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Abstract. We investigate on modeling uncertain concepts via rough description
logics, which are an extension of traditional description logics by a simple mech-
anism to handle approximate concept definitions through lower and upper ap-
proximations of concepts based on a rough-set semantics. This allows to apply
rough description logics for modeling uncertain knowledge. Since these approxi-
mations are ultimately grounded on an indiscernibility relationship, the paper ex-
plores possible logical and numerical ways for defining such relationships based
on the considered knowledge. In particular, the notion of context is introduced,
allowing for the definition of specific equivalence relationships, to be used for
approximations as well as for determining similarity measures, which may be
exploited for introducing a notion of tolerance in the indiscernibility.

1 Introduction

Modeling uncertain concepts in description logics (DLs) [1] is generally done via nu-
merical approaches, such as probabilistic or possibilistic ones [2]. A drawback of these
approaches is that uncertainty is introduced in the model, which often has the conse-
quence that the approach becomes conceptually and/or computationally more complex.
An alternative (simpler) approach is based on the theory of rough sets [3], which gave
rise to new representations and ad hoc reasoning procedures [4]. These languages are
based on the idea of indiscernibility.

Among these recent developments, rough description logics (RDLs) [5] have in-
troduced a complementary mechanism that allows for modeling uncertain knowledge
by means of crisp approximations of concepts. RDLs extend classical DLs with two
modal-like operators, the lower and the upper approximation. In the spirit of rough set
theory, two concepts approximate an underspecified (uncertain) concept as particular
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sub- and super-concepts, describing which elements are definitely and possibly, respec-
tively, elements of the concept.

The approximations are based on capturing uncertainty as an indiscernibility re-
lation R among individuals, and then formally defining the upper approximation of a
concept as the set of individuals that are indiscernible from at least one that is known to
belong to the concept:

C := {a | ∃b : R(a, b) ∧ b ∈ C} .

Similarly, one can define the lower approximation as

C := {a | ∀b : R(a, b) → b ∈ C} .

Intuitively, the upper approximation of a concept C covers the elements of a domain
with the typical properties of C, whereas the lower approximation contains the proto-
typical elements of C.

This may be described in terms of necessity and possibility. These approximations
are to be defined in a crisp way. RDLs can be simulated with standard DLs without
added expressiveness. This means that reasoning can be performed by translation to
standard DLs using a standard DL reasoner.

The pressing issue of efficiency of the reasoning has to be solved. So far, reason-
ers are not optimized for reasoning with equivalence classes, which makes reasoning
sometimes inefficient. To integrate equivalence relations into RDL ABoxes, other ways
may be investigated. Inspired by recent works on semantic metrics [6] and kernels, we
propose to exploit semantic similarity measures, which can be optimized in order to
maximize their capacity of discerning really different individuals. This naturally in-
duces ways for defining an equivalence relation based on indiscernibility criteria.

The rest of this paper is organized as follows. The basics of RDLs are presented in
the next section. Then, in Section 3, contextual indiscernibility relations are introduced.
In Section 4, a family of similarity measures based on such contexts is proposed along
with a suggestion on their optimization. This also allows for the definition of tolerance
degrees of indiscernibility. Conclusions and further applications of ontology mining
methods are finally outlined in Section 5.

2 Rough Description Logics

In the following, we assume some familiarity with the basics of standard DL languages
and their inference services (see [1] for further details).

As mentioned above, the basic idea behind RDLs is rather straightforward: one can
approximate an uncertain concept C by giving upper and lower bounds. The upper ap-
proximation of C, denoted C, is the set of all individuals that possibly belong to C.
Orthogonally, the lower approximation of C, denoted C, is the set of all individuals
that definitely belong to C. Traditionally, this is modeled using primitive definitions,
i.e., subsumption axioms. In pure DL modeling, the relation between C and its approx-
imations C and C is C & C & C.



RDLs are not restricted to particular DLs, and can be defined for an arbitrary DL
language DL. Its RDL language RDL has the lower and upper approximation as ad-
ditional unary concept constructors, that is, if C is a concept in RDL, then also C
and C are concepts in RDL. The notions of rough TBox and ABox, as well as rough
knowledge base canonically extend the usual notions.

Example 2.1 (Advertising Campaign). Suppose that we want to use some pieces of data
collected from the Web to find a group of people to serve as addressees for the adver-
tising campaign of a new product. Clearly, the collected pieces of data are in general
highly incomplete and uncertain. The DL concept Addressee may now be approximated
from below by all the definite addressees and from above by all the potential addressees.
So, we can use a DL language to specify the TBox knowledge about the concept Ad-
dressee, and in the same time specify the TBox and ABox knowledge about which
people are definite and potential addressees, i.e., belong to the two concepts Addressee
and Addressee, respectively.

A rough interpretation is a triple I = (∆I , ·I , RI), where ∆I is a domain of
objects, ·I is an interpretation function, and RI is an equivalence relation over ∆I . The
function ·I maps RDL concepts to subsets and role names to relations over the domain
∆I . Formally, I extends to the new constructs as follows:

– C
I = {aI ∈ ∆I | ∃bI ∈ ∆I : RI(aI , bI) ∧ bI ∈ CI},

– CI = {aI ∈ ∆I | ∀bI ∈ ∆I : RI(aI , bI) → bI ∈ CI}.

Example 2.2 (Advertising Campaign cont’d). In order to define the definite and po-
tential addressees for the advertising campaign of a new product, we may exploit a
classification of the people into equivalence classes. For example, people with an in-
come above 1 million dollars may be definite addressees for the advertising campaign
of a new Porsche, while people with an income above 100 000 dollars may be potential
addressees, and people with an income below 10 000 dollars may not be addressees of
such an advertising campaign.

One of the advantages of this way of modeling uncertain concepts is that reasoning
comes for free. Indeed, reasoning with approximations can be reduced to standard DL
reasoning, by translating rough concepts into pure DL concepts with a special reflexive,
transitive, and symmetric role.

A translation function for concepts ·t : RDL '→ DL is defined as follows (intro-
ducing the new role symbol R for the indiscernibility relation):

– At = A, for all atomic concepts A in RDL,
– (C)t = ∃R.C, and (C)t = ∀R.C, for all other concepts C in RDL.

The translation function is recursively applied on subconcepts for all other constructs.
This definition can be extended to subsumption axioms and TBoxes.

For any DL language DL with universal and existential quantification, and sym-
metric, transitive, and reflexive roles, there is no increase in expressiveness, i.e., RDLs
can be simulated in (almost) standard DLs: an RDL concept C is satisfiable in a rough
interpretation relative to T t iff the DL concept Ct is satisfiable relative to T t [5].



Other reasoning services, such as subsumption, can be reduced to satisfiability (and
finally to ABox consistency) in the presence of negation. As the translation is linear, the
complexity of reasoning in an RDL is the same as of reasoning in its DL counterpart
with quantifiers, symmetry, and transitivity.

Since RDLs do not specify the nature of the indiscernibility relation, except pre-
scribing its encoding as a (special) new equivalent relation, we introduce possible ways
for defining it. The first one makes the definition depend on a specific set of concepts de-
termining the indiscernibility of the individuals relative to a specific context described
by the concepts in the knowledge base. Then, we also define the relations in terms
of a similarity measure (based on a context of features) which allows for relaxing the
discernibility using a tolerance threshold.

3 Contextual Indiscernibility Relations

In this section, we first define the notion of a context via a collection of DL concepts.
We then introduce indiscernibility relations based on such contexts. We finally define
upper and lower approximations of DL concepts using these notions, and we provide
some theoretical results about them.

It is well known that classification by analogy cannot be really general-purpose,
since the number of features on which the analogy is made may be very large [7]. The
key point is that indiscernibility is not absolute but, rather, an induced notion which de-
pends on the specific contexts of interest. Instead of modeling indiscernibility through a
single relation in the interpretation, one may consider diverse contexts each giving rise
to a different equivalence relation which determines also different ways of approximat-
ing uncertain concepts.

We first recall the notion of projection function [8]:

Definition 3.1 (projection). Let I be a DL interpretation, and let F be a DL concept.
The projection function πIF : ∆I '→ {0, 1

2 , 1} is defined as follows:

∀a ∈ ∆I : πIF (a) =






1 I |= F (a);
0 I |= ¬F (a);
1
2 otherwise.

We define a context as a finite set of relevant features in the form of DL concepts,
which may encode a kind of context information for the similarity to be measured [9].

Definition 3.2 (context). A context is a set of DL concepts C = {F1, . . . , Fm}.

Example 3.1 (Advertising Campaign cont’d). One possible context C for the advertis-
ing campaign of a new product is given as follows:

C = {SalaryAboveMillion, HouseOwner, Manager},

where SalaryAboveMillion, HouseOwner, and Manager are DL concepts.

Two individuals, say a and b, are indiscernible relative to the context C iff ∀i ∈
{1, . . . ,m} : πi(a) = πi(b). This easily induces an equivalence relation:



Definition 3.3 (indiscernibility relation). Let C = {F1, . . . , Fm} be a context. The
indiscernibility relation RC induced by C is defined as follows:

RC =
{
(a, b) ∈ ∆I ×∆I) | ∀i ∈ {1, . . . ,m} : πIi (a) = πIi (b)

}

Hence, one may define multiple such relations by considering different contexts.
Any indiscernibility relation splits ∆I in a partition of equivalence classes (also

known as elementary sets) denoted [a]C, for a generic individual a. Each class naturally
induces a concept, denoted Ca.

Example 3.2 (Advertising Campaign cont’d). Consider again the context C of Exam-
ple 3.1. Observe that C defines an indiscernibility relation on the set of all people,
which is given by the extensions of all atomic concepts constructed from C as its equiva-
lence classes. For example, one such atomic concept is the conjunction of SalaryAbove-
Million, HouseOwner, and Manager; another one is the conjunction of SalaryAboveMil-
lion, HouseOwner, and ¬Manager.

Thus, a C-definable concept has an extension that corresponds to the union of el-
ementary sets. The other concepts may be approximated as usual (we give a slightly
different definition of the approximations relative to those in Section 2).

Definition 3.4 (contextual approximations). Let C = {F1, . . . , Fm} be a context, let
D be a generic DL concept, and let I be an interpretation. Then, the contextual upper
and lower approximations of D relative to C, denoted D

C
and DC, respectively, are

defined as follows:

– (DC)I = {a ∈ ∆I | Ca )D *|= ⊥},
– (DC)I = {a ∈ ∆I | Ca & D}.

Fig. 1 depicts these approximations. The partition is determined by the feature con-
cepts included in the context, each block standing for one of the C-definable concepts.
The block inscribed in the concept polygon represent its lower approximation, while
the red-hatched ones stand for its upper approximation.

These approximations can be encoded in a DL knowledge base through special in-
discernibility relationships, as in [5], so to exploit standard reasoners for implementing
inference services (with crisp answers). Alternatively new constructors for contextual
rough approximation may be defined to be added to the standard ones in the specific
DL language.

It is easy to see that a series properties hold for these operators:

Proposition 3.1 (properties). Given a context C = {F1, . . . , Fm} and two concepts
D and E, it holds that:

1. ⊥C = ⊥C
= ⊥,

2. ,C = ,C
= ,,

3. D - EC . DC - EC,



Fig. 1. Lower and upper approximations of rough concepts.
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4 Numerical Extensions

We now first define rough membership functions. We then introduce contextual similar-
ity measures, and we discuss the aspect of finding optimal contexts. We finally describe
how indiscernibility relations can be defined on top of tolerance functions.

4.1 Rough Membership Functions

A rough concept description may include boundary individuals which cannot be as-
cribed to a concept with absolute certainty. As uncertainty is related to the membership
to a set, one can define (rough) membership functions. This can be considered a numer-
ical measure of the uncertainty:



Definition 4.1 (rough membership function). Let C = {F1, . . . , Fm} be a context.
The C-rough membership function of an individual a to a concept D is defined by:

µC(a, D) =
|(Ca )D)I |
|(Ca)I | ,

where I is the canonical interpretation [1].

Of course, this measure suffers from being related to the known individuals which
conflicts with the open-world semantics of DL languages (unless an epistemic operator
is adopted [10] or domain closure is assumed).

4.2 Contextual Similarity Measures

Since indiscernibility can be graded in terms of the similarity between individuals, we
propose a new set of similarity functions, based on ideas that inspired a family of in-
ductive distance measures [8, 6]:

Definition 4.2 (family of similarity functions). Let K = 〈T ,A〉 be a knowledge base.
Given a context C = {F1, F2, . . . , Fm}, a family of similarity functions

sC
p : Ind(A)× Ind(A) '→ [0, 1]

is defined as follows (∀a, b ∈ Ind(A)):

sC
p(a, b) := p

√√√√
m∑

i=1

∣∣∣∣
σi(a, b)

m

∣∣∣∣
p

,

where p > 0 and the basic similarity function σi (∀i ∈ {1, . . . ,m}) is defined by:

∀a, b ∈ Ind(A) : σi(a, b) = 1− |πi(a)− πi(b)|.

This corresponds to defining these functions model-theoretically as follows:

σi(a, b) =






1 (K |= Fi(a) ∧K |= Fi(b)) ∨ (K |= ¬Fi(a) ∧K |= ¬Fi(b));
0 (K |= ¬Fi(a) ∧K |= Fi(b)) ∨ (K |= Fi(a) ∧K |= ¬Fi(b));
1
2 otherwise.

Alternatively, in case of densely populated knowledge bases, this can be efficiently
approximated, defining the functions as follows (∀a, b ∈ Ind(A)):

σi(a, b) =






1 (Fi(a) ∈ A ∧ Fi(b) ∈ A) ∨ (¬Fi(a) ∈ A ∧ ¬Fi(b) ∈ A);
0 (Fi(a) ∈ A ∧ ¬Fi(b) ∈ A) ∨ (¬Fi(a) ∈ A ∧ Fi(b) ∈ A);
1
2 otherwise.

The rationale for these functions is that similarity between individuals is determined
relative to a given context [9]. Two individuals are maximally similar relative to a given
concept Fi if they exhibit the same behavior, i.e., both are instances of the concept or



of its negation. Conversely, the minimal similarity holds when they belong to oppo-
site concepts. By the open-world semantics, sometimes a reasoner cannot assess the
concept-membership, hence, since both possibilities are open, an intermediate value is
assigned to reflect such uncertainty.

As mentioned, instance-checking is to be employed for assessing the value of the
simple similarity functions. As this is known to be computationally expensive (also de-
pending on the specific DL language), alternatively a simple look-up may be sufficient,
as suggested by the first definition of the σi functions, especially for ontologies that are
rich of explicit class-membership information (assertions).

The parameter p was borrowed from the form of the Minkowski’s measures [11].
Once the context is fixed, the possible values for the similarity function are determined,
hence p has an impact on the granularity of the measure.

Furthermore, the uniform choice of the weights assigned to the similarity related to
the various features in the sum (1/mp) may be replaced by assigning different weights
reflecting the importance of a certain feature in discerning the various instances. A good
choice may be based on the amount of entropy related to each feature concept (then the
weight vector has only to be normalized) [6].

4.3 Optimization of the Contexts

It is worthwhile to note that this is indeed a family of functions parameterized on
the choice of features. Preliminary experiments regarding instance-based classification,
demonstrated the effectiveness of the similarity function using the very set of both prim-
itive and defined concepts found in the knowledge bases. But the choice of the concepts
to be included in the context C is crucial and may be the object of a preliminary learning
problem to be solved (feature selection).

As performed for inducing the pseudo-metric that inspired the definition of the simi-
larity function [8], a preliminary phase may concern finding optimal contexts. This may
be carried out by means of randomized optimization procedures.

Since the underlying idea in the definition of the functions is that similar individuals
should exhibit the same behavior relative to the concepts in C, one may assume that the
context C represents a sufficient number of (possibly redundant) features that are able
to discriminate different individuals (in terms of a discernibility measure).

Namely, since the function is strictly dependent on the context C, two immediate
heuristics arise:

– the number of concepts of the context,
– their discriminating power in terms of a discernibility factor, i.e., a measure of the

amount of difference between individuals.

Finding optimal sets of discriminating features, should also profit by their composition,
employing the specific constructors made available by the DL representation language
of choice.

These objectives can be accomplished by means of randomized optimization tech-
niques, especially when knowledge bases with large sets of individuals are available
[8]. Namely, part of the entire data can be drawn in order to learn optimal feature sets,
in advance with respect to the successive usage for all other purposes.



4.4 Approximation by Tolerance

In [4], a less strict type of approximation is introduced, based on the notion of tolerance.
Exploiting the similarity functions that have been defined, it is easy to extend this kind
of (contextual) approximation to the case of RDLs.

Let a tolerance function on a set U be any function τ : U ×U '→ [0, 1] such that for
all a, b ∈ U, τ(a, b) = 1 and τ(a, b) = τ(b, a). Considering a tolerance function τ on
U and a tolerance threshold θ ∈ [0, 1], a neighborhood function ν : U '→ 2U is defined
as follows:

νθ(a) = {b ∈ U | τ(a, b) ≥ θ}.

For each element a ∈ U , the set νθ(a) is also called the neighborhood of a.
Now, let us consider the domain ∆I of an interpretation I as a universal set, a sim-

ilarity function sC
p on ∆I (for some context C) as a tolerance function, and a threshold

θ ∈ [0, 1]. It is easy to derive an equivalence relationship on ∆I , where the classes
consist of individuals within a certain degree of similarity, indicated by the threshold:
[a]C = νθ(a). The notions of upper and lower approximation relative to the induced
equivalence relationship descend straightforwardly.

Not that these approximations depend on the threshold. Thus, we have a numerical
way to control the degree of indiscernibility that is needed to model uncertain concepts.
This applies both in the standard RDL setting and in the new contextual one presented
in the previous section.

5 Summary and Outlook

Inspired by previous works on dissimilarity measures in DLs, we have defined a notion
of context, which allows to extend the indiscernibility relationship adopted by rough
DLs, thus allowing for various kinds of approximations of uncertain concepts within the
same knowledge base. It also saves the advantage of encoding the relation in the same
DL language thus allowing for reasoning with uncertain concepts through standard tools
obtaining crisp answers to queries.

Alternatively, these approximations can be implemented as new modal-like lan-
guage operators. Some properties of the approximations deriving from rough sets theory
have also been investigated.

A novel family of semantic similarity functions for individuals has also been de-
fined based on their behavior relative to a number of features (concepts). The functions
are language-independent being based on instance-checking (or ABox look-up). This
allows for defining further kinds of graded approximations based on the notion of tol-
erance relative to a certain threshold.

Since data can be classified into indiscernible clusters, unsupervised learning meth-
ods for grouping individuals on the grounds of their similarity may be used for the def-
inition of the equivalence relation [12, 8, 13]. Besides, it may also possible to learn
rough DL concepts from the explicit definitions of the instances of particular con-
cepts [14, 15, 16].
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