat/2, for example, is #entity. The minimal common su-
pertype of #true cat and #cat is #life form, as Fig. 3 shows. In our ap-
proach, subsumption does not differ from directed graph search, as any given
common supertype is stored as direct fact within the knowledge base, like the
type itself.

To compare the two approaches, both systems have to be initialized with
the same knowledge base. For the graph search comparison the international
flight database of an Australian airline has been chosen, namely QANTAS. It
contains all flights of that specific airline and all associated airlines as well as
served airports and information about airports and flights. Other test-sets are
currently being investigated, especially for the comparison of the graph search
via generalization and specialization. A larger variety of types and placement
within the ontology is more desirable here than for direct graph search.

Testing or benchmarking the two knowledge servers is considered at two
levels. In the first we measure the speed and timings to compute subsumption.
In the second, we measure the speed that graph specialisation is performed.

6 http://www.ispras.ru/˜knizhnik/fastdb.html

44



Two sets of 500 leaf types from WordNet 1.6 will be selected and stored.
The first 500 categories will then be exhaustively compared to each of the 500
categories in the second set and the least common supertype computed for each.
This will be timed for each of the knowledge servers.

For graph specialisation, 500 flights routings will be synthesized from the
QANTAS flights database, these routings will be constructed to represent rout-
ings that are known to exist. These will be formated as CGs and run against
each of the knowledge servers. Timings are then collected. As much as we wish to
measure the performance of WebKB-2 and our approach against known graphs,
it is also necessary to measure the time each takes to determined that a graph
does not exist in the KB. We do this by randoming changing one of the concepts
in the positive routings test set to a concept known not to exist in the knowl-
edge base. i.e. change the name of any occurance of a city like ”Sydney” to a
misspelling such as ”Cydney”. This substitution generates a negative test set
of CGs known to be absent from the flights knowledge base. Timings are then
collected for this negative set against each of the knowledge servers.

Further, it is yet to be decided on the system on which the comparison will
run. WebKB-2 is currently running on Sun Solaris 2.7, while our approach
is developed under Microsoft Windows NT. To port our system to Unix,
we will have to install a ODBC environment on Unix that provides us with the
required drivers and the ODBC API. A relational database is also required to
run on that platform. The unixODBC

7 project provides the ODBC API and
several database-drivers. The next step is to test on which Unix platform our
system will run without requiring any changes. Sun Solaris 2.7 is our first
choice.

Once the test-bed has been set up, the comparison of the two systems and
an evaluation of how the systems perform in comparison to each other will be
done. This work is still in progress.

References

1. R. Cole, G. Stumme: CEM: A Conceptual Email Manager. In: B. Gan-
ter, G. Mineau (eds.): Proceedings to the 8th International Conference on
Conceptual Graphs. LNAI 1867. Springer, Heidelberg 2000.

2. B. Ganter, R. Wille: Formal Concept Analysis: Mathematical Foundations.
Springer, Heidelberg 1999. (Translation of: Formale Begriffsanalyse: Math-
ematische Grundlagen. Springer, Heidelberg 1996.)

3. B. Groh, P. Eklund: Algorithms for creating relational power context fam-
ilies from conceptual graphs. In: W. Tepfenhart, W. Cyre (eds.): Concep-
tual Structures: Standards and Practices. LNAI 1640. Springer, Heidelberg
1999, 389–400.

4. B. Groh, S. Strahringer, R. Wille: TOSCANA-systems based on thesauri.
In: M.-L. Mugnier, M. Chein (eds.): Conceptual Structures: Theory, Tools
and Applications. LNAI 1453. Springer, Heidelberg 1998, 127–138.

7 http://www.unixodbc.org

45



5. P. Eklund, B. Groh, G. Stumme, R. Wille: A Contextual-Logic extension
of TOSCANA. In: B. Ganter, G. Mineau (eds.): Proceedings to the 8th
International Conference on Conceptual Graphs. LNAI 1867. Springer,
Heidelberg 2000.

6. P. Martin, P. Eklund: Embedding Knowledge in Web Documents. In:
WWW8, 8th International World Wide Web Conference, Toronto, Canada
(1999).

7. P. Martin, P. Eklund: Embedding Knowledge in Web Documents: CGs
versus XML-based Metadata Languages. In: ICCS’99, 7th International
Conference on Conceptual Structures, Springer Verlag, LNAI 1640 (1999)
230–246.

8. P. Martin: Conventions and Notations for Knowledge Representation and
Retrieval. In: ICCS’00, 8th International Conference on Conceptual Struc-
tures, Springer Verlag, LNAI 1867 (2000) 41–54.

9. P. Martin, P. Eklund: Knowledge Indexation and Retrieval and the Word
Wide Web. IEEE Intelligent Systems, special issue Knowledge Manage-
ment and Knowledge Distribution over the Internet”, 18– 25, May/June
2000.

10. P. Martin, P. Eklund: Conventions for Knowledge Representation via RDF.
In: WebNet2000, San Antonio, Texas, ACCE press, 378–383, November,
2000.

11. P. Martin, P. Eklund: Large-scale Cooperatively build Knowledge Bases.
(Submitted to ICCS 2001)

12. J. F. Sowa: Conceptual structures: Information processing in mind and
machine. Adison-Wesley, Reading 1984.

13. F. Vogt, R. Wille: TOSCANA – A graphical tool for analyzing and explor-
ing data. In: R. Tamassia, I. G. Tollis (eds.): GraphDrawing ’94. LNCS
894. Springer, Heidelberg 1995, 226–233.

14. R. Wille: Conceptual Graphs and Formal Concept Analysis. In: D. Lukose,
H. Delugach, M. Keeler, L. Searle, J. F. Sowa (eds.): Conceptual Structures:
Fulfilling Peirce’s Dream. LNAI 1257. Springer, Heidelberg 1997, 290–303.

46


