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Abstract. The human mind has been designed to evaluate similarity fast and 
efficiently. When building/using a data format to make the web content more 
machine-friendly, can we learn something useful from how the mind represents 
data? We present four theories psychological theories that tried to solve the 
problem and how they relate to semantic web practices. Metric models (such as 
the vector space model and LSA) were the first-comers and still have important 
advantages. Advances in Bayesian methods pushed Feature models( e.g., Topic
model). Structural mapping models propose that for similarity, shared structure 
matters more, although the formalisms that express these ideas are still 
developing. Transformational distance models (e.g., syntagmatic-paradigmatic   
-SP- model) reduce similarity to information transmission. Topic and SP
models do not require preexisting classes but still have a long way to go; the 
need of automatically generating structure is less pressing when one of the 
driving forces of the semantic web is the creation of ontologies.

Keywords: similarity, cognition, semantics, information extraction, 
representation, psychology, cognitive science.

1. Introduction

The human mind has been “designed” to evaluate similarity fast and efficiently. When 
building/using a data format to make web content more machine-friendly, can we 
learn something useful from how the mind represents data? Are there any domain-
independent findings on human representation that can inform ontology building and 
other semantic web activities? Can knowing humans be useful to design better for 
machines? I would say it might, considering that the end user of what machines using 
the semantic web produce is human, after all. Nature may have produced algorithms 
and representations that are reusable. And humans and machines dealing with lots of 
information may face similar problems. 

There are different areas in which psychology may inform semantic web 
practitioners; For example, agents in the semantic web will do both inductive and 
deductive reasoning [1], follow causal chains [2], solve problems and make decisions
[3]. All these activities depend crucially on how we represent information, and this is 
what similarity theories aim to explain. So in this paper we will review the major 
approaches to similarity in psychology and how they relate to the semantic web.
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In the last 50 years, psychology has made good progress on the topic of similarity; 
the basic conclusion is that similarity is a hard topic, but approachable. But why is it 
so difficult? For a start, it is a very labile phenomenon. Murphy and Medin [4] noted 
that "the relative weighting of a feature (as well as the relative importance of common 
and distinctive features) varies with the stimulus context and task, so that there is no 
unique answer to the question of how similar is one object to another" (p. 296). 
Goodman [5] also criticized the central role of similarity as an explanatory concept. 
What does it mean to say that two objects a and b are similar? One intuitive answer is 
to say that they have many properties in common. But this intuition does not take us 
very far, because all objects have infinite sets of properties in common. For example, 
a plum and a lawnmower both share the properties of weighing less than 100 pounds 
(and less than 101 pounds, etc). That would imply that all objects are similar to all 
others (and vice versa, if we consider that they are different in an infinite set of 
features too). Goodman proposed that similarity is thus a meaningful concept when 
defined with a certain “respect”. Instead of considering similarity as a binary relation 
s(a, b), we should think of it as a ternary relation s(a, b, r). But once we introduce 
“respects”, then similarity itself has no explanatory value: the respects have. Thus, if 
similarity is useless when not defined "with respect to", then it is not an explanatory 
concept on which theories can be built: theories should be about "the respects" and 
similarity can leave the scenario without being missed. 

Although this criticism could have been lethal for any psychological theories of 
similarity, it has not been. The abstract concept of similarity used by philosophers like 
Goodman and the psychological concept of similarity are different, the latter being 
more constrained: (1) There are psychological restrictions on what a respect can be. 
Although they can be very flexible and changeable with goals, purpose, and context, 
there are constraints in what form they take: they do not change arbitrarily, but 
systematically. These systematic variations prevent the set of common respects from 
being infinite, and enable their scientific study [6]. (2) Since people do not normally 
compare objects one "respect" at a time, but along multiple dimensions (e.g., size, 
color, function, etc.), the psychologically central issue is to explain the mechanism by 
which all these factors are combined into a single judgment of similarity. Then, 
respects do some, but not all of the work in explaining similarity judgments [7] (3) 
Goodman assumes that the set of features in which two objects can be compared is 
infinite (then, they have an infinite number of properties in which they are similar and
dissimilar). However, in psychology we are interested in the similarity between two 
mental representations of the objects in the mind. Mental representations must be 
finite. Then computation of similarity can be thought to take place without the need of 
constraining respects. Theories of mental representation based on similarity should 
explain what is represented and how this is selected. The features represented cannot 
be arbitrary, otherwise they cannot be studied scientifically [8].

As a conclusion, what most similarity and categorization psychological theories 
have in common is the problem of choosing respects [8]: The feature selection and 
weighting process is outside of the scope of the models, that is, is set up a-priori by 
the researcher, not dictated by the theory. This is a very important flaw in a model of 
similarity, as Goodman pointed out. Semantic web practitioners face this problem too. 
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The semantic web ‘standard’ data structure language is RDF. In RDF, the 
fundamental concepts are resources, properties and statements. Resources are objects, 
like books, people or events. Resources have properties like chapters, proper names, 
or physical locations. Properties are a special type or resources that describe the 
relation between two resources. And a statement just asserts the properties of 
resources. In a sense, psychologists and semantic web practitioners are playing the 
same game: trying to model the world with a formalism. Psychologists want this 
formalism to be as close as possible to humans; Semantic web practitioners want it to 
‘just work’. For psychologists, a better formalism is one that models even human 
flaws and inconsistencies. For Semantic web practitioners, a better formalism is more 
expressive, while being as simple as possible; if a machine using it reaches 
conclusions that a human won’t, so much more impressive.

The concept of similarity is very different in psychology and in machine learning
too. Machine learning (and in particular, computational linguistics) use structured 
representations, while most of the psychologists use mainly ‘flat’ representations. But 
the main difference is that the machine leaning group often uses representations that
are not psychologically plausible. For example, some parsers use human-coded
representations of syntactic dependencies from corpora like TREEBANK [9],
WordNet [10] or even Google queries. Semantic similarity according to Resnik [11]
refers to similarity between two concepts in a taxonomy such as WordNet [10] or 
CYC upper ontology . These are of course not available to the mind; even though 
models may perform very well on interesting tasks, they have no psychological 
plausibility. Still, there seems to be some level of convergence between machine-
learning and psychological approaches. This paper will try to make connections 
particularly where they are relevant for the semantic web paradigm.

2. What is Similarity, anyway?

The question “What is similarity” has inspired considerable research in the past, 
because it affects several cognitive processes like memory retrieval, categorization, 
inference, analogy, and generalization, to mention a few. We have divided current 
efforts to answer this question into four main branches: continuous features (spatial) 
models, set theoretic models, hierarchical models, and transformational distance. 
Similar classification can be found in Goldstone [12] and in Markman [13].

3. Continuous features (spatial) models

Shepard can be considered the father of metric models (models that use a 
multidimensional metric space to represent knowledge) in psychology. Shepard’s [14]
Science paper, ‘Toward a universal law of generalization for psychological science‘ 
is his most ambitious and definitive attempt to propose multidimensional spaces as an 
universal law in psychology. Shepard’s [14] main proposal is that psychologists can 
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utilize metric spaces to model internal representations for almost any stimulus (i.e.,
shapes, hues, vowel phonemes, Morse-code signals, musical intervals, concepts, etc.). 

We rarely encounter the exact same situation twice. There is always some change 
in the environment. Usually, this new environment has some physical resemblance to 
an environment with which we have some history. This incremental change is the 
crucial element--the more similar the new environment is to something we already 
know, the more we will respond in a similar way.

A metric space is defined by a metric distance function D, that assigns to every pair 
of points a nonnegative number, called their distance, following three axioms: 
minimality [D(A,B) ≥  (A,A) = 0], symmetry [D(A,B) = D(B,A)], and the triangle 
inequality [D(A,B) + D(B,C) ≥ D(A,C)].  The methodological tool Shepard proposed 
is multidimensional Scaling [MDS, 15], a now-classic approach to representing 
proximity data. In MDS, objects are represented as points in a multidimensional 
space, and proximity is assumed to be a function of the distance in the space, p(i,j) = g 
[D(i,j)], where g is a decreasing function (a negative exponential).  The distance in the 
n-dimensional metric space that the MDS generates represents similarity, and is 
calculated using the Minkowski power metric formula:
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Where n is the number of dimensions, Xik is the value of the dimension k for entity 
i, and r is a parameter that defines the spatial metric to be used. 

The vector space model from classical information retrieval capitalizes on this 
finding. It maps words to a space with as many dimensions as contexts exist in a 
corpus. However, the basic vector space model fails when the texts to be compared 
share few words, for instance, when the texts use synonyms to convey similar 
messages. Latent Semantic Analysis (LSA) [16, 17] solves this problem by running a
singular value decomposition (SVD) and then dimension reduction on the term by 
document matrix. LSA can model human similarity judgments for words and text, but 
it faces problems. Some of these problems are conceptual: negation just doesn’t work 
on any spatial models (NOT is a ubiquitous word and it forms a vector that adds 
nothing to the overall meaning). LSA uses a bag of words approach where word order 
does not matter; the semantic web approach requires machine learning algorithms that 
can produce structured representations from plain text. There are also problems with 
the implementation (scalability): the SVD is a one-off operation that assumes a static 
corpus. Updating the space with new additions to the corpus is possible, but not 
trivial. 

LSA spawned a plethora of models for extracting semantics from text corpora. 
Some of them partially address structured representations. For example the Topic
model [18] could potentially use a generative model with several layers of topics 
(hierarchical models). Beagle [19] proposes methods to capture both syntax and 
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semantics simultaneously in a single representation using convolution. Beagle uses a 
moving window, so only close sequential dependencies make an impact in its 
understanding of syntax; it is still far from delivering a fully automatic propositional 
analysis of text.

Another approach is to use a large corpus of labeled articles as dimensions. For 
example, any text can be a weighted vector of similarities to Wikipedia articles [20]. 
This currently produces the highest correlation to human judgments of similarity (.72 
vs .60 for LSA).

Although recent developments have addressed some implementation issues (e.g., 
the SVD can now be run in parallel) the direct application of LSA or any other 
statistical methods to semantic web problems is still not obvious. RDF operations are 
logical; in LSA vectors are obtained using statistical inference. Combining the logic 
and statistical approaches seems to be a worthwhile goal and some groups are 
pursuing it [21, 22].

4. Discrete set theoretic models

Tversky’s set-theoretic approach and Shepard’s metric space approach are often 
considered the two classic – and classically opposed – theories of similarity and 
generalization (although Shepard has some research on the set-theoretic approach`, 
e.g., [15, 23]).

Metric spaces have problems as a model for how humans represent similarities. 
Amos Tversky [24] pointed out that violations of the three assumptions of metric 
models (minimality, symmetry, and the triangle inequality) are empirically observed.

Minimality is violated because not all identical objects seem equally similar; 
complex objects that are identical (e.g., twins) can be more similar to each other than 
simpler identical objects (e.g., two squares).

Tversky [24] argued that similarity is an asymmetric relation. This is an important 
criticism for models that assume that similarity can be represented in a metric space, 
since metric distance in an Euclidean space is, of course, symmetric. He provided 
empirical evidence, for example, when participants were asked a direct rating, the 
judged similarity of North Korea to China exceeded the judged similarity China to 
North Korea1. A second criticism relates to the fact that similarity judgments are 
subjected to task and context-dependent influences, and this is not reflected in pure 
metric models. 

                                                          
1 However, results from Aguilar and Medin 25. Aguilar, C.M., Medin, D.L.: Asymmetries of 

comparison. Psychon. Bull. Rev. 6 (1999) 328-337 suggest that similarity rating asymmetries 
are only observed under quite circumscribed conditions.
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Another important criticism focuses on the triangle inequality axiom, which says 
that distances in a metric space between any two points must be smaller than the 
distances between each of the two points and any third point. In terms of similarities, 
this means that if an object is similar to each of the two other objects, the two objects 
must be at least fairly similar to each other [26]. However, James [27] gives an 
example in which this does not hold true: the moon is similar to a gas jet (with respect 
to luminosity) and also similar to a football (with respect to roundness) , but a gas jet 
and a football are not at all similar.

Tversky proposed that similarity is a function of both common and distinctive 
features, as described in the formula: 

))()()((),( ABBABAfBAS   (2)

Where A and B are feature sets. The similarity of A to B is expressed as a linear 
combination of the measure of the common )( BA and distinctive 

),( ABBA  features. The parameters , , and  are weighing parameters given 

to the common and distinctive components, and the function f is often simply 
assumed to be additive (i.e., all features are independent and their effects combine 
linearly).

To respond to these criticisms, some researchers have proposed different solutions 
that basically extend the assumptions of metric models and enable them to explain the 
violation in the three assumptions. Nosofsky [28] defended the metric space approach 
arguing that asymmetries in judgments are not necessarily due to asymmetries in the 
underlying similarity relationships. For example, in word similarity judgments, if the 
relationship A  B is stronger than B  A, a simple explanation could be that word 
B has higher word frequency, is more salient, or its representation is more available 
than word A.  

Krumhansl [26] has proposed that some objections to geometric models may be 
overcome by supplementing the metric distance with a measure of the density of the 
area where the objects that figure in the comparison are placed. Krumhansl argued 
that if A B is stronger than B  A, an explanation is that A is placed in a sparser 
region of the space. For example, in LSA the nearest 20 neighbors of "China" range 
between .98 and .80. However, the 20 nearest neighbors of "Korea" range between .98 
and .66, which means "China" is in a denser part of the space than "Korea". One 
could argue that although Krumhansl’s explanation does propose a solution for the 
problem, the resulting modified distance function need not satisfy the metric axioms 
anymore.

Kintsch [29] offered yet another way of modeling asymmetric judgments using a 
metric model. In his predication model, Kintsch substitutes the productivity rule in 
LSA (addition) with more sophisticated mechanisms that related the neighborhood of 
the predicate and argument to create a composed vector. His model is another source 
of evidence of theories that, using metric underlying models, can explain phenomena 
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that conflict with the metric assumptions. As well, there seems to be controversy 
about how much the stimulus density can affect psychological similarity [30-32].

In summary, it seems that supplemented metric models can explain most of the 
criticisms attributed to them, and that some of the traditional effects such as context 
effects and asymmetry of similarities can be due to additional factors not considered 
in the classical explanations.

There used to be no feature models able to work with plain text corpora and 
generate, but recently the Bayesian camp has proposed a few. The most successful of 
these is the Topic model. Griffiths, Steyvers, and Tenenbaum [18] propose that 
representation might be a language of discrete features and generative Bayesian 
models instead of continuous spaces. This bottom-up approach has the advantage of 
generating ‘topics’ instead of unlabelled dimensions, so the resulting representations 
are ‘explainable’. The Topic model can also explain asymmetries in similarities, 
because conditional probabilities are indeed asymmetrical (P(A|B) != P(B|A) 
necessarily). 

   The Topic model is indeed a feature model because ‘the association between two 
words is increased by each topic that assigns high probability to both and is decreased 
by topics that assign high probability to one but not the other, in the same way that 
Tverksy claimed common and distinctive features should affect similarity’ [18 p. 
223]. 

At the implementation level, the Topic model is not memory-intensive; since it is a 
Markov chain Montecarlo model, it simply allocates words to topics in an iterative 
way.

The combination of explainable dimensions and possibility to handle structured 
representations makes the Topic model an interesting choice for the representation 
problems the semantic web encounters. Still, the level of structural complexity that 
current topic models can derive from text is very basic. Future implementations may 
be able to accommodate more realistic structures because the overall probabilistic 
framework is more flexible than previous vector space models. For promising new 
ways of combining ontologies with bottom-up topics, see [33, 34].

5. Hierarchical models and alignment-based models

Some researchers [e.g., 7, 12, 35] argued that neither spatial models nor discrete set 
theoretic models are well suited to model human representation. In several 
experiments humans show evidence of using structured representations rather than a 
collection of coordinates or features.

The structural matching theory assumes that mental representations consist of 
hierarchical systems that encode objects, attributes of objects, relations between 
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objects, and relations between relations [13]. Structure mapping models are then the 
closest to the data structures that the semantic web uses (RDF).

The two sets of objects (A) and (B) in Figure 1 would be represented by the 
hierarchical structures (a) and (b). What are represented as a hierarchical system are 
the features of one objects, and the comparison between two mental representations 
consists on aligning the two structures so the matching is maximal. The best structural 
matching possible determines the similarity between the two objects. In Figure 1, 
page 8, the best interpretation involves matching the "above" relations, since they are 
a higher-level connected relational structure than, e.g., "circle".

Fig. 1: Example of structured representations, and structural alignment [adapted from 13, p. 
122]. The trees represent the features, keeping the structure. Rounded boxes are relationships, 
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uppercase square boxes are objects, and lowercase boxes are features. The “above” relation is 
directional; “Above” (square, circle) is different than “above” (circle, square). 

The details on how the matching is done vary with the different models; The 
structure mapping engine SME [36] was the original; it works by forcing one-to-one 
mappings. That is, it limits any element in one representation to corresponding to at 
most one element in the other representation. SIAM [37] is an spreading activation 
model; it consists of a network of nodes that represent all possible feature-to-feature, 
object-to-object, and role-to-role correspondences between compared stimuli. The 
activation of a particular node indicates the strength of the correspondence it 
represents. SIAM treats one-to-one mapping as a soft constraint.

Structured representations gain some of their power form the ability to create 
increasingly complex representations of a situation by embedding relations in other 
relations and creating higher-order relational structures. These higher-order structures 
can encode important psychological elements like causal relations and implications 
[13]. In fact, RDF as a data structure has this property (reification, also called 
compositionality [38]). Currently compositionality is hard to implement for metric 
models and feature models. 

So how are current structure-matching models in psychology different from the 
similarity models used in semantic web applications? The psychological models use 
very simple and artificial materials, like those in Figure 1. Most published papers 
contain a few examples where the model works (i.e., the solar system mapped to 
Rutherford’s model of the atom) but not about where it fails. There is no published 
study on how general a model is (i.e., using a large selection of objects) nor what the 
boundary conditions are. More thorough testing and model comparison is needed. The 
overall impression is that fine-tuning the model to the examples in the paper took a 
good amount of time for the experimenter, so doing this for a large representative 
sample of structures may be time consuming. Second, psychological similarity 
models stress the importance of working memory capacity limitations, which have no 
relevance for machine learning and general usage in applications. Working memory 
limitations may help the model explain human patterns such as common errors, but do 
not contribute to better applications. Third, scaling may be an issue. The Rutherford 
example requires 42 and 33 nodes to represent the solar system and atom, 
respectively, and it is one of the largest mappings published. Semantic web 
applications can easily deal with knowledge bases several orders of magnitude larger
(Although see [39, 40] for some examples of SME applications with larger knowledge 
bases). Last, all these theories use hand-built representations. Information extraction  
is a type of information retrieval whose goal is to automatically extract structured 
information, i.e. categorized and contextually and semantically well-defined data 
from a certain domain, from unstructured machine-readable documents. To date, no 
psychological theories of the structured kind do information extraction or propose an 
alternative solution to avoid hand-built representations.

So, is there no way to derive structured representation automatically from text to 
avoid all the above problems? The next section includes the latest, and most 
promising line of work: transformational distance.
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6. Models based on Transformational distance

For transformational distance theories similarity of two entities is inversely 
proportional to the number of operations required to transform an entity so as to be 
identical to another [e.g., 41, 42-45]. The idea of similarity as transformation is 
promising in that it is very general and seems able to solve some of the previous 
theories problems.

We will review the representational distortion theory [8, 46], and the SP model [45, 
47]. The representational distortion theory of Hahn and Chater [8, 46] uses a measure 
of transformation called Kolmogorov complexity, K(x|y) of one object, x, given 
another object, y. This is the length of the shortest program which produces x as 
output using y as input. The main assertion of the theory is that representations that 
can be generated by a short program are simple, and the ones that require longer 
programs are more complex. For example, a representation consisting in a million 
zeroes, although long, is very simple, whereas the sentence “Mary loves roses” is 
shorter but more complex. With this Kolmogorov measure of complexity, a similarity 
measure can be defined as the length of the shortest program that takes representation 
x and produces y. That is, the degree to which two representations are similar is 
determined by how many instructions must be followed to transform one into another. 
This approach to similarity implements the minimality and triangle assumptions (like 
metric theories), but enables the relationships between items to be asymmetrical, 
escaping one of the most pervasive criticisms of metric theories, namely the 
asymmetry in human similarity judgments. Note that the representational distortion 
theory needs to propose a vocabulary of basic representational units and basic 
possible transformations; but this vocabulary is currently not specified. However
feature theories do not explain where features come from, so the transformational 
view is not at a disadvantage.

Another approach to measure transformational distance is string edit theory. The 
string edit theory centers on the idea that a string (composed by words, actions, states, 
amino acids, or any other element) can be transformed into a second string using a 
series of "edit" operations. String edit theory uses basic transformations like (insert, 
delete, match, and substitute), although this basic set varies in different 
implementations. Each "edit" operation for each particular item has a probability of 
occurrence associated. For example, in a perceptual word recognition task, the 
probability of substituting M for N could be higher than the probability of substituting 
M for B. These probabilities are defined a-priori and reflect the “cost” of the 
operation, but can also be learned for each problem. There is always more than one 
sequence of operations that can transform a string into a second string. Each sequence 
of operations has a probability too, which is the average of the probabilities of the 
transformations that form part of it. 

The most well-developed model of cognition based on string edit is the 
syntagmatic paradigmatic (SP) model [45]. SP proposes that people use large amounts 
of verbal knowledge in the form of constraints derived from the occurrences of words 
in different slots. The constraints are categorized in two types: (1) syntagmatic 
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associations that are thought to exist between words that often occur together, as in 
"run" and "fast" and (2) paradigmatic associations that exist between words that may 
not appear together but can appear in the same sentence context, such as "run" and 
"walk". The SP model proposed that verbal cognition is the retrieval of sets of 
syntagmatic and paradigmatic constraints from sequential and relational long-term 
memory and the resolution of these constraints in working memory. When trying to 
interpret a new sentence, people retrieve similar sentences from memory and align 
these with the new sentence. The set of alignments is an interpretation of the sentence. 
For instance, to build an interpretation of the sentence “Mary is loved by John” they 
might retrieve from memory “Ellen is adored by George”, “Sue who wears army 
fatigues is loved by Michael”, and  “Pat was cherished by Big Joe”, leading to the 
following interpretation:

Mary is loved by John
Ellen is adored by George
Sue who wears army fatigues is loved by Michael
Pat was cherished by Big Joe

The set of words that aligns with each word from the target sentence represents the 
role that the word plays in the sentence.  So, in the example [Ellen, Sue, Pat] 
represents the lovee role and [George, Michael, Joe] the lover role. The model 
assumes that any two sentences convey similar factual content to the extent that they 
contain similar words aligned with similar sets of words. Note that SP does not 
assume any previous knowledge (i.e., syntax). The model can solve basic question-
answering tasks such as which tennis player won a match when trained on a specific 
plain text corpus of such news [47].

Both XML and RDF are data languages of labeled trees, and of course tree edit 
distance is a subclass of string edit theory [48]. There are several algorithms 
proposed to match such structures efficiently. For example Bertino et al [49] propose 
a way to match an XML tree to a set of trees (DTDs) in polynomial time. Thus, once 
the starting knowledge base is in a structured form, there are algorithms to do 
similarity operations either efficiently or in a cognitively plausible way, but not both. 
The remaining step is to get from a flat form to a structure that satisfies the 
requirements of the algorithms, which has proven not to be easy. This step is not 
necessary for models such as SP, since they work from plain text. In this sense this is 
a promising venue. Contrary to the semantic web idea to create domain-specific data 
languages by agreement and force that structure onto existing text in the wild, SP 
proposes no structure a priori. In fact, SP captures meaning as sentence exemplars. 
The difficult task of either defining or inducing semantic categories is avoided.

Both theories (string edit theory and on Kolmogorov complexity) deal with 
structured representations, feature representations and continuous representations if 
needed. Of course, feature theories can argue that each of the transformations 
proposed can be added as a feature without leaving the feature approach. However, 
adding higher order relationships as features makes evident one of the weak points of 
feature theories: anything can be a feature. Which transformations are allowed? What 
do people actually use? Is there a general transformation vocabulary that works for 
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any domain? Such vocabulary, if it exists, should be independent of the 
transformations’ characteristics (for example, their salience); otherwise, the 
description in feature terms becomes redundant, and could be eliminated without 
losing explanatory power. Because of this, the representational distortion theory 
proposes transformations as explanatorily prior. Feature models constitute a subset of 
the family of representational distortion theories, where similarity between objects is 
defined using a very limited set of transformations: feature insertion, feature deletion, 
or feature substitution. These are exactly the same transformation sets that the SP 
model proposes for sentence processing. However, the SP model escapes the former 
criticism because the “features” (in this case, words) are not generated ad-hoc, but 
learned empirically by experience with real-world text corpora. But the question of 
whether there is a viable universal transformation language still stands.

Transformational distance models could be more general than Tversky’s contrast 
model. This view is shared by Hahn and Chater [8, pp. 71-72]: “indeed, the 
[Kolmogorov complexity] model can be viewed as a generalization of the feature and 
spatial models of similarity, to the extent that similar sets of features (nearby points in 
space) correspond to short programs”. Chater and Vitanyi [50, 51] have mathematical 
proof that any similarity measure reduces to information distance. 

7. Summary and Conclusion

We have presented why similarity is a hard problem and four major psychological 
theories that tried to solve it. We started the discussion presenting metric models and 
their flaws; which were partially addressed by feature theories. Then we presented 
structural alignment models, explaining how they relate to current work on structured 
data such as RDF. We concluded with transformational distance models as the closest 
to an ideal solution.

One recurring theme is that once the starting knowledge base is in a structured 
form, there are algorithms to do similarity operations either efficiently [49] or in a 
cognitively plausible way [52] (but not both). The remaining step is to get from a flat 
form to a structure that satisfies the requirements of the algorithms, which has proven 
not to be easy. Currently the SP model and the Topic model show promise as bottom-
up models that start with plain text and generate structured representations. The 
immediate advantage when compared with traditional machine learning information 
extraction tools is that they do not require preexisting classes (as they are inferred). 
Admittedly, both SP and Topic models still have a long way to go, and up to now they 
have focused in extraction of syntactic categories (and in an imperfect way). The 
semantic web of course needs an entire universe of different categories (not only 
syntactic).

The semantic web practitioners however are perfectly happy manually creating 
domain-specific languages to describe their domains (i.e., RDF-schema). This is good 
news because it increases the number of similarity models one can choose from. SP 
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and the Topic model have the head start of making no a priori commitment to 
particular grammars, heuristics, or ontologies. But this may not be a tremendous 
advantage in a world that seems to be eager to produce ontologies and fit all existing 
knowledge into those structures. Time will tell if bottom-up approaches will 
proliferate or fade away.
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