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Abstract. The aim of the paper is to develop a logic of relations on
semiconcept graphs corresponding to the Contextual Logic of Relations
on power context families. Semiconcept graphs allow the representation
of negations. The operations from Peircean Algebraic Logic (i.e., the
operations of relation algebras of power context families) are used to
generate compound semiconcepts (or relations, resp.). For an arbitrary
(semi-)concept graph, most specific semiconcept graphs are constructed
where a compound semiconcept is assigned to each of the edges, i.e.
compound semiconcepts are constructed directly on semiconcept graphs
independent of the corresponding power context family.

Contents
1. Introduction
2. Contextual Logic of Relations on Power Context Families
3. Semiconcept Graphs
4. Contextual Logic of Relations on Semiconcept Graphs
Appendix: Formal Constructions

1 Introduction

Contextual Logic of Relations can be seen as one part of Contextual Logic (es-
pecially, Contextual Judgment Logic) as explained in [Wi00c]. Sowas theory
of conceptual graphs [So92] has been combined with Formal Concept Analysis
[GW99a] in [Wi97] and [PrW99] to design a mathematical Logic of Judgment
in the framework of Contextual Logic [Wi00c]. Concepts and relations of con-
ceptual graphs can be mathematically represented by power context families.
In [PoW00] and [Wi00a] a Contextual Logic of Relations has been developed
as a Contextual Attribute Logic [GW99b] on the relational contexts of a power
context family.

In this paper, semiconcept graphs (as introduced in [Wi01]) are used to rep-
resent the information of power context families. Compound semiconcepts (and
relations, resp.) are introduced in the sense of the Contextual Logic of Rela-
tions incorporating the operations based on the Peircean Algebraic Logic which
R. W. Burch reconstructed in [Bu91]. The paper deals with the construction of
semiconcept graphs containing compound semiconcepts assigned to the vertices
and edges. For that, an arbitrary semiconcept graph of a power context family
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is considered. For each compound semiconcept the question is answered how a
most specific concept graph of this power context family where the compound
semiconcept is assigned to each of the edges can be constructed from the given
semiconcept graph. That allows relational constructions on semiconcept graphs
without using the power context family. Nevertheless, they correspond to the
Contextual Logic of Relations on power context families.

2 Contextual Logic of Relations on Power Context
Families

Contextual Logic of Relations has been developed as a Contextual Attribute
Logic on power context families in [PoW00] and [Wi00a] within the theory of
Formal Concept Analysis (see [GW99a] for the mathematical foundations of
Formal Concept Analysis). The aim is to support knowledge representation and
knowledge processing.

The basic structure is the data table. There can be represented simply ob-
jects and their attributes, as well as relational connections. We start with an
example. We consider the family tree of the Bach family of famous composers
and musicians in [Me90]. There is given some short information about each per-
son, like name, dates, place, and profession, which can be represented in
a data table where the rows are denoted by the persons, the columns by the
attributes. From the name we can derive the attributes man or woman, which
can also be understood as unary relations. The lines in such a family tree in-
dicate two binary relations, child·of and married·to. These two binary rela-
tions are sufficient to determine the family relationships between each two or
more of these persons. Relations like mother·of, grandfather·of, brother·of,
or mother-father-child can be derived. We are interested in the question how
we can derive and represent such relations by a computer, and suggest to use
the formal methods of Contextual Logic and semiconcept graphs. ([Ba92] deals
with a related problem in the framework of the terminological knowledge repre-
sentation.)

Contextual Logic is based on the mathematical notion of a formal context,
which is defined as a triple K := (G,M, I) consisting of a set G of objects, a set
M of attributes, and a binary relation I ⊆ G ×M . The relation I between G
and M can be read “the object g has the attribute m” for gIm (i.e., (g,m) ∈ I).
For each attribute m ∈M of a formal context (G,M, I), the extent is defined as
the set

mI := {g ∈ G|gIm}
of all objects of (G,M, I) that have this attribute. Analogously, for each set
A ⊆M of attributes, the extent is defined as the set

AI := {g ∈ G|∀m∈AgIm} =
⋂
{mI |m ∈ A}

of all objects of (G,M, I) that have all these attributes. Dually, exchanging
objects and attributes, we get the intent of an object (set). Using this prime op-
eration, relationships between formal attributes can be expressed. For example,
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we say an attribute m implies an attribute n if the extent of m is a subset of
the extent of n (i.e., mI ⊆ nI).

In order to have more expressivity in Contextual Attribute Logic compound
attributes of a formal context (G,M, I) have been introduced in [GW99b] by
using the operational elements ¬,

∧
and

∨
for negation, conjunction and dis-

junction.
This idea has been extended in [PoW00] and [Wi00a] to relation contexts of

power context families. A power context family is a sequence
−→
K := (K0,K1, . . . ,Kk, . . .)

of formal contexts Kk := (Gk,Mk, Ik) with Gk ⊆ (G0)k for k = 0, 1, . . .. A
power context family −→K is called limited of type n ∈ N if −→K := (K0,K1, . . . ,Kn),
otherwise it is called unlimited. Each context Kk can be extended to the relation
context K̇k := ((G0)k,Mk, Ik), for unifying notion we write K̇0 := K0.

Now, the data of our example can be represented by a power context family−→
K := (K0,K1,K2). We restrict our considerations to 14 (of the 44) people of the
Bach family contained in the given family tree. These 14 persons are the objects
of the formal context K0, i.e.

G0 := { Johannes, Christoph, Heinrich, Johann Ambrosius, Elisabeth
Lämmerhirt, Johann Christoph, Johann Michael, Johann Sebastian, Maria
Barbara, Anna Magdalena Wilcken, Johann Christoph Friedrich, Johann
Christian, Wilhelm Friedemann, Carl Philipp Emanuel}.

As attribute set we chose M := {dates, place, profession, woman}. So we
get a “many-valued context”. In [GW89] scaling methods have been described
to derive a (one-valued) context from the many-valued context by splitting the
attributes. For the context K1 of unary relations we chose G1 := G0 and M1 :=
{man}. The context K2 of binary relations is given by G2 := G0 × G0 and
M2 := {child·of, married·to}. Then the relation child·of is defined in the
following way:

child·of := {(Christoph, Johannes), (Heinrich, Joh.), (Joh. Ambr. Chr.),
(Joh. Christoph, Heinrich), (Joh. Michael, Heinrich), (Joh. Seb., Joh. Ambr.),
(Joh. Seb., Elisabeth L.), (Maria Barbara, Joh. Michael), (Joh. Chr. Friedrich,
Anna Magdalena W. ), (Joh. Christoph Friedrich, Joh. Seb.), (Joh. Christian,
Anna Magdalena W.), (Joh. Christian, Joh. Seb.), (Wilh. Friedemann,
Maria Barbara), (Wilh. Friedemann, Joh. Seb.), (Carl Ph. Emanuel, Maria
Barbara), (Carl Ph. Emanuel, Joh. Seb.)};

and married·to is the symmetric relation generated by

{(Joh. Ambrosius, Elisabeth L.), (Joh. Seb., Maria Barbara), (Joh. Seb.,
Anna Magdalena W.)}.

In order to discuss the Contextual Logic of ordinal structures, in [PoW00] the
Contextual Logic of (unary and) binary relations has been developed using bi-
nary power context families −→K := (K0,K1,K2). In analogy to [GW99b], com-
pound attributes for −→K can be introduced with the operational elements ¬,

∧
,
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∨
, ?, and ◦. Thus, (for k = 0, 1, 2) compound attributes are: each attribute

m ∈ Mk, the “constants” ⊥k (i.e., the empty relation), >k (i.e., the universal
relation), and id2 (i.e., the binary identity relation) as well as all attributes gen-
erated by iteration of the operations negation ¬, conjunction

∧
, disjunction

∨
,

conversion ? and concatenation ◦. There are no mathematical reasons to restrict
these definitions to binary relations.

In [Wi00a] the more general relation algebras of power context families have
been introduced. This paper is mainly based on the book [Bu91], where the
Peircean Algebraic Logic has been reconstructed. It has been shown, that the
expressibility of the introduced language of relation algebras reaches the ex-
pressibility of the first order logic. That is the reason for us to choose these basic
operations for our investigations, too (cf. chapter 4).

In [PoW00] a central question concerns the equivalence of compound at-
tributes of a power context family. Now we are interested in the constructions
themselves. There is a close connection between power context families and con-
cept graphs. So the question arrises: How can compound attributes be con-
structed on concept graphs?

As in [Wi00b] is pointed out, it is not possible to define a negation in the
sense of G. Boole on concepts, because a negated concept need not to be a
concept again. But, negation (or complementation) plays an important role in
the logic of relations. This problem has been discussed in [Wi01] with the result
that the best generalization of concepts keeping the correspondence between
negation and set-complement seems to be the notion of protoconcepts: Let K :=
(G,M, I) be a formal context. Then the pair (A,B) is called a protoconcept
of K if A ⊆ G, B ⊆ M , and AII = BI (i.e. BII = AI). The negation of
a protoconcept (A,B) of K is defined as the protoconcept ¬(A,B) := (G \
A, (G\A)I). Considering protoconcepts we have algebraically to deal with double
Boolean algebras. Many applications show that protoconcepts which are not
formal concepts often occur only as negated concepts or as meets of those. Such
protoconcepts are u-semiconcepts. Therefore we restrict our considerations to
u-semiconcepts, and have to deal only with Boolean algebras of u-semiconcepts.
If it is required by some applications, these investigations can be extended to
protoconcepts in further research.

3 Semiconcept Graphs

Considering a formal context K := (G,M, I), we call a pair (A,AI) with A ⊆ G
a u-semiconcept of K. We write Hu(K) := {(A,AI)|A ⊆ G} for the set of all
u-semiconcepts of K. On Hu(K) the following operations can be defined:

– ¬(A,AI) := (G \A, (G \A)I),
– (A,AI) u (B,BI) := (A ∩B, (A ∩B)I),
– (A,AI)t(B,BI) := (A ∪B, (A ∪B)I),
– ⊥ := (∅,M),
– > := (G,GI).
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(We use t and > because these operations do not coincide with the operations
t and > on concepts.) Then Hu(K) := (Hu(K),u,t,¬,⊥,>) is the Boolean
algebra of semiconcepts of the formal context K := (G,M, I). An order relation
on Hu(K) can be defined by

(A,AI) v (B,BI) :⇐⇒ A ⊆ B (and AI ⊇ BI).

The extent A of a u-semiconcept b := (A,AI) usually is denoted by Ext(b).
The following notions are introduced as in [Wi01]. A relational graph is a

set structure (V,E, ν) consisting of a set V of vertices a set E of edges and a
mapping ν : E →

⋃
k=1,2,... V

k. For ν(e) = (v1, . . . , vk) we say v1, . . . , vk are the
adjacent vertices of the k-ary edge e. The arity of e is |e| := k, the arity of any
vertex v is |v| := 0. We write E(k) := {u ∈ V ∪ E||u| = k} for k = 0, 1, . . ., i.e.
E(0) = V for k = 0. A relational graph is said to be limited of type n ∈ N if
E = E(1) ∪ . . . ∪ E(n), otherwise it is called unlimited.

A semiconcept graph of a power context family −→K := (K0, . . . ,Kk, . . .) with
Kk := (Gk,Mk, Ik) for k = 0, 1, . . . is a set structure G := (V,E, ν, κ, ρ) for which
(V,E, ν) is a relational graph and

– κ : V ∪ E →
⋃
k=0,1,... Hu(K̇k) is a mapping with κ(u) ∈ Hu(K̇k) for all

u ∈ E(k) (k = 0, 1, . . .),
– ρ : V → P(G0) \ {∅} is a mapping with ρ+(v) := ρ(v) ∩ Ext(κ(v)) and
ρ−(v) := ρ(v) \ ρ+(v) such that, for ν(e) = (v1, . . . , vk), ρ+(vj) 6= ∅ for all
j = 1, . . . , k or ρ−(vj) 6= ∅ for all j = 1, . . . , k and ρ+(v1) × . . . × ρ+(vk) ⊆
Ext(κ(e)) and ρ−(v1)× . . .× ρ−(vk) ⊆ (G0)k \ Ext(κ(e)).

A semiconcept graph G1 of the power context family in our example is presented
in the following figure1.

child of

child of

child of

child of

composer: JS | man

woman: AMW | JCF,JC,JS

woman: MB | WF,CPE,JS

born > 1730:  JCF,JC | MB,AMW

born > 1705: WF,CPE | MB,AMW man

man

The mapping ρ can also be considered on edges (not only on vertices). For
ν(e) = (v1, . . . , vk), the mapping ρ(e) := ρ+(e) ∪ ρ−(e) is defined by ρ+(e) :=
ρ+(v1)× . . .×ρ+(vk) and ρ−(e) := ρ−(v1)× . . .×ρ−(vk). Then for a semiconcept
graph G := (V,E, ν, κ, ρ), the triples [κ(u) : ρ+(u)|ρ−(u)] for u ∈ V ∪ E are
called semiconcept instances of G. The set of all semiconcept instances of a
1 As mentioned above, properties like “to be a man” or “to be a woman” may appear

as a unary relation as well as a concept. To illustrate this, in our example occure
the concept “woman” and the unary relation “man”.
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formal context K0 is denoted by Hinstu (K0). Its elements are triples [b : C|D]
with b ∈ Hu(K̇0), C ⊆ Ext(b), and D ⊆ (G0)\Ext(b). We write H0−inst

u (K̇0) :=
Hinstu (K0). The set of all k-ary semiconcept instances of a context K̇k is denoted
by Hk−instu (K̇k) (k = 1, 2 . . .). Its elements are triples [b : C1× . . .×Ck|D1× . . .×
Dk] with b ∈ Hu(K̇k), C1×. . .×Ck ⊆ Ext(b), and D1×. . .×Dk ⊆ (G0)k\Ext(b).

The set of the following semiconcept instances describes a graph G2 of the
power context family in our example (names are abbreviated by initials):

[married·to: {JS} × {MB,AMW} | {MB,AMW} × {JA}],
[married·to: {JA} × {EL} | {EL} × {JS}],
[married·to: {MB,AMW} × {JS} | {JA} × {MB,AMW}],
[married·to: {EL} × {JA} | {JS} × {EL}],
[child·of: {JA} × {C} | {C} × {JA}],
[child·of: {JC,JM} × {H} | {H} × {JC,JM}],
[child·of: {JS} × {JA,EL} | {JA,EL} × {JS}],
[child·of: {MB} × {JM} | {JM} × {MB}],
[man: {JA,JC,JM,JS} | {EL,AMW,MB}],
[JS: {JS} | ∅],
[woman: {EL,MB,AMW} | {JA,JS}].

On Hk−instu (K̇k), a generalization order (concerning the content of information)
is defined by

[b1 : C1|D1] ≥ [b2 : C2|D2] :⇐⇒ b1 w b2, C1 ⊆ C2, D1 ⊆ D2.

This relation can be read “the semiconcept instance [b1 : C1|D1] is more general
than [b2 : C2|D2]”. In our example holds

[descendant·of: (Wilh. Friedemann, Joh. Seb.)| (Joh. Seb., Wilh. Fr.)]
≥ [child·of: {Wilh. Fr., C. Ph. Emanuel}× {Joh. Seb., Maria Barbara}|
{Joh. Seb., Maria Barbara} × {Wilh. Fr., C. Ph. Emanuel}]

This generalization order between semiconcept instances can be extended to
semiconcept graphs. For that the semi-conceptual content C(G) := (C0(G), . . . ,
Ck(G), . . .) of a semiconcept graph G := (V,E, ν, κ, ρ) of a power context family
−→
K is defined by

Ck(G) := {(g, b) ∈ (G0)k × Hu(K̇k)| there are ct(t ∈ T ) with b w ut∈T ct and

∀t ∈ T∃ut ∈ E(k) : ct = κ(ut), g ∈ ρ+(ut) or ct = ¬κ(ut), g ∈ ρ−(ut)}

for k = 0, 1, . . .. The k-th component Ck(G) is called the semi-conceptual k-
content of the semiconcept graph G. We say, a semiconcept graph G1 is more
general (less specific) than G2 if

G1
>∼ G2 :⇐⇒ Ck(G1) ⊆ Ck(G2) for k = 0, 1, . . . .

Thus, we have a generalization order between semiconcept graphs (concerning
the content of information). It induces an equivalence relation on semiconcept
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graphs in the natural way. Two semiconcept graphs G1 and G2 are eqivalent
(G1 ∼ G2) if G1

>∼ G2 and G1
<∼ G2, i.e. if C(G1) = C(G2).

Considering compound relations on semiconcept graphs we are interested
in “most specific graphs” where such “compound relation” are assigned to the
edges.

4 Contextual Logic of Relations on Semiconcept Graphs

Let G := (V,E, ν, κ, ρ) be a semiconcept graph of an arbitrary power context
family. Then we denote the class of all power context families −→K with the prop-
erty that G is a semiconcept graph of −→K by ~C(G). What is the intrinsic informa-
tion of G independent of −→K ∈ ~C(G)? Considering only the semiconcept graph
we get G0 ⊇ ρ(V ) and

⋃
k=0,1,... Hu(K̇k) ⊇ κ(V ∪ E); only the semiconcepts

assigned to the edges and vertices are known, not all objects and semiconcepts
of −→K . We call the semi-conceptual (k-)content C(G) (or Ck(G)) of G represented
independently of −→K ∈ ~C(G), the intrinsic semi-conceptual (k-)content of G. For
each semiconcept b ∈ Hu(K̇k) we define the semi-conceptual k-content of G with
respect to b by

Ck(G, b) := {g ∈ (G0)k| there are ct(t ∈ T ) with b w ut∈T ct and
∀t ∈ T∃ut ∈ E(k) : ct = κ(ut), g ∈ ρ+(ut) or ct = ¬κ(ut), g ∈ ρ−(ut).}

Analogously, we define the intrinsic semi-conceptual k-content of G with respect
to b independent of −→K ∈ C(G). The following proposition can easily be proved:

Proposition 1. For each semiconcept graph G the intrinsic semi-conceptual
content of G is completely described by the set of all semiconcept instances of G.

Our aim is to determine the semi-conceptual k-content of a semiconcept
graph G with respect to “compound semiconcepts” b, and to describe it by
semiconcept instances of a semiconcept graph G′. Obviously, such a construction
yields a semiconcept graph G′ of −→K for each power context family −→K ∈ ~C(G).
Thus, adding G′ to G by juxtaposition yields a semiconcept graph of each power
context family −→K ∈ ~C(G), again.

Each semiconcept of a relation context K̇k (k = 1, 2, . . .) of a power context
family −→K := (K̇0, K̇1, K̇2, . . .) can be interpreted as a k-ary relation on G0.
Analogous to the operations of the relation algebras of power context families
in [Wi00a], we introduce operations on semiconcepts of −→K . The basic operations
we are interested in are the operations of the Peircean Algebraic Logic (see
[Bu91]) and their iterations. So we reach the expressibility of the first order
logic2. We extend our considerations to all the operations introduced in [Wi00a]
because these operations are relevant for many applications, and the resulting
constructions become less complex than by iterating the basic operations.
2 Thus, all operations of SPC-, SPCU-, SPJ-, SPJR-algebras, and similar algebras

from the theory of databases (cf. [AHV95]) are included in the Peircean Algebraic
Logic.
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In the main part of the paper we present only the constructions for two basic
operations in order to demonstrate the principle of the constructions. The special
results for each of the operations are added in the appendix of the paper.

Let G := (V,E, ν, κ, ρ) be a semiconcept graph. Our aim is to determine the
intrinsic semi-conceptual k-contents Ck(G, b) of G with respect to compound
semiconcepts b. We describe these semi-conceptual contents by semiconcept in-
stances. These semiconcept instances correspond to graphs containing only edges
labeled by the considered compound semiconcepts, which can be added to G by
juxtaposition without changing the semi-conceptual content of G. Note: to every
semiconcept graph or semiconcept instance each more general graph or instance
can be constructed and added in this sense.

The semi-conceptual content of a semiconcept graph G where ¬c is assigned
to an edge can be represented by semiconcept instances containing c instead of
¬c, exchanging each semiconcept instance [¬c : A|B] by [c : B|A]. In the follow-
ing, for a more convenient representation of the formal relational constructions
using semiconcepts c we assume that there are no edges of G where ¬c is as-
signed to. Empty semiconcept instances have to be omitted in the following
constructions. The examples of semiconcept instances correspond to the set of
semiconcept instances describing the semiconcept graph G2 in chapter 3.

Two important non-trivial operations on semiconcepts of −→K are negation and
concatenation (see the appendix of this paper for the other operations).

1. The negation ¬ is the unary operation mapping c ∈ Hu(K̇k) (k = 1, 2, . . .)
to

¬c := (A,AIk) ∈ Hu(K̇k) with

A := Gk0 \ Ext(c).

E.g., the unary relation woman can be defined by woman:= ¬man.
Then the semi-conceptual k-content of the semiconcept graph G with respect
to the compound semiconcept ¬c is

Ck(G,¬c) = {(g1, . . . , gk)|∃e ∈ E : κ(e) = c, (g1, . . . , gk) ∈ ρ−(e)}.

This semi-conceptual content can be described by the semiconcept instance

{[¬c : ρ−(e) |ρ+(e)] |e ∈ E, κ(e) = c}.

(Notice, that the semi-conceptual k-content of G with respect to c is consid-
ered, too.) E.g., we get in G2: [woman: {EL,MB,AMW} | {JA,JC,JM,JS}].
Thus, this semiconcept instance represents the compound semiconcept ¬c
with a set of objects belonging to its extent and a set of objects not belong-
ing to the extent. For all other objects it is not possible to decide whether
they belong to the extent of ¬c or not. The semiconcept instance can be
represented by a (part of a) semiconcept graph. The construction yields the
most specific semiconcept graph, i.e. the semiconcept graph containing all
information about the compound semiconcept contained in the semiconcept
graph G.
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2. For i ≤ k, j ≤ l ∈ N, the ij-concatenation (i ◦ j) is the binary operation
mapping (c1, c2) ∈ Hu(K̇k)× Hu(K̇l) (k, l = 1, 2, . . .) to

c1(i ◦ j)c2 := (A,AIk+l−2) ∈ Hu(K̇k+l−2) with
A := {(g1, . . . , gi−1, gi+1, . . . , gk, h1, . . . , hj−1, hj+1, . . . , hk)|
∃gi = hj ∈ G0 : (g1, . . . , gk) ∈ Ext(c1) and (h1, . . . , hk) ∈ Ext(c2)}.

E.g., we define grandchild·of := child·of (2 ◦ 1) child·of.
Then the semi-conceptual k-content of the semiconcept graph G with respect
to the compound semiconcept c1(i ◦ j)c2 is

Ck+l−2(G, c1(i ◦ j)c2) =
{(g1, . . . , gi−1, gi+1, . . . , gk, h1, . . . , hj−1, hj+1, . . . , hk)|
∃e1, e2 ∈ E : κ(e1) = c1, κ(e2) = c2, ρ

+(ν(e1)i) ∩ ρ+(ν(e2)j) 6= ∅,
∃gi, hj : (g1, . . . , gk) ∈ ρ+(e1), (h1, . . . , hl) ∈ ρ+(e2)}.

This semiconceptual content can be described by the following set of semi-
concept instances (with ν(e1) = (v11, . . . , v1k) and ν(e2) = (v21, . . . , v2k)).

{ [c1(i ◦ j)c2) : ρ+(ν(v11)× . . .× ρ+(v1(i−1))× ρ+(v1(i+1))× . . .× ρ+(v1k)

×ρ+(v21)× . . .× ρ+(v2(j−1))× ρ+(v2(j+1))× . . .× ρ+(v2l) |∅] |
e1, e2 ∈ E, κ(e1) = c1, κ(e2) = c2, ρ

+(v1i) ∩ ρ+(v2j) 6= ∅}.

E.g., we get in G2: [grandchild·of: {MB} × {H} | ∅],
[grandchild·of: {JS} × {C} | ∅]. These semiconcept instances can be rep-
resented by a semiconcept graph again. It can easily be shown that the
constructed semiconcept instances are minimal, i.e. containing as much in-
formation as possible.

Analogous constructions for all operations mentioned above are represented in
the appendix. These constructions are independent of the power context family−→
K ∈ ~C(G). I.e., the constructions described in this chapter and in the appendix
can be applied to each semiconcept graph independent of the chosen power
context family. The following two propositions can be checked for each of the
defined compound attributes:

For the constructions 1 and 2 in this chapter as well as the constructions 1
to 11 in the appendix yields:

Proposition 2. The constructions of semiconcept instances containing com-
pound semiconcepts yield semiconcept instances corresponding to semiconcept
graphs.

Thus, the described constructions on semiconcept instances correspond directly
to constructions on semiconcept graphs.

Proposition 3. The constructed semiconcept instances containing compound
semiconcepts are minimal (i.e. most specific).
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Thus, in general the constructed semiconcept graphs reflect all information
about the compound semiconcepts (or relations, resp.) contained in a semicon-
cept graph. Possibly, there are known further dependencies like superconcept-
subconcept-relations. Then, moreover, we have to take into consideration that
every more general graph can be derived from a more specific graph. Possibly,
the set G0 of objects may be known. In this case the constructions can also
be extended to get more specific graphs. There are many possibilities how pre-
knowledge can be included. This is a wide field for further research. In this paper
we restricted our investigations to the semi-conceptual content of semiconcept
graphs.

Appendix: Formal Constructions

The constructions realized in chapter 4 for negation and concatenation can be
transfered to all operations on semiconcept instances corresponding to the op-
erations introduced in [Wi00a]. The aim of this appendix is to sketch the formal
results without any proof. For shortness, we present only the formal definitions
of the operations on semiconcept instances (i.e., of the compound relations) and
the resulting minimal semiconcept instances containing only these compound
relations. (Let G′0 :=

⋃
v∈V ρ(v).)

1. For k ∈ N, the k-univeral >k, the k-null ⊥k, and the k-identity Idk are
nullary operations given by

>k := (A,AIk) ∈ Hu(K̇k) with A := Gk0 ,

⊥k := (A,AIk) ∈ Hu(K̇k) with A := ∅,
Idk := (A,AIk) ∈ Hu(K̇k) with A := {(g1, . . . , gk)|g1 = . . . = gk ∈ G0}.

These operations result in the following sets of semiconcept instances:

{[>k : (G′0)k |∅]},
{[⊥k : ∅ |(G′0)k]},
{[Idk : {g}k |∅]|g ∈ G′0} ∪
{[Idk : ∅ |(g1, . . . , gk)]|g1, . . . , gk ∈ G′0,∃i, j ∈ {1, . . . , k} : gi 6= gj}.

For k = 2, the semi-conceptual content C2(G, Id2) can be described by

{[Idk : {g}k|∅]|g ∈ G′0} ∪ {[Idk : ∅|{g} × (G′0 \ {g})]|g ∈ G′0}.

In the semiconcept graph G2 (described by a set of semiconcept instances in
chapter 3) we get, e.g., [>1: {JS,JA,MB,AMW,EL,JC,JM,C,H} | ∅].

2. For each semiconcept s ∈ Hu(K̇0) and i ∈ N, the (i, s)-restriction (i, s) is the
unary operation mapping c ∈ Hu(K̇k) (k = 1, 2, . . .) to

c(i,s) := (A,AIk) ∈ Hu(K̇k) with
A := {(g1, . . . , gk) ∈ Ext(c)|gi ∈ Ext(s)}.
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E.g., the relations wife·of and child-mother can be defined by
wife·of := married·to(1,woman), and child-mother := child·of(2,woman),
where “woman” denotes the K0-(semi)concept ({woman}I0 , {woman}I0I0).
We get the following set of semiconcept instances (with ν(e) = (v1, . . . , vk)):

{ [c(i,s) : ρ+(v1)× . . .× ρ+(vi−1)× (ρ+(vi) ∩A+)
×ρ+(vi+1)× . . .× ρ+(vk) |ρ−(e)] |e ∈ E, κ(e) = c} ∪

{ [c(i,s) : ∅ |(G′0)i−1 ×A− × (G′0)max{0,k−i−1}]}

E.g., we get in G2: [wife·of: {MB,AMW} × {JS} | {JA} × {MB,AMW}],
[wife·of: {EL} × {JA} | {JS} × {EL}],
[wife·of: ∅ | {MB,AMW} × {JA}],
[wife·of: ∅ | {EL} × {JS}],
[wife·of: ∅ | {JS,JA} × {JS,JA,MB,AMW,EL}];
and in G1:
[child-mother: {JCF,JC} × {AMW} | {MB,AMW} × {JCF,JC,JS}],
[child-mother: {WF,CPE} × {MB} | {MB,AMW} × {WF,CPE,JS}],
[child-mother: ∅ | {JCF,JC,WF,CPE,MB,AMW,JS}
× {JCF,JC,WF,CPE,JS}].

3. For each permutation π on the set {1, . . . , k}, the permutation π is the unary
operation mapping c ∈ Hu(K̇k) (k = 1, 2, . . .) to

cπ := (A,AIk) ∈ Hu(K̇k) with
A := {(gπ(1), . . . , gπ(k))|(g1, . . . , gk) ∈ Ext(c)}.

This operation includes the conversion in the binary case. E.g., we define
husband of := wife ofπ(12).
We get the following set of semiconcept instances (with ν(e) = (v1, . . . , vk)):

{ [cπ : ρ+(vπ(1))× . . .× ρ+(vπ(k))|ρ−(vπ(1))× . . .× ρ−(vπ(k))] |
e ∈ E, κ(e) = c}

E.g., we get in G2:
[husband·of: {JS} × {MB,AMW} | {MB,AMW} × {JA}],
[husband·of: {JA} × {EL} | {EL} × {JS}],
[husband·of: ∅ | {JA} × {MB,AMW}], [husband·of: ∅ | {JS} × {EL}],
[husband·of: ∅ | {JS,JA,MB,AMW,EL} × {JS,JA}].

4. The (Cartesian) product× is the binary operation mapping (c1, c2) ∈ Hu(K̇k)×
Hu(K̇l) (k, l = 1, 2, . . .) to

c1 × c2 := (A,AIk+l) ∈ Hu(K̇k+l) with
A := {(g1, . . . , gk, h1, . . . , hl)|

(g1, . . . , gk) ∈ Ext(c1) and (h1, . . . , hl) ∈ Ext(c2)}

The construction yields

{ [c1 × c2 : ρ+(e1)× ρ+(e2) |∅] |e1, e2 ∈ E, κ(e1) = c1, κ(e2) = c2}
∪{ [c1 × c2 : ∅|ρ−(e1)× (G′0)l] |e1 ∈ E, κ(e1) = c1}
∪{ [c1 × c2 : ∅|(G′0)k × ρ+(e2)] |e2 ∈ E, κ(e2) = c2}.
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E.g., we get in G1:
[>1×man: {JCF,JC,WF,CPE,MB,AMW,JS} × {JCF,JC,WF,CPE,JS } | ∅],
[>1×man: ∅ | {JCF,JC,WF,CPE,MB,AMW,JS} × {MB,AMW}].

5. For i ≤ k, l ∈ N, the (i-conjunction) ∧i is the binary operation mapping
(c1, c2) ∈ Hu(K̇k)× Hu(K̇l) (k, l = 1, 2, . . .) to

c1 ∧i c2 := (A,AIi) ∈ Hu(K̇i) with
A := {(g1, . . . , gi)|∃gi+1, . . . , gk ∈ G0 : (g1, . . . , gk) ∈ Ext(c1)

and ∃hi+1, . . . , hl ∈ G0 : (g1, . . . , gi, hi+1, . . . , hl) ∈ Ext(c2)}

E.g., we define child-father := child·of ∧2 (>1×man).
We get the following set of semiconcept instances (with ν(e1) = (v11, . . . , v1k)
and ν(e2) = (v21, . . . , v2l)):

{ [c1 ∧i c2 : (ρ+(v11) ∩ ρ+(v11))× . . .× (ρ+(v1i) ∩ ρ+(v2i))|
ρ−(v11))× . . .× ρ−(v1i)],

[c1 ∧i c2 : (ρ+(v11) ∩ ρ+(v11))× . . .× (ρ+(v1i) ∩ ρ+(v2i))|
ρ−(v21))× . . .× ρ−(v2i)] |
e1, e2 ∈ E, κ(e1) = c1, κ(e2) = c2}.

For the case k = l = i we get

{ [c1 ∧k c2 : ρ+(e1) ∩ ρ+(e2)|ρ−(e1)],
[c1 ∧k c2 : ρ+(e1) ∩ ρ+(e2)|ρ−(e2)] |

e1, e2 ∈ E, κ(e1) = c1, κ(e2) = c2}.

E.g., we get in G1:
[child-father: {JCF,JC,WF,CPE} × {JS} | ∅],
[child-father: ∅ | {JCF,JC,WF,CPE,MB,AMW,JS} × {MB,AMW}],
[child-father: ∅ | {MB,AMW} × {JCF,JC,WF,CPE,JS}].

6. For i ≤ k, l ∈ N, the (i-disjunction) ∨i is the binary operation mapping
(c1, c2) ∈ Hu(K̇k)× Hu(K̇l) (k, l = 1, 2, . . .) to

c1 ∨i c2 := (A,AIi) ∈ Hu(K̇i) with
A := {(g1, . . . , gi)|∃gi+1, . . . , gk ∈ G0 : (g1, . . . , gk) ∈ Ext(c1)

or ∃hi+1, . . . , hl ∈ G0 : (g1, . . . , gi, hi+1, . . . , hl) ∈ Ext(c2)}

We get the following set of semiconcept instances (with ν(e1) = (v11, . . . , v1k)
and ν(e2) = (v21, . . . , v2l)):

{ [c1 ∨i c2 : ρ+(v11))× . . .× ρ+(v1i) |
(ρ−(v11) ∩ ρ−(v11))× . . .× (ρ−(v1i) ∩ ρ−(v2i))],

[c1 ∨i c2 : ρ+(v21))× . . .× ρ+(v2i) |
(ρ−(v11) ∩ ρ−(v11))× . . .× (ρ−(v1i) ∩ ρ−(v2i))] |
e1, e2 ∈ E, κ(e1) = c1, κ(e2) = c2}.
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For the case k = l = i we get

{ [c1 ∨k c2 : ρ+(e1)|ρ−(e1) ∩ ρ−(e2)],
[c1 ∨k c2 : ρ+(e2)|ρ−(e1) ∩ ρ−(e2)] |

e1, e2 ∈ E, κ(e1) = c1, κ(e2) = c2}.

7. For i < j ≤ k ∈ N and l := j − i + 1, the ij-projection (i ↓ j) is the unary
operation mapping c ∈ Hu(K̇k) (k = 1, 2, . . .) to

ci↓j := (A,AIl) ∈ Hu(K̇l) with
A := {(gi, . . . , gj)|∃g1, . . . , gi−1, gi+1 . . . , gk ∈ G0 : (g1, . . . , gk) ∈ Ext(c)}.

E.g., the unary relation married·to·J. S. can be defined by
married·to·J. S. := (married to(2,J.S.))(1↓1),
where “J.S.” indicates the K0-semiconcept ({J.S.}, {J.S.}I0).
We get the following set of semiconcept instances (with ν(e) = (v1, . . . , vk)):

{ [c(i↓j) : ρ+(vi)× . . .× ρ+(vj) |∅] |e ∈ E, κ(e) = c}.

E.g., we get in G2: [married·to·J.S.: {MB,AMW} | ∅].
8. For i ∈ N, the i-comma operation (ii) is the unary operation mapping c ∈

Hu(K̇k) (k = 1, 2, . . .) to

c(ii) := (A,AIk+1) ∈ Hu(K̇k+1) with
A := {(g1, . . . , gi−1, gi, gi, gi+1, . . . , gk)|(g1, . . . , gk) ∈ Ext(c)}

E.g., the ternary relation child-mother-father can be defined by
child-mother-father := child-mother(11)(1 ◦ 1) child-father.
The construction results in the following set of semiconcept instances (with
ν(e) = (v1, . . . , vk)):

{ [c(ii) : ρ+(v1)× . . .× ρ+(vi−1)× {gi} × {gi} × ρ+(vi+1)× . . .× ρ+(vk)|
ρ−(v1)× . . .× ρ−(vi−1)× ρ−(vi)× ρ−(vi)× ρ−(vi+1)× . . .× ρ−(vk)] |
e ∈ E, κ(e) = c, gi ∈ ρ+(vi)}

∪{ [c(ii) : ∅|(g1, . . . , gk+1)]|g1, . . . , gk+1 ∈ G′0, gi 6= gi+1}.

E.g., we get in G1: [child-mother-father: {WF,CPE} × {MB} × {JS} | ∅],
[child-mother-father: {JCF,JC} × {AMW} × {JS} | ∅].

9. For i < j ∈ N, the ij-coupled deletion (i\j) is the unary operation mapping
c ∈ Hu(K̇k) (k = 1, 2, . . .) to

c\ := (A,AIk−2) ∈ Hu(K̇k−2) with
A := {(g1, . . . , gi−1, gi+1, . . . , gj−1, gj+1, . . . , gk)|

∃gi = gj ∈ G0 : (g1, . . . , gk) ∈ Ext(c)}

if k ≥ 3; and c\ := (∅, ∅I1) ∈ Hu(K̇1) if k ≤ 2. E.g., we define
have·same·parents
:= (child-mother-father(3 ◦ 3)child-mother-father)\24 .
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We get the following set of semiconcept instances (with ν(e) = (v1, . . . , vk)):

{ [c(i\j) : ρ+(v1)× . . .× ρ+(vi−1)× ρ+(vi+1)× . . .× ρ+(vj−1)×
ρ+(vj+1)× . . .× ρ+(vk) |∅] |e ∈ E, κ(e) = c}.

For k ≤ 2 holds c(i\j)) = ⊥1. E.g., we get in G1:
[have·same·parents: {WF,CPE} × {WF,CPE} | ∅],
[have·same·parents: {JCF,JC} × {JCF,JC} | ∅].

10. For i < j ∈ N, the (i=j)-hook identification (i = j) is the unary operation
mapping c ∈ Hu(K̇k) (k = 1, 2, . . .) for k > 1 to

c(i=j) := (A,AIk−1) ∈ Hu(K̇k−1) with
A := {(g1, . . . , gj−1, gj+1, . . . , gk)|(g1, . . . , gk) ∈ Ext(c), gi = gj},

and for k = 1 to c(i=j) := (A,A′) ∈ Hu(K̇1) with A := ∅. E.g., the relation
child-mother-father can be described by
child-mother-father = (child-mother× child-father)(1=3).
The construction results in the following set of semiconcept instances (with
ν(e) = (v1, . . . , vk)):

{ [c(i=j) : ρ+(v1)× . . .× ρ+(vi−1)× (ρ+(vi) ∩ ρ+(vj))× ρ+(vi+1)
× . . .× ρ+(vj−1)× ρ+(vj+1)× . . .× ρ+(vk)|∅] |e ∈ E, κ(e) = c}.

For k = 1 holds c(i=j) = ⊥1. E.g., we get in G1 (see 10. for another definition
of the same relation):
[child-mother-father: {WF,CPE} × {MB} × {JS} | ∅],
[child-mother-father: {JCF,JC} × {AMW} × {JS} | ∅].

11. For i ∈ N, the existential i-quantification (i) is the unary operation mapping
c ∈ Hu(K̇k) (k = 1, 2, . . .) for k > 1 to

c(i) := (A,AIk−1) ∈ Hu(K̇k−1) with
A := {(g1, . . . , gi−1, gi+1, . . . , gk)|∃gi ∈ G0 : (g1, . . . , gk) ∈ Ext(c)},

and for k = 1 to c(i) := (A,A′) ∈ Hu(K̇1) with A := ∅. E.g., we define
has·brother·or·sister := (have·same·parents ∧2 (¬Id2))(2).
We get the following set of semiconcept instances (with ν(e) = (v1, . . . , vk)):

{ [c(i) : ρ+(v1)× . . .× ρ+(vi−1)× ρ+(vi+1)× . . .× ρ+(vk)|∅] |
e ∈ E, κ(e) = c}.

For k = 1 holds c(i) = ⊥1. E.g., we get in G1:
[has·brother·or·sister: {WF,CPE,JCF,JC} | ∅].

These operations include all operations of the Peircean Algebraic Logic (see
[Bu91]). The constructed semiconcept instances and the corresponding semicon-
cepts graph are minimal in the sense of chapter 4.
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