
UML Representation Proposal for XTT Rule
Design Method?

Grzegorz J. Nalepa1 and Krzysztof Kluza1

Institute of Automatics,
AGH University of Science and Technology,
Al. Mickiewicza 30, 30-059 Kraków, Poland
gjn@agh.edu.pl, kluza.krzysztof@gmail.com

Abstract In the paper practical issues concerning the use of UML as
a knowledge representation method for rules are discussed. A proposal
of an UML-based representation for the XTT structured representation
for rules is presented. Since some deep semantical differences between
UML and rule-based representation exist, several possible UML repre-
sentations are evaluated. A practical algorithm for building an UML
representation using activity diagrams from XTT tables is proposed.

1 Introduction

Using Knowledge Engineering (KE) methods in practical Software Engineer-
ing [1] (SE) has gained some momentum in recent years. One of the best exam-
ples is the business rules approach [2]. The fact is that KE is being developed in
parallel with SE, and both approaches use different methods and tools to actually
model and build systems. Important semantical differences between these two
make the use of the KE methods in SE non-trivial, whereas using SE methods
with KE problems is often of limited use.
The paper focuses on analyzing possibilities of the practical use of the UML

language to model XTT rule-based systems. Extended Tabular Trees (XTT for
short) [3] is a structured knowledge representation for rules, based on some classic
KE notions of decision tables and decision trees. Representing XTT with UML
artifacts encounters number of issues addressed in the paper. A new algorithm
for encoding an XTT diagram using UML is introduced.
The paper is organized as follows. In the Sect. 2 possibilities of using UML as

a knowledge representation language are discussed. Then, in Sect. 3 knowledge
representation issues in the HeKatE project are presented. The paper presents
an UML-based representation for the XTT rule representation method. The
application of this method is discussed using the example thermostat control
system presented in Sect. 4, whereas the method itself is introduced in Sect. 6
and 5. The UML representation of the thermostat is then discussed in Sect. 7.
Directions for future work are presented in the final section.

? The paper is supported by the HEKATE Project funded from 2007–2009 resources
for science as a research project.

2 UML as a Knowledge Representation Language

UML as a design language identifies two distant domains of SE, that is soft-
ware structure, and behavior modelling. So there are two main diagram classes:
Structure Diagrams and Behavior Diagrams containing different artifacts.
Apparently, Structure Diagrams are often considered the basis of UML. They

are fairly complete and allow for expressing software components and denoting
relationship among them easily (i.e.: Class Diagram, Component Diagram). Be-
havior diagrams model software logic at different abstraction levels. First of all
there is a big picture perspective: modelling what particular software should do,
from the user point of view (i.e.: Use Case Diagram). There is also a detailed
perspective: what particular software components defined by the Structure Dia-
grams should do (i.e.: State Machine Diagram, Interaction Diagram). The prob-
lem is that these two perspectives do not fit together very well with the Structure
Diagram. While the detailed perspective corresponds to classes, the big picture
one serves more as a guideline, than a real modelling tool. So it seems that the
relationship between modelling software behavior and its structure is unclear.
Another issue regards the semantic gap between the design and the imple-

mentation [4]. Even if discussed diagrams support the implementation process by
describing software in a comprehensive way, it is impossible to verify in a reason-
able time if the implementation matches the design. There is also another gap
in the specification-design-implementation process called analysis specification
gap [5]. It regards a difficulty with the transition from a specification to the de-
sign. Formulating a specification which is clear, concise, complete and amenable
to analysis turns out to be a very complex task, even in small projects.
Applying UML as a Knowledge Engineering method is not straight for-

ward [6]. Existing diagrams are not suitable for rule modeling or expressing
knowledge in general. Using an UML profile, which is a redefinition of the se-
mantics of certain diagrams, does not help much, and in some cases might com-
plicate the design. It forces the use of existing diagrams for purposes they were
not designed for i.e. representing rule sets is tricky and inefficient.
There are several possible approaches when it comes to practical UML appli-

cation for knowledge engineering. The first solution is the “classic” and definitely
the easiest one. It consists in modelling the system with a knowledge-based ap-
proach, that uses some classic knowledge representation method, such as deci-
sion trees, then design the software implementation using UML, and generate an
object-oriented (OO) code. In this case, KE methods are used in the “design”
stage, while SE methods provide “implementation” means.
In the second approach the rule-based knowledge is modelled with UML

diagrams, and then the corresponding OO code is generated. This approach
relies on either extending, or redefining the original semantics of UML. Some
early beginning can be observed in OMG Production Rule Representation [7],
where some ideas of extending existing semantics of UML were contained. How-
ever, a complete example of this approach may be found in the Unified Rule
Modelling Language (URML), (see [8]). In this case, existing UML diagrams
are used to model different type of rules. In URML a simple production rule

If car is new, then increase premium by $400. is modeled in URML as
shown in Fig. 1.

Figure 1. Production rule in URML

The last one is possibly the most complicated approach. It relies at incor-
porating a complete rule-based logic core into an OO application. It aims at
minimizing the semantic gap between SE and KE. Such a solution is being de-
veloped in the HeKatE project, where a declarative, rule-based core is integrated
into an OO application as a logical model (as in the Model-View-Controller de-
sign pattern [9]). In this paper it is proposed to find a UML representation
corresponding, to XTT. Such a representation could then be used to present a
complete UML application model designed with KE methods.

3 Knowledge in the HeKatE Design Process

The HeKatE project aims at applying selected AI tools into SE. It is based on
incorporating an extended rule model as a logical application core. The model
uses the XTT rule representation and design method, with the support of the
ARD (Attribute Relationship Diagrams) [10,11] rule prototyping method. The
project provides a hierarchical design process, which should ultimately be rep-
resented by both custom XTT/ARD methods, as well as an UML-bases repre-
sentation. The main difference between the HeKatE knowledge representations
and UML diagram is, that UML, after all, does not provide a design process.
Whereas, HeKatE is about the integrated design process. So the methods on
which HeKatE is based, have been invented with the design process in mind.
The XTT (EXtended Tabular Trees) knowledge representation [3], has been

proposed in order to solve some common design, analysis and implementation
problems present in rule-based systems. In this method three important rep-
resentation levels has been addressed: visual – the model is represented by a
hierarchical structure of linked extended decision tables, logical – tables corre-
spond to sequences of extended decision rules, and implementation – rules are

processed using a Prolog representation. On the visual level the model is com-
posed of extended decision tables, see Fig. 2. The table represents a set of rules,
having the same attributes. On the logical level, a table corresponds to a number
of rules, processed in a sequence. If a rule is fired and it has a link, the inference
engine processes the rule in another table.
In addition to XTT which represents rules, there is a rule design process in-

volved. The process begins with the ARD model, and ends with the XTT model.
The key underlying assumption in the ARD design with knowledge specification
in attributive logics is that, similarly as in the case of Relational Databases [12],
the attributes are functionally dependent. An ARD diagram is a conceptual sys-
tem model at a certain abstract level. Attributes are subsequently identified at
more and more detailed levels. The process includes all levels. At the most de-
tailed level, XTT diagrams are added to define dependencies among attributes
and to describe how to calculate attribute values. The ARD process is similar,
in terms of its goals, to Structure Diagrams. However, while the Structure Di-
agrams tend to describe what elements the software consists of, ARD describes
what is known about it.

4 Thermostat Case Study

The analysis of the UML representation is conducted using a classic rule-based
control system example, a Thermostat case, found in [13]. The main problem
consists in creating a temperature control system for an office. The system needs
to take into account current date, including the day of the week, as well time of
the day. The original design has 18 rules, and has been studied in detail in the
HeKatE project. Here only the complete XTT design is presented in Fig. 2.
In the subsequent sections several approaches to the XTT representation in

UML are presented, with the optimal one used to represent the whole XTT
Thermostat design.

Figure 2. XTT Thermostat Design

5 Modeling XTT with UML

In this section the evolution of the UML representation for XTT is discussed.
Several attempts to provide such a representation are presented, in order to
expose the semantic and conceptual differences between UML and knowledge-
based systems. Finally, an optimal solution is proposed.
Decision tables in XTT represent rules that have the same attributes. The

rules in a single table are processed sequentially. So at this point a reasonable
idea is to try to use diagrams that show not so much the structure of the system,
but its behavior (dynamics). It could be diagrams such as use case diagrams,
activity diagrams or state diagrams, as well as diagrams of interaction (sequence
or collaboration diagrams).
According to [6] State Machine Diagrams and Activity Diagrams seem to be

the best UML candidates for rule modeling, but not good enough to serve the
purpose of rule modeling with similar expressiveness as XTT. It is possible to
use them to express rules in case of smaller systems. However, in case of larger
systems, where the number of states grows fast their use poses some practical
problems. So the first attempt to use UML for XTT is to investigate activity
and state diagrams.
Activity and state diagrams are related. However, it is important to under-

stand the differences between them. A state diagram shows the possible states
of the object and the transitions that cause a change in state. It focuses on an
object undergoing a process (or on a process as an object). However, an activity
diagram focuses on the flow of activities involved in a single process and shows
how they depend on one another [14].
The first attempts were carried out using state diagram for XTT modelling.

State diagrams capture the behavior of a software system and state machine
uses graph notation to represent the behavior of a component of a system [15].
The Table 1 lists the types of pseudostates used in state diagrams.

Table 1. Types of used pseudostates

Initial pseudostate – the starting point of a state machine.

Choice – allows the execution of a state machine to choose between
several different states based on guard conditions on the transitions.
Fork and join – represents a split in the execution of the state machine
into orthogonal regions. The join reunites the regions into a single tran-
sition. The state machine won’t transition from the join until all regions
have transitioned to the join pseudostate.

All of the attempts to find a UML representation are presented on a single
XTT table from the Thermostat systems, the TH table.

Figure 3. First attempt: State diagram corresponding to XTT TH diagram

The first abandoned attempt The Fig. 3 shows the corresponding UML
state diagram for the sample XTT table. However, in this case, where XTT is
transformed into activity diagrams it is not clear which attributes should be
transformed to the states and which to guard conditions.

The second abandoned attempt To avoid the problem from the first attempt
(how to transform XTT attributes), let:

– values of the XTT output attributes (H in XTT) become states,
– individual rows from XTT (conjunction of values in their cells) become guard
conditions.

The Fig. 4 shows the modified UML state diagram corresponding to the sample
XTT table. Unfortunately, with when the number of rules in XTT table grows,
the diagram becomes poorly readable.

Figure 4. First attempt: State diagram corresponding to XTT TH diagram

The third abandoned attempt The diagram could be more readable if we
use a fork pseudostate instead of a choice pseudostate. The Fig. 5 shows the
corresponding UML state diagram for the sample XTT table with the fork pseu-
dostate. If there is an deficiency in an XTT table (e.g. as a result of a mistake)

Figure 5. Third attempt: State diagram corresponding to XTT TH diagram

and different rows will not exclude each other, than the fork pseudostate dupli-
cates the input value and may transfer the control to more than one edge of the
subsequent states.
The limitation of all of these three approaches is the lack of the output

attribute naming, and for getting the names of input attributes it is needed to
search for them in the guard conditions.

6 UML Model for XTT

Considering the previously analyzed approaches, in this section a more optimal
translation is proposed. In general, activity diagrams are related to flow diagrams
and can illustrate the activities taking place in the system. The Table 2 lists the
types of nodes used in activity diagrams.

Table 2. Types of used pseudostates

Action

Decision node

Merge node

Fork node

Join node

Partitions (swimlanes)

Parameter of activity

Finally, an algorithm to transform XTT diagrams to UML activity diagrams
has been formulated. The proposed transition algorithm from XTT table to UML
activity diagram is as follows:

1. All input attributes become input parameters and output attribute becomes
output parameter of an activity (for the demarcation the diagram can be
divided into the partitions with a swimlane), see Fig. 6.

Figure 6. Example of applying of the first step of algorithm

2. For each attribute (activity parameter), if there is more than one unique
value in the XTT, a decision node and for every unique value of attribute
needs to be added (see Fig. 7):
(a) the control flow with guard condition is introduced (with that unique
value in it),

(b) if the value occurs frequently, the flow is finished with a fork node with
number of outputs equal to the number of times the value appears in
XTT table.

Figure 7. Example of applying of the second step of algorithm

3. For each rule (a row in XTT) a join node with the number of inputs equal
to the number of input parameters is drawn and another one for output, see
Fig. 8. For each join node:
(a) inputs are connected using an adequate flow control (in accordance with
the values of attributes in the rule),

(b) outputs are connected using a flow control with the action having a value
corresponding to the output attribute in the rule:
i. directly, if the value of attribute occurred in XTT only once,

Figure 8. Example of applying of the third step of algorithm

ii. otherwise through a merge node.
4. Outputs of all actions are merged in a merge node and a control flow is lead
to output parameter of activity, see Fig. 9.

Figure 9. Example of applying of the fourth step of algorithm

It is worth noting, that in general a counter-wise transformation could be
considered. This would allow for UML-based XTT rule design in any standard-
compliant UML editor. However, this is not possible without introducing some
kind of special annotations in the UML model. Ultimately, an UML profile for
XTT is considered as a solution for this problem.

7 XTT for Thermostat in UML

Activity diagrams constructed with the algorithm above for the thermostat will
look as in the Tables 3, 4, 5, 6. For the sake of transparency, modeling the diagram
of the entire thermostat, these activities are nested. An activity presented in a
nested form refers to a number of actions of this activity. (However, it is not
presented directly in the diagram). Figure 10 shows the diagram for the whole
thermostat system as discussed in the Sect. 4.

8 Evaluation and Future Work

In this paper the use of UML as knowledge representation for rule-based systems
has been considered. Several possibilities have been described in order to expose

Table 3. Activity diagram corresponding to XTT MS table

Table 4. Activity diagram corresponding to XTT DT table

some non-trivial issues concerning this representation. The original contribution
of the paper is an UML-based representation of XTT diagrams.
Since the problem is not new, some other approaches exist, so it is worth

noting how the HeKatE approach compares to the existing solutions. Currently,
two most important representations include OMG PRR [7] and REWERSE
URML [8]. The fact is, that both of these aim at detailed modelling of sin-
gle rules. On the other hand, by definition, in the XTT approach the design
is focused on the tree like structure of decision tables. So the representation
introduced in this paper aims at translating the whole structure of extended
decision tables into UML. Another difference is, that the HeKatE approach does

Figure 10. Activity diagram for the whole thermostat

Table 5. Activity diagram corresponding to XTT TH table

Table 6. Activity diagram corresponding to XTT OS table

not introduce new UML artifacts. It also does not aim at redefining some of the
UML semantics by using a custom profile (such a profile could be considered for
the means of bidirectional translation though). Instead it tries to explore and
efficiently use the existing diagrams.
It also worth emphasizing, that while the XTT representation scales well in

larger examples than the one presented here, its UML representation is not as
efficient. In general from a modeling point of view, the XTT table provides a more
compact representation than the activity diagram. The UML representation is
considered in order to allow interoperation with UML modeling tools, as well as
MOF-based description of XTT.
The work presented in the paper is in progress. The proposed algorithm is

being implemented and tested. Several methods are considered, including an
XSLT translation to the XMI format. In order to fully evaluate the algorithm a
formalized description will be ultimately provided. The current UML transfor-
mation closely follows both syntax and extended semantics of XTT, so it is not

directly aimed at other rule formalisms. However, the approach for providing the
transformation is a generic one, so in the future its application to different rule
formats may be considered. Ultimately the model designed with this method
should be embeddable into any business application using the MVC pattern. In
the future, the whole HeKatE design process including rule prototyping with
ARD and design with XTT should be put into the context of the MDA [16].

References

1. Sommerville, I.: Software Engineering. 7th edn. International Computer Science.
Pearson Education Limited (2004)

2. Ross, R.G.: Principles of the Business Rule Approach. 1 edn. Addison-Wesley
Professional (2003)

3. Nalepa, G.J., Ligęza, A.: A graphical tabular model for rule-based logic program-
ming and verification. Systems Science 31(2) (2005) 89–95

4. Mellor, S.J., Balcer, M.: Executable UML: A Foundation for Model-Driven Ar-
chitectures. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA
(2002)

5. Rash, J.L., Hinchey, M.G., Rouff, C.A., Gracanin, D., Erickson, J.: A tool for
requirements-based programming. In: Integrated Design and Process Technology,
IDPT-2005, Society for Design and Process Science (2005)

6. Nalepa, G.J., Wojnicki, I.: Using UML for knowledge engineering – a critical
overview. In Baumeister, J., Seipel, D., eds.: 3rdWorkshop on Knowledge Engineer-
ing and Software Engineering (KESE 2007) at the 30th annual German conference
on Artificial intelligence : [September 10, 2007, Osnabrck, Germany]. (september
2007) 37–46

7. OMG: Production rule representation. Technical report, Object Management
Group (br/2003-09-03)

8. Lukichev, S., Wagner, G.: Visual rules modeling. In: Sixth International An-
drei Ershov Memorial Conference Perspectives Of System Informatics, Novosibirsk,
Russia, June 2006. LNCS, Springer (2005)

9. Burbeck, S.: Applications programming in smalltalk-80(tm): How to use model-
view-controller (mvc). Technical report, Department of Computer Science, Uni-
versity of Illinois, Urbana-Champaign (1992)

10. Nalepa, G.J., Ligęza, A.: Conceptual modelling and automated implementation of
rule-based systems. In Krzysztof Zieliński, T.S., ed.: Software engineering : evolu-
tion and emerging technologies. Volume 130 of Frontiers in Artificial Intelligence
and Applications., Amsterdam, IOS Press (2005) 330–340

11. Nalepa, G.J., Wojnicki, I.: Towards formalization of ARD+ conceptual design and
refinement method. In: FLAIRS2008. (2008) accepted.

12. Connolly, T., Begg, C., Strechan, A.: Database Systems, A Practical Approach to
Design, Implementation, and Management. 2nd edn. Addison-Wesley (1999)

13. Negnevitsky, M.: Artificial Intelligence. A Guide to Intelligent Systems. Addison-
Wesley, Harlow, England; London; New York (2002) ISBN 0-201-71159-1.

14. Miller, R.: Practical UML: A Hands-On Introduction for Developers,
http://dn.codegear.com/article/31863#activity-diagrams. (2003)

15. Pilone, D., Pitman, N.: UML 2.0 in a Nutshell. O’Reilly (2005)
16. Miller, J., Mukerji, J.: MDA Guide Version 1.0.1. OMG. (2003)

