
An SLA Re-Negotiation Protocol

Michael Parkin1 Peer Hasselmeyer2 Bastian Koller3 Philipp Wieder4

1 Universitat Politècnica de Catalunya, Barcelona, Spain
2 NEC Laboratories Europe, Sankt Augustin, Germany

3 High Performance Computing Centre (HLRS), Stuttgart, Germany
4 TU Dortmund University, IT & Media Center, Germany

Abstract. Service Level Agreements are an essential foundation for the
realisation of Business Grids as they provide a mechanism for a service
provider to charge a customer for meeting an agreed quality of service.
However, once a Service Level Agreement has been formed it may need to
be re-negotiated as the requirements of the business participants change.
This paper describes an abstract, domain-independent protocol for the re-
negotiation of an agreement, including Service Level Agreements formed
using the WS-Agreement standard. The protocol is based on the princi-
ples of contract law to make the new agreements formed using it legally-
compliant. It allows for multi-round re-negotiation in a network environ-
ment where messages may be lost, delayed, duplicated and re-ordered.

1 Introduction

Future distributed systems will be based on a model where individually defined,
autonomous business or technical functions are offered by various independent
providers in the form of remote services. The service abstraction fosters the mi-
gration towards a global service marketplace where the relationships between its
participants will be governed by electronic contracts in the form of Service Level
Agreements (SLAs). Agreement formation will be the basis for service value ex-
change between service customers and service providers. As a step towards this
goal, the Grid Resource Allocation Agreement Protocol Working Group (GRAAP-
WG) of the Open Grid Forum (OGF) has produced the Web Services Agree-
ment [1] (WS-Agreement) standard to create bilateral agreements. However, WS-
Agreement is acknowledged to be limited in scope to a basic ”accept/reject”
agreement protocol [2] and the debate within the GRAAP-WG has moved to how
re-negotiation of an existing agreement can be carried out to allow either party
in the agreement to adapt the current agreement with the explicit consent of the
other party [3]. In this paper we propose such a protocol that is independent of
its application domain and the implementation technology.

1.1 Related Work

Negotiating multiple quality of service criteria can be a costly process, which may
cause uneconomically high transaction costs. For this reason, McKee et al. [4]
propose to balance the advantages and disadvantages of negotiation carefully
and execute multi-step negotiation only where its cost are justifiable. One ap-
proach to keep negotiation costs low is the supermarket approach [4] also known



as the“take-it-or-leave-it” approach. Its name correlates with the business model
of supermarkets, where customers can choose between a range of brands buying a
certain product, for example a can of beans. The different cans are displayed (i.e.
offered by the provider) and the customer can only decide whether to take one
or not. In case the customer does not find the brand (i.e. the offer) she likes, an-
other supermarket (i.e. the service provider) may be an option. In the ISP market
a similar approach is often chosen and pre-configured web hosting environments
are offered to choose from. Other examples for the supermarket approach to ne-
gotiation are Amazons Elastic Compute Cloud (EC2) and Simple Storage Service
(S3) [5].

SLA negotiation is not a Grid-specific concept, e.g. within the agent domain
one protocol for negotiation was identified which was already initially taken for
experiments in relation to Service Level Agreement negotiation – the Contract Net
protocol. Contract Net uses a different approach with respect to traditional Web
Services negotiation schemata. Instead of assuming a service provider publishing
an offer in a repository and customers searching for potential service providers
matching their needs, the Contract Net protocol takes the reverse approach: the
customer publishes its need or problem and the service providers provide bids to
the customer. This approach enables service providers to adapt their bids dynam-
ically according to the situation of their infrastructure. An enhancement of this
protocol is the FIPAs Iterated Contract Net Interaction Protocol (ICNIP [6]).
This protocol supports recursive negotiation and allows with that for multi-round
iterative negotiation to find an agreement.

1.2 What is Re-negotiation?

Re-negotiation is a second or further negotiation that may change the terms of
an existing agreement1. A successful re-negotiation invalidates an existing agree-
ment and replaces it with a new, superseding agreement. Re-negotiation may be
required by either party if their circumstances change since the initial agreement
was established. For example, a user may need to change the amount of CPU
time they originally agreed to purchase if they find their computational job is
more complex than they originally thought and it requires more CPU time to
fully complete. An example where a resource provider may want to change an ex-
isting agreement is when there is an unexpected unavailability of resources they
originally promised to supply. Re-negotiation can occur before the agreed service
period of an SLA commences or while the SLA is active.

This paper presents an abstract, domain-independent re-negotiation protocol
that allows the re-negotiation of agreements abstracted as contracts (i.e. a binding
exchange of promises) between a service provider and a customer. The protocol
allows the provider as well as the customer to initiate a multi-round re-negotiation
and both to refuse a re-negotiation of an existing agreement. Re-negotiation can
happen fully automatic or with manual help. The protocol is designed to support
the re-engotiation process, but it does not mandate the use of a particular process.
Although the protocol deals with the interaction of exactly one provider and
one customer, multiple instances of this protocol, potentially involving the same

1 Source: Oxford English Dictionary, Second Edition 1989.



providers and customers, can and are expected to proceed in parallel. Where it
is possible to map this new protocol to the existing WS-Agreement protocol it is
noted in the text in order to allow existing implementations of WS-Agreement to
be extended.

1.3 Document Structure

The remainder of this document is structured as follows: in Section 2 we describe
our approach to designing a protocol for the re-negotiation of contracts and com-
pare it against other approaches. Section 3 then outlines the requirements (and
non-requirements) for the protocol. Section 4 describes the assumptions made and
the framework within which a re-negotiation occurs. Section 5 then specifies the
protocol. The paper concludes with Section 6, which provides a summary and
discusses future work.

2 Approach

2.1 Network Assumptions

Work on standardising open protocols for use in service-based environments is
being carried out by several standards bodies, including the Organization for the
Advancement of Structured Information Standards (OASIS), the World Wide
Web Consortium (W3C) and the OGF. However, we feel the approaches to spec-
ifying protocols by these standards bodies often do not take into account factors
inherent in distributed computing. For example, in distributed systems where
“failure happens all the time” [7], it should be assumed that messages sent be-
tween services may be lost, delayed, duplicated and/or re-ordered. Most protocol
specifications often do not take these circumstances into account – our work is
different in that we consider these possibilities from the very start. Assuming such
a network during the design phase makes the resulting protocol more robust as it
can cope with network failures or malfunctions.

2.2 Protocol Description

Another difference to existing work is how we describe the protocol; we do not
use UML sequence diagrams to describe the protocol as they often cannot capture
the entire set of message exchanges possible in the network environment described
above. To describe the behaviour of each re-negotiation participant we provide a
finite state machine to describe the state of the contract, similar to the WS-
Agreement specification. However, unlike in WS-Agreement, the state machine
is not shared between the negotiation participants. Instead each participant has
their own ‘copy’ of the state machine which they update as they send and receive
messages. In addition, we also explain the possible messaging events using pre-
and post-constraints that together specify the conditions which must be satisfied
before and after each message is sent. The conditions explain each messaging
event as an atomic action and together describe the messaging behaviour of each
participant in the re-negotiation protocol.



2.3 Consistency & Brewer’s Conjecture

Because messages may be lost, duplicated and/or re-ordered whilst being sent
the state machines of the participants may be inconsistent at some points in
time. This ‘looser consistency’ is a consequence of Brewer’s Conjecture [8] where,
in a distributed system, “there are three properties that are commonly desired:
consistency, availability and partition tolerance”. Brewer’s conjecture is that “it is
impossible to achieve all three [of these properties at once]” and that a distributed
system can only demonstrate two of these three properties at the same time. Thus,
in our scenario where the customer and provider are partitioned by a network and
the resources (within the provider’s administrative domain) should be available
to everyone if they are not booked we loosen the property of consistency, i.e. we
cannot ensure that both copies of the state machine (representing the contract)
are in a consistent state.

Looser consistency may seem like a problem, but the protocol we present is
designed to guarantee consistency will eventually be reached through the ability
to re-send messages, as we will show in Section 5.3. As [9] discusses, by not at-
tempting to have “increased fidelity” (i.e. strong consistency), we can also reduce
the cost (in terms of time and resources) to implement the protocol.

The issue of consistency is the main difference between other agreement pro-
tocol designs and the one we advocate here: e.g. the GRAAP-WG attempts to
maintain strong consistency of the contract’s state using a two-phase commit
(2PC) protocol. However, as a consequence of Brewer’s conjecture, these proto-
cols make the resources unavailable even if they have not been booked as they
enter a state between ‘not-booked’ and ‘booked’ (a ‘limbo’ state). It is for these
reasons that 2PC-style protocols have been described as “anti-availability proto-
cols” [10]. This, as we describe in [11], is unacceptable to a resource provider and
the reason why we advocate loosening the consistency requirement.

3 Protocol Requirements

This section describes the requirements for a re-negotiation protocol taken from
the GRAAP-WG Wiki page [12] and associated usage scenarios [13].

3.1 Non-Requirements

Before proceeding it should be noted that many of the requirements given by the
GRAAP-WG are not actual requirements for a re-negotiation protocol. In this
paper a protocol is defined as the semantics of the messages exchanged and the

allowed sequences of message exchange. This is referred to as services sharing a
schema (the allowed messages) and a contract2 which “describes [the] message
sequences allowed in and out of the service” [14].

Thus, reviewing the requirements from the GRAAP-WG [12], requirements
about ‘re-negotiable and service description terms’, ‘clearer information about
why parties do not agree’ and ‘how to re-negotiate the expiry of an agreement’ can
all be seen as domain or agreement-specific information. Two of the three protocol

2 Note that the service contract is not to be confused with the contract being re-
negotiated.



usage scenarios (about reserving more resources and extending the agreement
expiration time) also describe requirements for the information exchanged by the
protocol. This domain and agreement-specific information has little to do with
the protocol (as defined above) used for re-negotiation because, in order to keep
the protocol domain-independent, the content of messages should be orthogonal
to the protocol and the reasons why messages are exchanged (as this is dependent
on the re-negotiation strategy of each participant).

The final requirement for re-negotiation discussed by the GRAAP-WG is how
contracts are ‘versioned’, e.g. through the issuing of a new agreement identifier
to the superseding contract. This topic is not covered in this paper as, again, this
process is orthogonal to the protocol used to re-negotiate the contract.

3.2 Re-negotiation Requirements

The remaining requirements from the GRAAP-WG Wiki fall into the category of
who can initiate re-negotiation and how re-negotiation is initiated. For example,
a protocol usage scenario requires that the contract can be cancelled through
“asking for releasing resources which had been agreed upon”. We believe that
both parties in the contract should be allowed to carry out the initiation of re-
negotiation and that both parties should be allowed to cancel an existing contract3

as this is what is allowed in the ‘real world’, after all. We also believe that the
initiation of re-negotiation should be allowed through non-binding enquiries to
the other party so that an estimate as to how much it would cost to change the
contract can be obtained before committing to a new contract. These requirements
are met by the final protocol design.

3.3 Contract Law Requirements

When designing this protocol we also feel it is necessary to take into account the
legal requirements of contract formation. This is because, as we describe in [11],
such an approach benefits businesses and their customers; a re-negotiation proto-
col meeting the requirements of contract law means both parties can be confident
that agreements they make for providing and receiving Grid services are robust
and can be taken to litigation if any dispute arises. Contracts form part of the
foundations of commerce and, with the advent of business-oriented Grids such
as BREIN [16], aligning standard protocols with common business practices and
rules can only increase their uptake.

Thus, the requirements of contract law (as described in [11]) have been in-
cluded in the protocol design. Briefly, some of these requirements are that offer

messages are binding if accepted, all offers are acknowledged and, because of the
risk of ‘cheating’ by the customer, we use contract law’s ‘mailbox rule’ where a
contract is formed when the accept message is sent by the offeree (the resource
provider) and not when the accept is received by the offeror (the customer).

3 Because of space limitations the ability to cancel contracts is not included in this
protocol specification though this protocol can be extended to provide this behaviour
with little extra effort.



4 Protocol Design

4.1 Protocol Roles

In order to begin deriving a protocol for re-negotiating a contract, the roles that
each participant plays in the protocol must be clarified. In this work we define two
roles: the resource provider and the customer4. In our opinion defining these roles,
rather than abstract ‘agreement initiator/responder’ roles, highlights the natural
asymmetry of resource provision from resource consumption. As we will show in
Section 5, by explicitly considering the requirements of the service provider, we
can also remove the possibility of a denial-of-service attack on them.

4.2 Protocol Framework & Contract State Machine

Before defining the protocol we should note that the re-negotiation takes place
in the context of an existing contract for the provision of services or resources.
This contract has some unique identifier that is known to both parties. In an
implementation of WS-Agreement, for example, this identifier is the Endpoint
Reference (EPR) of a WS-Agreement.

Thus, before re-negotiation is initiated the contract at the customer and
provider is in the contracted state5 to reflect this existing context. When re-
negotiation is initiated by one party their contract enters the renegotiating

state, which is a sub-state of contracted as the original contract is still in force,
irrespective of the on-going re-negotiation. After successful re-negotiation the cur-
rent contract both parties’ contract is in the superseded state as a new contract
will have superseded this contract.

Renegotiating

Superseded

1 32

Contracted

4

Fig. 1. Re-negotiation State Machine

Figure 1 shows this behaviour as a finite state machine for the contract (as
described in Section 2 each participant has a local copy of this state machine).

4 This can be mapped onto WS-Agreement’s concepts of agreement initiator and re-
sponder with the customer playing the role of agreement initiator and the resource
provider that of the agreement responder.

5 This state is equivalent to WS-Agreement’s ‘observed’ state, but the word ‘contracted’
is used as it is felt that this indicates more accurately what has occurred.



Again, the re-negotiation takes place inside the contracted state to reflect an ex-
isting contract is being re-negotiated. Initially the contract enters the contracted
state through transition 1 (how this original agreement formed is outside the scope
of this paper, though it may be through an instance of the WS-Agreement pro-
tocol). When re-negotiation is initiated, the contract makes transition 2. If the
re-negotiation is successful, transition 3 to the superseded state occurs. If the
re-negotiation is unsuccessful, transition 4 back to the contracted state occurs.

It may be that one of the parties cannot or does not want to re-negotiate
the contract. In this case they may indicate to the other party that they cannot
re-negotiate (how they do this is described in Section 5). If the contract is in the
contracted state, it remains in this state. However, if the contract is being re-
negotiated when either party decides they cannot re-negotiate, transition 4 back
to the contracted state occurs.

5 Protocol Specification

In Section 3 we defined a protocol to be the semantics of the messages exchanged

and the allowed sequences of message exchange. Thus, our protocol specification is
split into two sections to meet this definition. The first section defines the protocol
messages and their semantics, whilst the second defines the allowed messaging
behaviours of the resource provider and the customer.

5.1 Protocol Messages

The following is a list of the protocol messages derived from Section 3. Note that
each message, in addition to the domain-specific information being exchanged,
has three identifiers: one, the agreement identifier that provides a context for
messages to be correlated under; two, a message identifier that is unique in the
context of each agreement; and, three, a correlation identifier which should be set
to the message identifier of the message (if any) this message has been sent in
reply to (thus a correlation identifier may be null if it does not relate to any other
messages in the re-negotiation).

– RenegotiationQuoteRequest. This message is only sent from the customer to the
resource provider to indicate that they are interested in re-negotiating the
current contract and to ask for a quote for the re-negotiated contract.

– RenegotiationQuote is a message only sent from the resource provider to the
customer and is a non-binding estimate of a new agreement. It may be sent in
response to a RenegotiationQuoteRequest received from the customer, in which
case the quote will be based on the new requirements of the customer, or
it may be sent by the service provider unilaterally to indicate the provider
wishes to re-negotiate the agreement. In the latter case the quote will be based
on the provider’s requirements.

– RenegotiationOffer . This message is sent from the customer to the provider as
a binding request to form a new agreement. The customer must be careful
when sending this message as, if it is accepted, a new superseding contract
will be formed on the contents of this message. Sending this message can be



seen as the equivalent of WS-Agreement’s agreement initiator role invoking
the WSAG:CreateAgreement operation.
As discussed in [11], by specifying that only the customer makes offers to the
provider we remove the possibility of denial-of-service attacks on the provider
(i.e. situations where the resource provider is in a ‘limbo’ state, waiting on a
message from the customer to confirm the booking of resources).

– RenegotiationOfferAck . This message is sent from the provider to the customer
to acknowledge that an offer has been received and is being considered by the
provider. The inclusion of this message satisfies the requirement of the EU’s
eCommerce directive, as we have described in [11].

– RenegotiationAccept. This message is sent from the provider to the customer
to indicate that a RenegotiationOffer has been accepted and a new contract
has replaced the original contract6. Sending this message is equivalent to WS-
Agreement’s agreement responder role invoking the WSAG:AcceptAgreement
operation.

– RenegotiationReject. Only sent from the resource provider to the customer, this
message indicates that a RenegotiationOffer was not accepted and will no longer
be considered by the resource provider. Sending this message is equivalent to
a WS-Agreement fault message being sent.

– RenegotiationNotPossible is a message that can be sent by either party (when
allowed) to indicate that the re-negotiation of a contract is not (or is no
longer) possible. This may be because, for example, the resources allocated in
the current contract (i.e. the contract being re-negotiated) have expired. This
may also be mapped onto a type of WS-Agreement fault message.

5.2 Protocol Behaviours

Safety Properties We assume that the provider and customer communicate by
sending messages asynchronously using a non-Byzantine model7. Messages can
take arbitrarily long to be delivered and may be duplicated and/or lost but not
corrupted. We also define what are called safety properties for the protocol [15].
The safety properties for this protocol are that:

– Only an offer that has been sent by the customer can be accepted.
– Only one offer can be accepted in an instance of the re-negotiation protocol.
– An offer which has been rejected by the provider cannot be accepted later.
– The acceptance of an offer by the provider renders all other outstanding of-

fers within the instance of the re-negotiation protocol invalid (i.e. they are
revoked).

– A RenegotiationNotPossible message sent from the provider to the customer
means that all outstanding offers have been revoked.

Safety properties are protocol behaviours that cannot be broken. If the safety
properties are broken then one of the protocol participants has exhibited a fault
of some kind.
6 As we described in Section 3.3, the new agreement is formed when the accept message

is sent because we invoke contract law’s ‘mailbox rule’.
7 Byzantine behaviour is where a protocol participant not only does not follow the

prescribed messaging behaviour but also my fail to behave consistently.



Customer Behaviour

– Send RenegotiationQuoteRequest.
• Pre-condition: The customer’s contract must not be in the superseded

state.
• Post-condition: The customer’s contract remains in its current state.

– Receive RenegotiationQuote.
• Pre-condition: There is no pre-condition to this event occurring as it can

take place at any time, including after the customer’s contract has entered
the superseded state (as it may be a message delayed from earlier in
the re-negotiation). A provider can initiate re-negotiation by sending this
message without prior receipt of a RenegotiationQuoteRequest.

• Post-condition: If the customer’s contract is in the superseded state then
it must remain in this state and no messages are being sent in response. If
the customer is in any other state they may choose to ignore this message
and remain in their current state or they may choose to reply with a
RenegotiationQuoteRequest or RenegotiationOffer .

– Send RenegotiationOffer .
• Pre-condition: The customer’s contract must not be in the superseded

state8.
• Post-condition: The customer’s contract is in the renegotiating state.

– Receive RenegotiationOfferAck .
• Pre-condition: The customer must have sent a RenegotiationOffer matching

the correlation identifier in the RenegotiationOfferAck .
• Post-condition: The customer should remain in its current state.

– Receive RenegotiationAccept.
• Pre-condition: The customer must have sent a RenegotiationOffer with a

message identifier identical to the correlation identifier in the Renegotia-

tionAccept message. This message may be received at any time after the
RenegotiationOffer was sent, including after the contract has entered the
superseded state as duplicates of messages may be received.

• Post-condition: The customer’s current contract is in the superseded

state. No further messages should be sent in this instance of the re-
negotiation protocol.

– Receive RenegotiationReject.
• Pre-condition: The customer must have sent a RenegotiationOffer with a

message identifier the same as the correlation identifier in the Renegotia-

tionReject message.
• Post-condition: The customer’s contract remains in the current state or,

if it is in the renegotiating state and there are no outstanding Renego-

tiationOffer messages it moves to the contracted state.

8 Note that within the protocol, there is the capability for a customer to make multiple
offers to the provider, i.e. to send more than one. This situation can come about if,
for example, the customer sends an offer and then another offer before it receives
a response from the provider. The provider may then receive two offers from the
customer in close succession. This is not a problem because the safety properties of
the protocol ensure that only one offer can be accepted and all other offers become
invalid when it is accepted.



– Send RenegotiationNotPossible.
• Pre-condition: The customer’s contract must be in the contracted state.
• Post-condition: The customer’s contract must be in the contracted state.

– Receive RenegotiationNotPossible.
• Pre-condition: This event may take place at any time, including after the

customer’s contract has entered the superseded state as this may be a
message delayed or duplicated from earlier in the re-negotiation.

• Post-condition: If the customer’s contract is in the superseded state it
should remain in this state and no messages sent in response. Otherwise,
the customer’s contract moves to the contracted state.

Resource Provider Behaviour

– Receive RenegotiationQuoteRequest.
• Pre-condition: There is no pre-condition to this event occurring as it

can take place at any time, including after the contract has entered the
superseded state as this may be a message from the customer delayed
from earlier in the re-negotiation.

• Post-condition: The provider’s contract remains in its current state. If the
provider’s contract is in the superseded state then the RenegotiationAccept

message originally sent to agree the superseded contract must be resent
to indicate the state of the contract. In the otehr states, the provider may
consider sending a RenegotiationQuote message.

– Send RenegotiationQuote.
• Pre-condition: The provider’s contract must not be in the superseded

state.
• Post-condition: The provider’s contract remains in its current state.

– Receive RenegotiationOffer .
• Pre-condition: There is no pre-condition to this event occurring as it

can take place at any time, including after the contract has entered the
superseded state as this may be a message from the customer delayed
from earlier in the re-negotiation.

• Post-condition: If the provider’s contract is in the superseded state a
RenegotiationAccept message must be sent with the correlation identifier
matching the identifier of the previously accepted RenegotiationOffer . Oth-
erwise a RenegotiationOfferAck must be sent with the correlation identifier
matching the id of the RenegotiationOffer message received. If a dupli-
cate RenegotiationOffer is received the same RenegotiationOfferAck message
must be resent. If the duplicate offer had been rejected previously, the
same RenegotiationReject message must be resent as well.

– Send RenegotiationOfferAck .
• Pre-condition: The provider must have received a RenegotiationOffer .
• Post-condition: The provider’s contract is in the renegotiating state.

– Send RenegotiationAccept.

• Pre-condition: The provider must have sent a RenegotiationOfferAck . The
correlation id of the RenegotiationAccept message being sent must be iden-
tical to the message id of the RenegotiationOffer that is being accepted.



Customer Provider

RenegotiationOffer (A)

RenegotiationOffer (A)

RenegotiationOffer (A)

RenegotiationAccept (B, A)

State: renegotiating

No response - resend

State: superseded

State: renegotiating

State: contracted

State: contracted

State: renegotiating

State: contracted

State: superseded

State: renegotiating

Fig. 2. Lost, duplicated RenegotiationOffer

Customer Provider

RenegotiationOffer (Y)

RenegotiationAccept (Z,Y)

RenegotiationOffer (Y)

RenegotiationAccept (Z,Y)

State: renegotiating

State: superseded

State: renegotiating

State: contracted

State: renegotiating

State: superseded

State: superseded

State: superseded

State: contracted

Fig. 3. Lost RenegotiationAccept

• Post-condition: The provider’s current contract is in the superseded state.
All outstanding offers made by the customer are marked as revoked. The
newly established contract is in the contracted state.

– Send RenegotiationReject.

• Pre-condition: The provider must have sent a RenegotiationOfferAck . The
correlation identifier of the RenegotiationReject message being sent must be
identical to the message identifier of the RenegotiationOffer that is being
rejected.

• Post-condition: The provider’s contract moves to the contracted state
unless there are outstanding RenegotiationOffer messages, in which case it
remains in the renegotiating state.

– Send RenegotiationNotPossible.

• Pre-condition: The provider’s contract must be in the contracted or
renegotiating state.

• Post-condition: The provider’s contract is in the contracted state.

– Receive RenegotiationNotPossible.

• Pre-condition: This event may take place at any time, including after the
provider’s contract has entered the superseded state as this may be a
message (possibly a duplicate) delayed from earlier in the re-negotiation.

• Post-condition: If the provider’s contract is in the superseded state it
must remain in this state and the original RenegotiationAccept message
must be resent. Otherwise, the provider sends out RenegotiationReject mes-
sages to all outstanding offers and moves to the contracted state.

5.3 Handling Inconsistencies

As described in Section 2, this protocol relaxes the requirement for consistency of
the contract state across the customer and resource provider. In doing so we gain
the availability of resources for booking as they are never in a state between ‘not-
booked’ and ‘booked’, unlike in a protocol based on a transactional approach in
which resources need to be reserved until a transaction completes or aborts. This
section describes how inconsistencies between the customer and provider are han-
dled through the protocol, illustrated through two example message exchanges.



Example 1 With both the customer and the resource provider in the contracted
state, the customer sends a RenegotiationOffer offer with identifier A to the provider
and moves to the renegotiating state. Unfortunately, this message is lost on the
network, thus the two parties have inconsistent states. This scenario is shown in
Figure 2. Upon not receiving a reply to their RenegotiationOffer , the customer may
keep resending the same message until they receive a response from the resource
provider. Resending a RenegotiationOffer is not a problem as it can only be ac-
cepted or rejected once. Thus, the customer can be confident that they will not be
contracted multiple times. In Figure 2, the provider returns a RenegotiationAccept

with an identifier B and a correlation identifier A to indicate which offer is being
accepted. Following the receipt of the RenegotiationAccept the customer will be in
the same state as the provider when the provider sent the messages9.

Example 2 Figure 3 shows the customer and the provider in the renegotiating
state after the customer sends RenegotiationOffer with identifier Y. The provider
sends a RenegotiationAccept with identifier Z and correlation identifier Y in re-
sponse. The accept message is lost and the customer and the resource provider
are in inconsistent states. As in Example 1, the customer may keep resending the
RenegotiationOffer until it receives a response.

6 Summary, Conclusions & Future Work

This paper has described an application-level protocol between a service customer
and a provider that meets the requirements of the OGF’s GRAAP-WG for rene-
gotiating existing agreements, which may be SLAs. The protocol is based on the
principles of contract law and assumes an imperfect message transmission layer
so it is designed to behave correctly and reliably even in the presence of network
faults that lead to message loss, delay and duplication. The protocol is indepen-
dent of the contents of the contract the messages relate to and is therefore usable
in various application domains that need re-negotiation capabilities, such as when
SLAs for Grid services need to have their original terms changed.

We have implemented the protocol as described in this paper and fully tested it
to ensure it meets the specification. The heart of the protocol (the state machine
in Figure 1) was implemented in around 90 lines of Ruby. The integration of
the protocol into an existing WS-Agreement framework is work to be conducted
in future. Such an integration will include tests to evaluate the influence of re-
negotiation on the system’s overall performance.

7 Acknowledgements

The authors would like to express their thanks to members of OGF’s GRAAP-
WG who provided feedback on an earlier draft of this paper and in particular Karl
Czajkowski of UNIVA for his comments. Michael Parkin is pleased to acknowledge
that this work was carried out as part of an industrial fellowship for the CoreGRID

9 Note that we do not say that the customer and resource provider will be in the same
state as the provider may have changed state in the time between sending the reply
and the customer receiving it.



IST project N◦004265, funded by the European Commission and partly sponsored
by ATOS Origin Research and Innovation Spain. Bastian Koller’s work is part
of the BREIN project [16], partly funded by the European Commission’s IST
activity of the 6th Framework Programme, contract number 034556. This paper
expresses the opinions of the authors and not necessarily those of the European
Commission. The European Commission is not liable for any use that may be
made of the information contained in this paper.

References

1. A. Andrieux et. al. Web Services Agreement Specification (WS-Agreement). Pro-
posed Recommendation, Grid Forum Document, GFD.107, Open Grid Forum.
September 2006.

2. H. Ludwig, T. Nakata, P. Wieder, and O. Wäldrich. Reliable Orchestration of Re-
sources using WS-Agreement. CoreGRID Technical Report, TR-0050. October 2006.

3. T. Nakata. Thoughts on Negotiation. GRAAP-WG, Open Grid Fo-
rum 18, Washington DC, US. September 11–14, 2006. Presentation,
<https://forge.gridforum.org/sf/go/doc13878?nav=1> (accessed October 2008).

4. P. McKee, S. Taylor, M. Surridge, R. Lowe, and C. Ragusa. Strategies for the Ser-
vice Market Place. Grid Economics and Business Models, Proceedings of the 4th
International Workshop, GECON 2007, Springer-Verlag, pages 58–70. August 28,
2007.

5. J. Varia. Building GrepTheWeb in the Cloud, Part 1: Cloud Architectures.
<http://developer.amazonwebservices.com/connect/entry.jspa?externalID=1632>

(accessed October 2008).
6. FIPA Technical Committee Communication. FIPA Iterated Contract Net Interac-

tion Protocol Specification, FIPA Specification SC00030H, Foundation for Intelligent
Physical Agents. 2002.

7. Google, Inc. Introduction to Distributed System Design. Google Code for Educators
Tutorial. October 2007.

8. S. Gilbert and N. Lynch. Brewer’s Conjecture and the Feasibility of Consistent,
Available, Partition-tolerant Web Services. ACM SIGACT News, 33(2):51–59. June
2002.

9. P. Helland. Memories, Guesses, and Apologies. MSDN Blog Article. May 2007.
10. P. Helland. SOA and Newton’s Universe. MSDN Blog Article. May 2007.
11. M. Parkin, D. Kuo, J. Brooke, and A. MacCulloch. Challenges in EU Grid Contracts.

Proceedings of the 4th eChallenges Conference, pages 67–75. October 2006.
12. T. Nakata et. al. Re-Negotiation Wishlists. GRAAP-WG Wiki, Open Grid Forum.

Web site, <https://forge.gridforum.org/sf/projects/graap-wg> (accessed October
2008).

13. T. Nakata et. al. Re-negotiation usage scenarios. GRAAP-WG Wiki, Open Grid Fo-
rum. Web site, <https://forge.gridforum.org/sf/projects/graap-wg> (accessed Oc-
tober 2008).

14. P. Helland. Data on the Outside Versus Data on the Inside. Proceedings of the
Second Biennial Conference on Innovative Data Systems Research, pages 114–153.
January 2005.

15. L. Lamport. Specifying Systems: The TLA+ Language and Tools for Hardware and
Software Engineers. Addison Wesley Professional, 2003.

16. Business Objective Driven Reliable and Intelligent Grids for Real Business (BREIN).
EC FP6 Integrated Project. Web site, <http://www.gridsforbusiness.eu/> (ac-
cessed October 2008).


