
SECTISSIMO: A Platform-independent Framework for
Security Services

Mukhtiar Memon, Michael Hafner, and Ruth Breu

University of Innsbruck, AUSTRIA

{mukhtiar.memon, m.hafner, ruth.breu}@uibk.ac.at
Abstract. It is non-trivial to secure dynamically composed systems based on
language- and technology-independent service components. One of the approaches
to tackle the challenge is the use of powerful Security Modeling Frameworks
based on tools to generate security executables. We propose the SECTISSIMO

framework: a layered approach for the modeling of security-critical, service-
oriented systems. In SECTISSIMO the functional models are enriched with se-
curity extensions and transformed into executables using Abstract Security Pro-
tocols and Controls. Based on them, we generate Security Policies containing
Authentication and Authorization Assertions to execute on target platform. On
the target platform the Security Components, provide security functionality to
enforce the generated policies. The components are integrated based on the prin-
ciples of the Service Component Architecture (SCA) and provide interfaces to
access the their functionality.

1 Introduction
Inter-organizational workflows among business partners involve sharing of resources
owned by partners (i.e. service providers) and consumers alike. Shared resources may
contain personal data of individuals as well as legal and financial information of the
enterprises. The workflows processing security-sensitive data need to be modeled ex-
plicitly with security and privacy considerations. The common practice has been to meet
the security-related requirements in the systems during implementation with language-
dependent handcrafted fixed-code. Such inflexible code can not withstand the unfore-
seen challenges emerging from changes in business logics, workflow variations and
patchy platform technologies. A better approach is to define security requirements in
functional models and write transformation rules rather than writing security programs.
This is the spirit of model-based engineering and also the conceptual foundation of the
SECTISSIMO framework. We investigate security critical use cases in service-oriented
systems and apply appropriate security patterns and protocols to meet their security
requirements followed by model-transformation to generate executable code. In partic-
ular, with the SECTET framework [14] we have developed an approach for the system-
atic design and realization of security-critical workflows for web services technology.
It consists of UML-based elicitation of security requirements, a Reference Architecture
based on web services and a prototypical Code Generator. SECTISSIMO takes the cru-
cial step beyond in providing a platform that abstracts from the underlying technology
and forms the security services from abstract security artifacts .

The remainder of the paper is organized as follows. In Sec.2 we discuss related
approaches. We present the proposed SECTISSIMO framework concepts, details of its



2 Mukhtiar Memon et al.

layers and example healthcare scenarios in Sec.3. This is followed by discussion of
Implementation Specific Model in Sec.4, Security Components in Sec.4.1 and Service
Component Architectures in Sec.4.2 respectively. For implementation, the required Se-
curity Technologies are discussed in Sec.4.3. We conclude with discussion of future
work in Sec.5.

2 Related work
Several approaches deal with the modeling of security requirements using security pat-
terns and protocols. In [21] security goals are modeled for cross-organizational business
processes, which considers SOA-based federated environment that comprises multiple
independent trust domains. Single Sign-on based Authentication is solved with security
modeling in [19], which also separates the application layer from the security layer.
Other approaches which focus on security patterns for modeling security requirements
are extensively covered in [12]. Some work within the Security Engineering commu-
nity deals with specification of security requirements in the context of formal methods.
Examples are the UML extension UMLsec [15] together with the AUTOFOCUS tool
and the PCL approach [11]. Few groups deal with aspects of code generation in the
context of secure solutions. Among these are the groups of Basin [17] and Ulrich Lang
[16]. Both approaches present frameworks for high-level specification of access rights
including code generation; the former in J2EE environment and the latter in CORBA.
Our method exhibits some similarities, but has the advantage that we introduce an ad-
ditional level of abstraction between models and code. Moreover, our approach goes
further in that we do not only deal with access rights but also with other security re-
quirements such as Non-repudiation, Rights Delegation, Privacy and Auditing. Among
other approaches are important theoretical results like the RBAC model [13], access
models in AKENTI [20] and PERMIS [10]. We rely on some ideas of these approaches
like the role or credential concepts, however, we have a rather wider domain in our
focus. The technological foundation of SECTISSIMO framework is conformable to Ser-
vice Oriented Security Architecture (SOSA), as we compose security services from the
components, which offer security functionality. These components are integrated based
on Service Component Architecture (SCA) model [18].

3 SECTISSIMO: A Platform-independent Framework for
Security Services

The SECTISSIMO framework allows to model security requirements in parallel with
business processes. It is a three-layered approach comprising; 1. A Secure Business
Process Model, 2. An Abstract Security Services Model, and 3. An Execution Platform
Layers. SECTISSIMO is a novel concept, as most of the approaches in security modeling
consider two layers (i.e. Security Modeling and Transformation). Common approaches
generate security assets for specific platform, where the transformation rules are bound
to the target platform. Hence, in case of the changes in the security requirements or tar-
get platform, new transformation rules have to be written to generate artifacts. To over-
come this limitation, the proposed framework introduces an additional layer of abstrac-
tion between the security-enhanced models and the implementation technologies. In



SECTISSIMO: A Platform-independent Framework for Security Services 3

this abstraction layer, security requirements are modeled with more fine-grained details
using Security Protocols, Security Controls and Composition Rules. As the security-
enhanced functional models contain abstract security requirements, which need more
details of the target platform before they can be transformed into security code (e.g. Ex-
ecutable Security Policies). The layer of abstraction between models and transformation
provides space for modeling such details. This layer uses abstract security artifacts such
as security protocols and maps them to concrete security functionality to be executed at
the target platform.

Fig. 1. SECTISSIMO Framework

Figure 1 sketches the three-layered architecture of the SECTISSIMO framework,
conceived as a substantial extension to the two-layered approach in our previous SECTET
framework [14]. The Secure Business Process Model provides the functional view of
the system enhanced with security concerns. The Abstract Security Services Models in-
tegrate a repository of Platform-independent Security Artifacts based on Security Proto-
cols (e.g. Authorization, Single Sign-on, Non-repudiation) and Security Controls (e.g.
Algorithms for Encryption/Decryption, Digital Signature). The set of Service Composi-
tion Rules specify the order in which the security protocol executes in a given scenario
and the conditions that have to be fulfilled before protocol composition. For example,
confidential document exchange is executed in the order i.e. Signature→ Encryption at
the sender’s end and Decryption → Signature Verification at the receiver’s end.



4 Mukhtiar Memon et al.

3.1 Example of Secure Healthcare Service Scenarios

In the SECTISSIMO framework, we differentiate between two domains: the Security do-
main and the Application domain. Both domains contain meta-concepts defined in their
respective meta-models. For example, the Security Domain Metamodel (please refer
to [9] for comprehensive information) defines meta-concepts of security such as Roles
and Documents. Whereas, a Healthcare Metamodel is an example for an Application
domain, which uses healthcare related meta-concepts such as PatientRecord, Emergen-
cyAccess and 4-Eyes Principle. With this separation of domains, the application devel-
oper can focus on functional requirements and leave the security problems to be solved
to the security expert [19].

To explain the framework mechanisms, we present an example in the following sub-
sections. It addresses use cases for securing patient’s medical data. Different users in
the healthcare domain (i.e., Physician, Patient, Pharmacy, Insurance etc.) with different
permissions (which depend upon their legal rights and job responsibilities) store, pro-
cess and share the medical data [22]. We will be discussing following two scenarios
related to security of patient’s data:

SCENARIO 1: Identity Resolution: when a user accesses services accross dif-
ferent Security Domains, the Single Sign-on Security Pattern may be used to
realize this requirement.
SCENARIO 2: Security Policies for Authorization to let legitimate users access
the services. This will be modeled with the Authorization Pattern.

In the first phase, we model the Secure Business Process Models as shown in Fig-
ure 2. We use the Security Domain Metamodel from [9], which defines the security
concepts and their relations more comprehensively. Figure 2 shows an example health-
care Application Domain model, with security enhancements stereotyped using meta-
concepts from the Security Domain Metamodel. Using these models, we discuss above-
mentioned scenarios and working mechanism of the proposed framework and explain
the responsibilities of its different layers.

3.2 Business Process Layer

The first layer comprises functional models enhanced by security requirements, so
called Security Policies. Figure 2 shows the security-enhanced model for (a part of) a
healthcare system as a UML class diagram. It consists of the main entities Physician
and PatientRecord. The class diagram is extended based on the UML Profile Ex-
tension Mechanism through stereotypes [7].
The stereotypes i.e. <<Role>> and <<Document>> are the meta-classes of Security
Domain Metamodel. The OCL constraint associated to the PatientRecord class
defines an Authorization Constraint i.e. the physician can access the data
only within timings of 9:00 to 17:00 hours. The other role shown in the role hierarchy
is an Specialist, who has limited access to patient’s data depending upon her ex-
pertise. The second OCL constraint defines an Authorization Constraint for
the Specialist i.e. if her Specialization is Heart Specialist, only then she can ac-
cess the patient’s data related to Heart Surgery. The medical record is composed of the
Diagnosis report and a Prescription.



SECTISSIMO: A Platform-independent Framework for Security Services 5

<<Document>>

PatientRecord

−recordType

MedicalRecord

PrescriptionDiagnosis

<<Role>>

Specialist

<<Role>>

Physician

{context PatientRecord
perm [PhysicianRole]:ph = subject.map(physician) in
 (self.recordType = "Heart Surgeory" implies
ph.secialization="Heart Specialist")
}

{context PatientRecord
perm [PhysicianRole]:ph = subject.map(physician) in 
(self.accessTime >= 9:00 and <=17:00)
}

<<authorizationConstraint>>

Fig. 2. Healthcare System Model with Security Policies

3.3 Abstract Security Services Layer

The second layer provides an additional abstraction for the security services which ex-
ecute on target platform. In order to provide this abstraction, security requirements
defined in models are mapped to the security patterns and protocols which can solve
those requirements. This is referred as Platform Independent Transformation in Fig-
ure 1. In the example scenarios, the two security requirements i.e. Authentication and
Authorization, are mapped to the security patterns of Single Sign-on and Authorization
respectively. Subsequently, these patterns are elaborated with the security protocols to
show detailed interaction among protocol participants. The Security Protocols and Con-
trols required to model the example scenarios are discussed in following subsection.

3.4 Abstract Security Protocols and Controls

The Security Protocols, which can solve a variety of security problems are the protocols
for Authentication, Authorization, Single Sign-on, Non-repudiation and Privacy. The
Security Protocols use Abstract Security Controls mapped to concrete security controls
at the target platform. The mapping of abstract to concrete security controls is done
by the Implementation Specific Model as shown in Figure 1. The ISM integrates this
mapping to the Platform Specific Transformation, so that when transformation rules are
written, those should take into consideration the compatibility of the type (or format) of
the artifacts to be generated. The concrete security controls are the security programs
for encryption/decryption, digital signature and token/assertion generation performed
while sending/receiving messages between protocol participants and security services
for Authentication, Authorization and non-repudiation etc. These programs are written
in specific Security Components, which offer security functionality to implement them
(Section 4.1).

In SCENARIO 1, in order to solve the security problem of Identity Federation (When
a physician accesses health services from other security domain), the Single Sign-On



6 Mukhtiar Memon et al.

<<Role>>

ServiceProvider2
<<Role>>

ServiceProvider1
<<Role>>

Authenticator
<<Role>>

User

Return Service7: 

Redirect for Authentication2: 

Request login3: 

Resolve Security Tokens5: 

Send Compatible Tokens6: 

Request Service1: 

Login with security Tokens4: 

Fig. 3. Single Sign-on Authentication

(SSO) Authentication pattern is used (Figure 3). The User, Service Providers and Au-
thenticator are stereotyped as <<Role>> . The credentials of the user are validated
by ServiceProvider1, who has a trust relation with ServiceProvier2. The
Authenticator validates user’s credentials for ServiceProvider1, but those
credentials are not compatible with the security domain of ServiceProvider2.
The ServiceProvider2 mentions in its Security Policy that he accepts SAML as-
sertions from Authenticator before sending the requested service. An example
WS-SecurityPolicy of ServiceProvider2 is shown below [8].

<wsp:Policy>
<sp:SamlToken sp:IncludeToken="AlwaysToRecpt">

<wsp:Policy>
<sp:WssSamlV11Token10/>

</wsp:Policy>
</sp:SamlToken>

</wsp:Policy>

The Authenticator, which in this case is a SAML Authority creates a SAML
response for the user and sends it to the user. The user adds the SAML response to
the Security Header of SOAP message for service request and sends the request to the
ServiceProvider2, who returns the service. An example of the SAML response
assertion carrying user’s authentication statement is shown below, where a user i.e. Dr.
Peter with <<Role>> Physician is authenticated as a subject.

<saml:Assertion
xmlns:saml="urn:oasis:names:tc:SAML:1.0:assertion"
...
AssertionID="xbhutysxmigruieLoPiuex98xkioU"
Issuer="Authenticator"
IssueInstant="2008-06-22T11:05:41.795Z">

<saml:Conditions NotBefore="2008-06-22T11:00:41.795Z"
NotOnOrAfter="2008-08-22T15:41:22.795Z"/>

<saml:AuthenticationStatement
AuthenticationMethod="urn:oasis:names:tc:SAML:1.0:am:password"
AuthenticationInstant="2008-06-22T11:41:20.608Z">

<saml:Subject>
<saml:NameIdentifier>Dr. Peter</saml:NameIdentifier>

...
</saml:Subject>

</saml:AuthenticationStatement>
</saml:Assertion>



SECTISSIMO: A Platform-independent Framework for Security Services 7

In SCENARIO 2, the physician accesses the services offered by ServiceProvider. She
gets access based on her access rights which depend upon her job responsibilities [13].
The Authorization Security Pattern solves the problem of modeling the authorization
policy for the physician. As shown in Figure 4, the Authorization Service checks the
user rights and constraints and sends permit or deny decisions in the AuthzDecision-
Statement part of SAML Authorization Assertion (The code for authorization assertion
is not provided due to space limitation).

<<Role>>

Authorization Service
<<Role>>

ServiceProvider
<<Role>>

User

Check Rights & Constraints3: 

Send Decision4: 

Request Decision2: 

Return Permit or Deny5: 

Request Access1: 

Fig. 4. Security Protocol for Authorization

3.5 Service Composition Rules
The Abstract Security Protocols use Service Composition Rules, which decide the crite-
ria on the basis of which the protocols are composed. Modeling security protocols needs
knowledge of the participants (i.e. ServiceProvider1, ServiceProvider2
and Authenticator), pre-conditions required to be fulfilled, or post-obligations to
be agreed upon by the participants. These rules perform following checks for protocol
composition:

1. Selection of Protocol Participants: These rules select the particular business part-
ners which collaborate in the business process. When this rule is applied for Single
Sign-on Authentication, it selects the participants (i.e. ServiceProvider1 and
ServiceProvider2) and Authenticator as shown in Figure 3.

2. Pre-Conditions: Before the ServiceProvider1 and ServicePorvider2
collaborate, they must agree upon the terms and conditions involved in collabo-
ration. These terms and conditions may involve the legal or ethical requirements
to be agreed upon beforehand. Also, if the collaborators want to negotiate certain
service parameters (e.g. monitory), could be resolved using pre-conditions.

3. Post-obligations: Rules defining post-obligations to be taken into account while (or
after) executing protocol (e.g. payments, auditing).

The composition rules can be written in formal way with protocol composition logic.
In models, rules can be defined with Object Constraint Language (OCL), which pro-
vides constructs for setting conditions on model elements such as classes, instances and
attributes (detail beyond the scope of this paper).

3.6 Execution Platform Layer
The Execution Platform Layer is where the secure business workflows execute. It is
based on a runtime platform targeting an specific software application or middleware



8 Mukhtiar Memon et al.

technology such as web services or CORBA. The runtime platform consists of a Ref-
erence Architecture which relies on security mechanisms and primitives as technology-
dependent counterparts of the Abstract Security Protocols and Controls. The security
artifacts, which execute at runtime include Security Policies containing Authentication
and Authorization Assertions. In the example scenarios, the security artifacts are Au-
thorization Policies defining access rights for a physician and Identity Assertions when
she accesses services from different security domains.

4 Implementation Specific Model
After modeling security protocols the next phase in the framework is the Platform Spe-
cific Transformation of Abstract Security Protocols into the security services, which
execute on target platform. Before writing transformation rules, it is necessary to get
the platform details on which business services execute. This includes information re-
lated to the Service Architecture, the Security Protocols and the Security Controls of the
target platform. The details are expressed in an Implementation Specific Model (ISM),
which integrates them into Transformation functions to generate compatible security
artifacts. The ISM plays a role of an Adapter between models and code to harmonize
the execution of security artifacts at the target application. The business services execut-
ing on a target platform belong to a variety of application formats such as J2EE/.NET
applications, Web Services, BPEL Processes, CORBA components etc. These appli-
cations require different formats of security artifacts such as WS-SecurityPolicy, J2EE
Application Deployment Descriptor and CORBA’s Policy Definition Language (PDL).

4.1 Security Components
The target platform needs to execute various security services. For example, the im-
plementation of requirement of Single Sign-on necessitates a security infrastructure
that accepts security tokens (i.e. username/password) from ServiceProvider1 and
create a SAML Assertions for ServiceProvider2. A Security Components is the
piece of implementable code that executes such functions related to security controls
such as encryption, digital signature, token/assertion generation etc. It uses the security
infrastructure to create tokens (i.e. username/password, Kerberos ticket), generate keys
and certificates etc. The component are written in the languages such as Java, C++ and
can be called with its interfaces.
The use of the component paradigm, on one hand enhances the flexibility in the selec-
tion of most appropriate component and on the other hand it lets the application devel-
oper focus on the system functionality and leave the security-related implementation to
be met by the security expert. For an implementation that uses two or more different
component services a Security Service Composite is formed and executed. The com-
position of components is performed by Component Composition Service based on the
principles of Service Component Architecture (SCA) paradigm.

4.2 The Service Component Architecture (SCA)
The Service Component Architecture (SCA) paradigm, provides component-based model
featuring Loose-coupling, Flexibility, Composition and Productivity [5]. An SCA com-
ponent has two types of interfaces; Provided and Required (also called Service Refer-
ences) interfaces. They are used to integrate with other components to form the service



SECTISSIMO: A Platform-independent Framework for Security Services 9

composite. The composition of components occurs through the wiring of service inter-
faces and references. The essential elements of SCA, which provide the architectural
flexibility to form composition of components and network of services are Develop-
ment (Development of individual components), Composition (Composition of compo-
nents into services) and Assembly (Structure of composite services or service networks).
Figure 5 shows the composition of security components for Authentication, Authoriza-

Fig. 5. Service Component Architecture for Security Components to form a Composite

tion and Auditing. When integrated these components form a Security Service Compos-
ite. The ISM defines which security component is suitable to be implemented for which
security protcol. For example, the Authentication component implements the protocol
for Single Sign-on and Authorization component implements the protocol for Autho-
rization. For SCA implementation, recently Apache-Tuscany provides an API to write
the service composites from the components written in Java and C++ [1]. An SCA-
Policy Framework is provided by OpenSOA [5] and OASIS-OpenCSA [3]. The frame-
work provides security services to components using Security Intents. Our approach of
providing security is different from the one implemented by openSOA’s SCA-Policy
Framework. Because, the components referred in these specifications provide applica-
tion functionality, whereas, we use the components that provides security functionality.
Also SCA-Policy Framework considers implementation of the security intents as WS-
Policy only. On the contrary, we consider the implementations that are best suitable to
the target application and runtime platform (i.e. WS-SecurityPolicy, J2EE Deployment
Descriptor etc.). Security composites can be written in XML-based Service Composi-
tion Definition Language (SCDL) [6].

4.3 Transforming Models into Security Technologies
In our framework, we export UML models into XML Metadata Interchange (XMI). XMI
enables easy interchange of metadata between UML-based modeling tools and MOF-
based metadata repositories in distributed platform-independent environments [2]. For
writing transformation rules we use openArchitectureWare(oAW)[4], which provides
a family of languages for model-to-model and model-to-code transformation. The se-
curity APIs used for writing security components are based on Java, XML and WS-
security. For Portable Identity in Single Sign-on, we use Security Assertions Markup
Language (SAML) for Authorization Policies we use eXtensible Access Control Markup
Language (XACML). We use WS-SecurityPolicy to define security requirements at-
tached to particular service.



10 Mukhtiar Memon et al.

5 Conclusion and Future work
In this paper, we proposed the SECTISSIMO framework, which is a three-layered ap-
proach that transforms security-aware high-level functional models into the artifacts
which execute on a target platform. We assume that any services (e.g. Web Services,
BPEL Process) or applications (e.g. Web, J2EE/.NET) can execute these services which
use the code generated from abstract security artifacts. Our present work in SECTIS-
SIMO is an enhancement to the SECTET framework [14] and in future plan to add more
security capabilities for deperimeterized SOA applications.

References
1. Apache-Tuscany Project. http://incubator.apache.org/tuscany/.
2. MOF 2.0 / XMI Mapping Specification. http://www.omg.org.
3. OASIS - Open Composite Service Architecture. http://www.oasis-opencsa.org.
4. OpenArchitectureWare(oAW). www.openarchitectureware.org.
5. Service Component Architecture. http://www.osoa.org/display/Main/Home.
6. Service Component Definition Language. http://www.davidchappell.com.
7. UML Profile Extension Mechanism. http://www.omg.org.
8. WS-SecurityPolicy. www.oasis-open.org.
9. M. Alam, M. Hafner, M. Memon, and P. Hung. Modeling and Enforcing Advanced Access

Control Policies in Healthcare Systems with SECTET. In MOTHIS ’07: MODELS 2007,
Nashville, USA, 2007.

10. D. W. Chadwick and A. Otenko. The PERMIS X.509 role based privilege management
infrastructure. In SACMAT ’02: Proceedings of the 7th ACM symposium on Access control
models and technologies, pages 135–140, New York, NY, USA, 2002. ACM.

11. A. Datta, A. Derek, J. C. Mitchell, and D. Pavlovic. A derivation system and compositional
logic for security protocols. J. Comput. Secur., 13(3):423–482, 2005.

12. R. David, G. Carlos, F. Eduardo, and P. Mario. Security patterns and requirements for
internet-based applications. Internet Research, 16(5):519–536, 2006.

13. D. F. Ferraiolo, R. Sandhu, S. Gavrila, D. R. Kuhn, and R. Chandramouli. Proposed NIST
standard for role-based access control. ACM Trans. Inf. Syst. Secur., 4(3):224–274, 2001.

14. M. Hafner, R. Breu M. Breu, B. Agreiter, and Andrea Nowak. SECTET: An Extensible
Framework for the Realization of Secure Inter-Organizational Workflows. Journal of Internet
Research, 16(5), 2006.

15. J. Juerjens. Secure Systems Development with UML. SpringerVerlag, 2004.
16. U. Lang and R. Schreiner. Developing Secure Distributed Systems with CORBA. Artech

House, Inc., Norwood, MA, USA, 2002.
17. T. Lodderstedt, D. Basin, and J. Doser. SecureUML: A UML-Based Modeling Language for

Model-Driven Security. In UML ’02: Proceedings of the 5th International Conference on
The Unified Modeling Language, pages 426–441, London, UK, 2002. Springer-Verlag.

18. G. Peterson. Service Oriented Security Architecture, 2005. http://www.arctecgroup.net.
19. F. Satoh, Y. Nakamura, and K. Ono. Adding Authentication to Model Driven Security. In

ICWS ’06: Proceedings of the IEEE International Conference on Web Services, pages 585–
594, Washington, DC, USA, 2006. IEEE Computer Society.

20. M.R. Thompson, A. Essiari, and S. Mudumbai. Certificate-based authorization policy in a
PKI environment. ACM Trans. Inf. Syst. Secur., 6(4):566–588, 2003.

21. C. Wolter, M. Menzel, and C. Meinel. Modelling security goals in business processes. In
Modellierung, pages 197–212, 2008.

22. G. Yee, L. Korba, and R. Song. Ensuring Privacy for E-Health Services. In ARES ’06:
Proceedings of the First International Conference on Availability, Reliability and Security,
pages 321–328, Washington, DC, USA, 2006. IEEE Computer Society.


