
Transforming security audit requirements into a
software architecture

Koen Yskout, Bart De Win, and Wouter Joosen

IBBT-DistriNet, Katholieke Universiteit Leuven, Belgium?

first.last@cs.kuleuven.be

Abstract. In this paper, an approach for automated transformations
from a security requirements model to a consistent architectural model
is presented. The approach can be used with an existing architectural
model, and allows input from the architect to be taken into account.
The transformation from audit requirements into a UML model is im-
plementated using QVT and Eclipse EMF, and is illustrated by means
of a small case study.

1 Introduction

Security is, more than ever, an important software quality. Nevertheless, it is
hard to build a secure application, as demonstrated by the vast amount of se-
curity advisories, patches and updates published regularly. Of all security �aws,
architectural ones are the most di�cult and costly to correct once the system has
been produced and deployed. On the other hand, during architectural design,
modifying the architecture is cheap.

In this paper, we are concerned with the transition from security require-
ments to software architecture. This transition is interesting, because it crosses
the semantic gap between the problem and solution domain. Correctly imple-
menting security requirements across this gap is not an easy task, though. There-
fore, we propose to apply automated, model-driven techniques, supporting the
architect as much as possible in this process. The envisaged approach aims at
automatically transforming security requirements into a consistent architecture,
and consists of three main parts:

1. the de�nition of a suitable security requirements metamodel, in which se-
curity requirements can be modeled. Such metamodel is di�erent from a
functional requirements model, in that it needs to have security-speci�c se-
mantics. Also, it needs to lie close enough to the architectural domain to
make an automated transition possible. A �rst metamodel speci�cally for
this purpose was already presented in earlier work [1].

2. the creation of a set of transformations from a security requirements model
to an architectural solution. The existence of these transformations is crucial

? This research is partially funded by the Interuniversity Attraction Poles Programme
Belgian State, Belgian Science Policy, and by the Research Fund K.U.Leuven.

for the success of the approach. The transformations should be able to take
an existing architecture into account, and the architect should still be able
to in�uence parts of them. This paper focuses on such a transformation from
audit requirements to architecture.

3. a methodology for the veri�cation of the correspondence of the generated
architecture to the requirements. The success of the approach is proportional
to the degree of assurance it can o�er on the correctness of the end result.
This part is still an open challenge, that will be addressed in future work.

Note that the approach focuses on security requirements that directly in�u-
ence the architecture of the application, for example auditing or authorization
requirements. Security requirements that aim at improving design or code quality
(e.g., sanitize all input, check for bu�er over�ows, . . .) are not considered. Also,
we do not focus on the modeling of security properties of cryptographic proto-
cols. Finally, we will focus on distributed applications, although the approach is
more generally applicable.

The rest of the paper is organized as follows. In Section 2, some general
considerations regarding transformations suitable for this approach are given.
Section 3 subsequently outlines the implementation of transformation from au-
dit requirements to architecture, and is illustrated by an example in Section 4.
Related work is given in Section 5, followed by a discussion on the approach in
Section 6. Conclusions and future work are highlighted in Section 7.

2 Transformations

Each transformation will depend on both its source and target metamodels.
For the transformations of interest in this paper, the source metamodel is a
security requirements metamodel. The target metamodel is the metamodel of
some architectural description method. The architectural metamodel can follow
any paradigm (e.g., component-based), and could (but does not need to) have
special constructs for dealing with security. In this paper we use UML as the
target metamodel.

The simplest transformation takes a security requirements model as its input
and generates a corresponding architecture. The architecture is based purely
upon the information contained in the source model. However, transformations
created in this way are too rigid to be used in practice, since they cannot use an
existing architectural model, and they do not allow input from the architect.

This problem can be overcome by adding extra input to the transformation.
Rather than extending the security requirements metamodel, we introduce a
`transformational' metamodel, which is de�ned separately for each transforma-
tion. This metamodel decorates the original security requirements metamodel: it
references the original metamodel elements, but adds transformation-speci�c op-
tions. For instance, when multiple techniques can be used to implement a require-
ment, the transformational model allows the architect to select the technique he
considers as the best given the situation. Also, the transformational model can

Fig. 1: Relations between the models and
metamodels.

Requirements UML
Agent (internal) Component
Operation Operation in Interface
Entity Class in Component
Attribute of an Operation Parameter
Attribute of an Entity Property or Association
Attribute of an Agent Property
DomainType DataType or Class

Fig. 2: Possible mapping between require-
ment model types and UML types.

contain references to elements of the pre-existing target model, hereby provid-
ing the mapping between requirements and architectural elements. A graphical
overview of the relations between the various models and metamodels is given
in Figure 1.

Note that the transformational metamodel may want to impose certain con-
straints on these references, in order to restrict the set of allowed target elements.
For example, the transformation could rely on these elements to be of a certain
type, have certain properties, etc. These constraints represent assumptions made
by the implementation, which can of course be relaxed or removed by more elab-
orate transformations.

Most of the constraints follow the same pattern: they state that a certain
element from the requirements model will correspond to an element of a given
type in the UML model. For instance, a rule can require that each agent element
from the requirements model is represented as a UML component. In the trans-
formational model, it is then possible to specify the corresponding component
for each agent; if none is speci�ed, a new component can be created.

3 Implementation
This section presents the implementation of a transformation from audit require-
ments to an architecture described in a UML model. First, the used technologies
are outlined, followed by a more detailed discussion of the implemented trans-
formation.

3.1 Technology choices
We have implemented the proposed approach as an Eclipse plug-in, as a proof of
concept. All used metamodels (i.e., the security requirements metamodel plus the
transformational metamodel) are speci�ed using the Eclipse Modeling Frame-
work (EMF). As a bene�t, this allows the instant generation of a minimal, but
usable, GUI editor for creating and viewing instances of the metamodels.

For the description of the transformations, the QVT Operational Mapping
Language is used. The actual implementation is performed using the Eclipse
implementation of QVTO.

Finally, UML is used as the target model for demonstration purposes. We
generate an instance of the UML2 metamodel using the implementation of the
Eclipse UML2 project, and use an external tool to visualize the result as a UML
diagram. Note that a UML model usually contains much more information than
the information that can be visualized on a diagram. It should be stressed that
we aim for the generation of a fully consistent UML model; visualization is only
a last (and currently manual) step.

3.2 Implementation overview
This section elaborates a possible implementation of a transformation for audit
requirements. Our implementation makes the following assumptions:
1. Mappings between the requirement model and UML are performed as shown

in Figure 2 and described in [1].
2. The behavior of UML operations is expressed using activities.
3. Audit logs are represented by classes, containing an operation for each type

of event they can log.

These assumptions are restricting the applicability of the transformation,
but they could be relaxed (within certain bounds). For example, in the current
implementation, it would be relatively straightforward to represent an agent by
more than one component.

The transformational metamodel for this implementation corresponds largely
to the Audit Data Generation (FAU_GEN.1) component of the Common Cri-
teria (CC) [2]. It o�ers the following customization options.

Audit levels can be assigned to each logged operation. The audit levels are
the ones de�ned in the CC, i.e., `minimal', `basic', `detailed' and `unspeci�ed'.

The outcome option allows to specify whether success and/or failure of the
operation needs to be audited. It also provides the possibility to specify the UML
actions from the architecture that denote success and failure.

The information of the operation that needs to be logged. This allows some
parameters to be excluded from logging.

The strategy option o�ers a choice between logging strategies. Currently,
the supported strategies are the use of explicit log calls, and the use of an audit
interceptor. These strategies are detailed in the next two paragraphs. As a side
note, notice that the available strategies are heavily in�uenced by the target
metamodel. For example, in an aspect-oriented architecture, before and after
advice are the natural candidates for invoking the auditing behavior.

Explicit log calls This strategy represents the most straightforward way of imple-
menting auditing. It prescribes the adaptation of the behavior of each operation
that has to be logged, by inserting a call to a logging operation at the start
and at the end, when necessary. These logging operations are de�ned in a log
interface, and implemented by a log class. A reference to an instance of the log
class is added to the component corresponding to that agent. Explicit log calls
do not allow any variability at runtime.

Audit interceptor For a more �exible approach, the audit interceptor strategy
can be used. This strategy implements the Audit Interceptor security pattern
[3]. It introduces three classes: (1) the audit interceptor, which gets invoked
whenever a security-sensitive operation is invoked; (2) the event catalog, which
determines whether the event needs to be logged or not based on its runtime
con�guration; and (3) the audit log itself. The pattern does not specify the
mechanism by which operations are intercepted. Given that UML is our target
metamodel, we can use UML signals for this purpose. In that case, it is assumed
that a signal object is broadcast that represents the invocation of an operation
(a functionality which could be provided by middleware, for instance). The audit
interceptor then listens for signals it is interested in, and triggers its behavior
upon reception.

Due to space constraints, it is impossible to discuss the complete imple-
mentation of the transformation. In its entirety, it comprises over 900 lines of
QVT. This may seem excessive, but only about 50% is speci�c to the audit
requirements. Around 40% of the code provides support for the core security
requirement model, and roughly 10% provides helper functions for working with
UML models. Thus, a large part can be reused in the de�nition of mappings
for other classes of security requirements. Also, since transformations are writ-
ten independently of any application, they should be written only once and can
subsequently be applied multiple times.

4 Example
In this section, we will illustrate the approach with a small example. As a case
study, we use a design for an ATM (Automated Teller Machine) of a bank,
inspired by [4]. We will apply the system's audit requirements to an existing
architecture described as a UML model.

The system to be designed is the ATM's main controller. It will be connected
to, a.o., a magnetic stripe reader, an input/output console, a cash dispenser, a
printer, and the bank's ATM network. We consider the operations that can be
carried out through the customer console, i.e., withdraw, transfer, or deposit
money, and a balance inquiry. Furthermore, an operator can start and stop
the ATM via a separate, administrative console. We will implement two audit
requirements:
R1 For each operation performed by a customer, an audit record needs to be

generated at the ATM machine.
R2 The starting and stopping of the ATM machine needs to be audited.

The security requirements model corresponding to this case study contains an
internal agent element representing the ATM controller. This agent is respon-
sible for the following operations: `start', `stop`, `inquire balance', `withdraw',
`transfer' and `deposit', each with relevant parameters. The audit requirement
instances require the auditing of each of these operations to an audit log provided
by the ATM controller itself.

Element type Element name Property Value
Agent ATM Machine Target component ATM Controller (from UML model)
Operation Withdraw Target operation withdraw (from UML model)
Operation Start Target operation start (from UML model)

Signal start (from UML model)
Audit Requirement R1 Audit level Basic

Strategy Explicit Log Call
Log success true
Success actions Dispense cash (from UML model)

Audit Requirement R2 Audit level Minimal
Strategy Audit Interceptor

Fig. 3: A subset of the elements, their properties and values in the transformational
model for the ATM case.

For the example, we choose to log the start and stop operations via an audit
interceptor using UML signals, because these signals are already present in the
existing architecture. Both operations are logged on the `minimal' level. The
customer's operations will use explicit log calls, and are logged at the `basic'
level. We will include all parameters of these operations in the log record, and
log both success and failure.

Some elements and their properties in the transformational model for the �rst
requirement are shown in Figure 3. Figure 4 shows some views of the generated
architecture. The elements in green are added or modi�ed by the transformation.
Not all output of the transformation is visible on the diagrams, however. An
invisible, yet crucial property of the result is the internal consistency of the
UML model, e.g., actions only use inputs available to them, and all required
and provided interfaces match. As a consequence, all views generated from the
model will be mutually consistent.

5 Related work

The work related to this paper can be divided in four groups. First, work on
modeling security requirements has to be considered. The goal-oriented require-
ments approach KAOS [5] has extensions for eliciting security requirements. The
resulting security requirements are modeled using the general KAOS metamodel.
However, this prevents the inclusion of additional semantic information that is
necessary to de�ne an automated transformation. The Secure Tropos extension
to Tropos [6] formally introduces and re�nes the notions of ownership, delegation
and trust between agents.

The second group of related work deals with the transition of requirements
to architecture. Riemenschneider [7] gives initial ideas on re�ning architectures
based on KAOS. This idea is further re�ned and illustrated in [8]. Brandozzi [9]
introduces an intermediate language (called the `architecture prescription lan-
guage') that lies in between requirements and architecture. By means of this
language, the translation between the problem and solution domain is made
easier. A similar idea is proposed in [10]. Finally, Schmidt [11] presents an ex-
tension to the problem frames approach, utilizing patterns to preserve usability

<<component>>

ATM Controller

 : AuditInterceptor

 : EventCataloglog : AuditLog

AdminConnector

Administrator Console

CustomerConnector

Customer Console

AuditLog

+logBasic(record : LogRecord)
+logMinimal(record : LogRecord)
+logDetailed(record : LogRecord)
+logUnspecified(record : LogRecord)

EventCatalog

+lookupEvent(type : LogEventType)

CustomerConnector

+deposit()
+inquire balance()
+transfer()
+withdraw()

AdminConnector

+start()
+stop()

<<enumeration>>

LogEventType

inquire balance
withdraw

transfer
deposit

start
stop

LogRecord

-timestamp
-message : String
-event : LogEventType

AuditInterceptor

<<signal>> start()
<<signal>> stop()

<<signal>>

start

<<signal>>

stop

 : uses : logs

uses

logs

(a) Structural view.

lookupEvent

(EventCatalog::)

LogEventType.start

logMinimal

(AuditLog::)

record getLog

<<createObject>>

StartLogRecord

onStart

 [else] [logging necessary]

(b) Behavioral view: interception.

(amount, account) withdraw withdrawactivity []

account

amount

Validate PIN

Confirm
withdrawal
with bank

amount account

Error

 : Create Withdraw Success
Log Record

result

 : Create Withdraw Log
Record

amount

account

result

 : Create Withdraw
Failure Log Record

result

logBasic

(AuditLog::)

record
getLog

logBasic

(AuditLog::)

record
getLog

Dispense cash Display error

logBasic

(AuditLog::)

record
getLog

(c) Behavioral view: explicit log calls.

Fig. 4: Part of the architecture after transformation.

and security quality characteristics from requirements analysis to architecture. In
contrast to our approach, none of these approaches are automated. Nevertheless,
they provide valuable inspiration and guidelines for transformation creators.

A third, and large, part of related work to this approach deals with enriching
architectural metamodels with security concepts. Considerable work has been
performed extending UML with security concepts, i.e., to make the speci�cation
and veri�cation of security properties easier. A widely acknowledged method
in this area is UMLsec [12], which de�nes a UML pro�le and formal semantics
for various security properties. The approach has also been applied to auditing
[13]. Rodríguez [14] presents a UML 2.0 extension to incorporate security require-
ments into activity diagrams. Abie [15] presents a language with formal semantics
to express communication-related security requirements. An integration of the
language with UML is also provided. SecureUML [16] integrates the speci�ca-
tion of role-based access control with UML, allowing transformations to access
control infrastructures. All mentioned works focus on a particular metamodel
(usually UML). Our approach, however, envisages the creation of transforma-
tions from the same security requirements metamodel to di�erent architectural
metamodels. This makes each of the aforementioned extensions a suitable target
metamodel for our approach.

Finally, work has been performed on the preservation of security properties
with transformations. In [17], Santen presents a formal framework to reason
about the preservation of con�dentiality requirements under re�nement. See-
husen [18] describes an approach to analyze and re�ne UML interaction dia-
grams, preserving secure information �ow properties.

6 Discussion

The proposed approach exhibits some interesting bene�ts for an architect using
it.

Although the approach as discussed up till now made use of an existing archi-
tectural model, it can also be used to generate an architecture from scratch. Of
course, since the security requirements model contains only elements necessary
for requirements, the architecture will be incomplete. However, this allows the
architect to experiment and get familiar with di�erent strategies and options,
without having to specify a complete mapping with an existing architecture.

The use of transformations implicates another appealing feature: traceability.
Indeed, every creation or modi�cation of an element by the transformation gen-
erates a trace from the source to the target elements. By means of these traces,
it can be determined which elements were added or modi�ed by a requirement.
Also, they can be used to analyze which requirements were implemented in the
architecture, and which were not.

Finally, the approach does not prescribe a �xed set of metamodels and trans-
formations to be used. The security requirements metamodel is extensible, and
no architectural metamodel is insisted upon. For the transformations, a ma-
jor di�erentiation point between them will be their �exibility. A transformation

(and its accompanying transformational model) should be easily customizable
by the architect. Beware, however, that the aim is not to create one single, ideal
transformation that o�ers any imaginable option.

The main drawbacks and shortcomings of the approach in its current form
are the following.

First, the approach cannot (and will never be able to) deal with each possible
security requirement. As mentioned earlier, it only focuses on security require-
ments that directly in�uence the architecture of the system. Also, some security
requirements or its solutions are too speci�c or require too much input from the
architect to be dealt with in an automated manner.

Second, possible interactions between security requirements are not taken
into account. For instance, when access control and auditing are combined, some
interesting questions arise. Should a request be audited before or after access
control is performed? Or, how to deal with access control for inspecting the
audit logs? In our opinion, the answers to these questions should be provided
as part of the security requirements, instead of being (silently) handled by the
transformations themselves.

Last, the end result should be veri�ed for correctness. Two possible strategies
could be followed here. On one hand, the correctness of a transformation could be
proven, i.e., it preserves the security properties expressed by the requirements,
no matter what (valid) input it is given. This proof should only be created
once for each transformation. However, since transformations can quickly become
very complex, this will probably not be feasible for each transformation. On the
other hand, the correctness of the end result could directly be proven, i.e., prove
that the result guarantees a number of properties de�ned by the requirements.
This proof should be created over and over for each individual end result. It
also requires that the target model is formal enough to reason about it. When
pursuing this track, UMLsec [12] should be mentioned as a natural and promising
target model.

7 Conclusion and future work

In this paper, an approach is presented delivering an automated transforma-
tion from security requirements to architecture. Transformations start from a
security requirements model, and can be de�ned using any architectural meta-
model. The approach can be applied to an existing architecture, and allows input
from the architect. So far, the approach is implemented for transforming audit
requirements to UML. An illustration by means of a case study is provided.

The approach still needs considerable extension in the future, both concep-
tual and implementation-wise. The security requirements metamodel needs to
be extended with other types of requirements, e.g., con�dentiality and integrity.
Furthermore, a method to validate the correctness of the transformations or end
result needs to be determined. Concurrently, more transformations can be imple-
mented, possibly using di�erent architectural metamodels. Finally, the approach
should be validated more thoroughly in an industrial case study.

References
1. Yskout, K., Scandariato, R., Win, B.D., Joosen, W.: Transforming security re-

quirements into architecture. In: Third International Conference on Availability,
Reliability and Security, 2008 (ARES 08). (2008) 1421�1428

2. Common Criteria: Common criteria for information technology security
evaluation, v3.1. Part 2: Security functional components (September 2007)
http://www.commoncriteriaportal.org/thecc.html.

3. Steel, C., Nagappan, R., Lai, R.: Core Security Patterns: Best Practices and Strate-
gies for J2EE, Web Services, and Identity Management. Prentice Hall (2005)

4. Bjork, R.C.: An example of object-oriented design: An atm simulation
http://www.cs.gordon.edu/courses/cs211/ATMExample/.

5. van Lamsweerde, A.: Goal-Oriented Requirements Engineering: A Guided Tour.
Proceedings of the 5th IEEE International Symposium on Requirements Engineer-
ing (2001) 249�263

6. Giorgini, P., Massacci, F., Mylopoulos, J., Zannone, N.: Modeling Security Re-
quirements Through Ownership, Permission and Delegation. Volume 5. (2005)

7. Riemenschneider, R., Dutertre, B., Stavridou, V., van Lamsweerde, A.: From sys-
tem requirements to system architecture. In: Proceedings of ISAW-4 - Fourth
International Software Architecture Workshop, Limerick. (June 2000)

8. van Lamsweerde, A.: From System Goals to Software Architecture. Formal Meth-
ods for Software Architectures (2003) 25�43

9. Brandozzi, M., Perry, D.: Transforming Goal-Oriented Requirement Speci�cations
into Architecture Prescriptions. Workshop From Software Requirements to Archi-
tectures (STRAW'01) at ICSE (2001)

10. Grünbacher, P., Egyed, A., Medvidovic, N.: Reconciling software requirements
and architectures with intermediate models. Software and System Modeling 3(3)
(2003) 235�253

11. Schmidt, H., Wentzla�, I.: Preserving Software Quality Characteristics from Re-
quirements Analysis to Architectural Design. Proceedings of the European Work-
shop on Software Architectures (EWSA) 4344 (2006) 189�203

12. Jürjens, J.: Secure Systems Development With UML. Springer (2004)
13. Jürjens, J.: Modelling audit security for smart-card payment schemes with

UMLsec. In Dupuy, M., Paradinas, P., eds.: Trusted Information: The New Decade
Challenge, Kluwer Academic Publishers (June 2001) 93�108 Proceedings of SEC
2001 � 16th International Conference on Information Security.

14. Rodríguez, A., Fernández-Medina, E., Piattini, M.: Towards a UML 2.0 Extension
for the Modeling of Security Requirements in Business Processes. 3rd International
Conference on Trust, Privacy and Security in Digital Business (TrustBus), Krakow-
Poland (2006) 51�61

15. Abie, H., Aredo, D., Kristo�ersen, T., Mazaher, S., Raguin, T.: Integrating a
Security Requirement Language with UML. UML 2004-The Uni�ed Modelling
Language: Modelling Languages and Applications 3273 350�364

16. Lodderstedt, T., Basin, D., Doser, J.: SecureUML: A UML-Based Modeling Lan-
guage for Model-Driven Security. UML 2460 (2002) 426�441

17. Santen, T.: Preservation of probabilistic information �ow under re�nement. Infor-
mation and Computation (2007)

18. Seehusen, F., Stølen, K.: Information �ow property preserving transformation of
UML interaction diagrams. In: Proceedings of the eleventh ACM symposium on
Access control models and technologies, ACM Press New York, NY, USA (2006)
150�159

