
4th Workshop on

Knowledge Engineering

and Software Engineering (KESE2008)

at the 31st German Conference on Artificial Intelligence

Grzegorz J. Nalepa and Joachim Baumeister (Editors)

September 23, 2008, Kaiserslautern, Germany





Preface

Artificial Intelligence (AI) has always been both a challenging and exciting field.
Knowledge Engineering remains one of the main areas of research and develop-
ment of Artificial Intelligence, penetrating and finding applications in specific
fields of Computer Science. Research on Knowledge Engineering and Software
Engineering have exchanged very fruitfully during the last decades.

Both consider the development of advanced tools and processes for building
complex intelligent systems. Especially, declarative Software Engineering tech-
niques such as knowledge-based systems, logic programming, constraint pro-
gramming, have been established in various areas of Software Engineering, and
in the context of the Semantic Web. Knowledge Engineering extensively uses
current software tools, environments and languages for the development of in-
telligent systems. Some recent developments within the Business Rules commu-
nity brought classic Knowledge Engineering even closer to the development of
business-oriented software systems.

The 4th workshop on Knowledge Engineering and Software Engineering
(KESE2008), held with 31st German Conference on Artificial Intelligence
(KI2008), brought together both researchers and practitioners from the fields of
Software Engineering and applied Artificial Intelligence. Latest research results
as well as practical experience in the field was exchanged during the workshop.
The topics of interest included the following:

– Application of AI and Knowledge Engineering methods in Software Engi-
neering, such as knowledge and experience management, declarative, logic-
based approaches, constraint programming, agent-oriented software engi-
neering, issues of maintenance, and Business Rules.

– The use of Software Engineering tools in AI and Knowledge Engineering, e,g.
engineering the Semantic Web, database and knowledge base management
in AI systems, tools for intelligent systems, evaluation of intelligent systems,
and process models.

This volume contains nine contributions presented at KESE2008, seven reg-
ular and two short papers. Diaconescu et al. discuss mapping ERDF(S) to Take
inference engine vocabulary, and extending Take to support Open World As-
sumption with strong and weak negation predicates. Giurca and Pascalau intro-
duce a JSON-based rule language and its JavaScript-based rule engine towards
providing Web 2.0 applications with rule-based inference capabilities. Kluegl et
al. introduce a system that uses a rule representation for information extraction
tasks. Moreover they introduce a test-driven development process to engineer
such rules. Nalepa and Kluza consider practical issues concerning the use of
UML as a knowledge representation method for XTT rules, with an ultimate
goal of combining the classic AI approach to knowledge-based systems design
with Software Engineering modeling methods. Nalepa and Wojnicki propose a
Knowledge Wiki System where knowledge is expressed in the Prolog language
and an inference engine is coupled with the Wiki, providing means for an au-
tomated knowledge processing and interpretation. Newo and Althoff present a

iii



model for simulating and researching people’s behaviors in critical situations.
The model is implemented by means of a multiagent system approach, realized
by distributed knowledge-based systems with a specific focus on case-based rea-
soning technology. Peylo considers requirements engineering and argues that it is
feasible to establish a domain ontology based on meta information and explana-
tions that are represented as scripts. Moreover, he shows that this ontology has
to be constructed in a dynamic way, to reflect the dynamics of requirements en-
gineering process. Reichle and Bach present the retrieval and adaptation mecha-
nisms used in an information system on travel medicine, docQuery. The retrieval
method’s main feature is an overall improved accuracy of retrieval results’ sim-
ilarities through a more diverse distribution of similarities over the retrieved
result sets. Finally Ruh and Stolzenburg discuss a method for engineering and
programming multi-robot systems, based on a combination of statecharts and
hybrid automata. The formal specification method they use allows for a graphi-
cal presentation of the whole multiagent system behavior, and the specification
can be directly executed on mobile robots.

The organizers would like to thank all who contributed to the success of
the workshop: for the technical program we thank all authors for submitting
papers to the workshop, and we thank the members of the program committee
as well as the external reviewers for reviewing and collaboratively discussing the
quality of the initial submissions. The reviewing process as well as proceeding
preparation was performed with the use of EasyChair, for which the organizers
thank Andrei Voronkov, the developer of the system. We would also like to thank
Thomas Roth-Berghofer the KI2008 workshops chair for his efforts and support.

September 2008 Grzegorz J. Nalepa and Joachim Baumeister
Workshop Organizers

KESE2008

iv



Workshop Organization

The 4th Workshop on Knowledge Engineering and Software Engineering
(KESE2008)

was held as a one-day event at the
31st German Conference on Artificial Intelligence (KI2008)

on September 23, 2008 in Kaiserslautern, Germany.

Workshop Chairs and Organizers

Grzegorz J. Nalepa, AGH UST, Kraków, Poland
Joachim Baumeister, University Würzburg, Germany

Programme Committee

Klaus-Dieter Althoff, University Hildesheim, Germany
Joaquin Cañadas, University of Almeŕıa, Spain
Uli Geske, FhG FIRST, Berlin, Germany
Adrian Giurca, BTU Cottbus, Germany
Rainer Knauf, TU Ilmenau, Germany
Frank Puppe, University Würzburg, Germany
Dietmar Seipel, University Würzburg, Germany
Gerhard Weiss, SCCH, Austria

External Reviewers

Kerstin Bach, University Hildesheim, Germany
Jochen Reutelshoefer, University Würzburg, Germany

v



vi



Table of Contents

Towards a Mapping from ERDF(S) to Take Vocabulary . . . . . . . . . . . . . . . . 1
Ion-Mircea Diaconescu, Adrian Giurca, Gerd Wagner, Jens Dietrich

JSON Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Adrian Giurca, Emilian Pascalau

Test-Driven Development of Complex Information Extraction Systems
using TextMarker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Peter Kluegl, Martin Atzmueller, Frank Puppe

UML Representation Proposal for XTT Rule Design Method . . . . . . . . . . . 31
Grzegorz Nalepa, Krzysztof Kluza

Proposal of a Prolog-based Knowledge Wiki . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Grzegorz Nalepa, Igor Wojnicki

Learning to Cope with Critical Situations – An Agent based Approach . . 55
Régis Newo, Klaus-Dieter Althoff

On Restaurants and Requirements: How Requirements Engineering
may be Facilitated by Scripts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

Christoph Peylo

Improving Result Adaptation through 2-step Retrieval . . . . . . . . . . . . . . . . . 73
Meike Reichle, Kerstin Bach

Translating Cooperative Strategies for Robot Behavior . . . . . . . . . . . . . . . . . 85
Florian Ruh, Frieder Stolzenburg

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

vii



viii



Towards a Mapping from ERDF(S) to Take
Vocabulary

Ion-Mircea Diaconescu1, Adrian Giurca1, Gerd Wagner1, Jens Dietrich2

E-Mail: {M.Diaconescu, Giurca, G.Wagner}@tu-cottbus.de,
J.B.Dietrich@massey.ac.nz

1 Brandenburg University of Technology, Germany
2 Massey University, New Zealand

Abstract. This paper presents a mapping solution from ERDF(S) to
Take vocabulary. The work is related to an investigation of integrat-
ing ERDF Derivation Rules into Take inference engine. Some steps are
required to finalize this task: a mapping between ERDF(S) and Take vo-
cabulary, integration of ERDF knowledge base in Take, and empowering
Take inference engine to deal with both Closed World Assumption and
Open World Assumption, specifically with Open and Closed predicates
and two types of negation: strong negation and weak negation.

1 Introduction and Motivation

The paper presents an approach of a mapping from ERDF(S)[3, 4, 2] to Take [6]
vocabulary. This mapping is part of our project to extend Take with support for
ERDF Derivation Rules.

Influenced by Mandarax [8], Take is a backward inference engine, designed to
deal with objects as facts. In the actual implementation, Java objects are used.
The engine use a polymorphic negation: (1) strong negation for JPredicate and
PropertyPredicates - predicates generated for boolean methods respectively
boolean properties from Java Beans. Those are computed without using rules.
(2) negation as failure for SimplePredicate - predicates defined by rules and
used in rules, facts, queries or external fact stores. Take compiles rules to an op-
timized Java code before the inference process is started, this having as primary
advantage a better scalability.

Since explicit negative information is not provided (with exception of Boolean
properties), and the inference is under CWA hypothesis, false information can
be inferred in some cases. For instance, reasoning on top of a FOAF3 facts base,
a rule set can conclude that two persons does not foaf:knows one each other
since no occurrence of a foaf:knows property is found in at least one FOAF file
of the two persons refereing the other person (CWA). Since it is not mandatory
to refer all known persons in your FOAF file (not relating a known person in
your FOAF file does not means that you don’t know him), the derived conclusion

3 FOAF Specification - http://xmlns.com/foaf/spec/

1



might be not appropriate. In this example, it is obvious that foaf:knows can
be represented as an Open Property.

Based on Partial Logic [7], ERDF comes to solve this problem by providing
the possibility of expressing negated facts, and two types of negation in rules:
strong negation and weak negation. Also it defines new types of classes and
properties. In [9] detailed information and use cases are provided about those
extensions and the rule language.

We are not aware of any substantial work regarding the mapping from ERDF
(and implicitly RDF(S)[5]) vocabularies to Java classes. Such a mapping is a key
point towards mapping RDF/ERDF descriptions to Java objects. The next paper
section deals with this issue tailored to the Take inference engine mechanism.

2 Mapping ERDF Schemas to Take Vocabulary

2.1 Resolving URI’s to Java Identifiers

Since in ERDF Schemas classes and properties are defined by URI’s, first step
is to define a mapping from URI’s to Java identifiers. The following rules define
this mapping:

1. Using MD54 hashes, each URI is mapped to an unique ID. It will be prefixed
with an ’ ’ (underscore), since Java identifiers cannot start with digits.

2. Optional, at the end of the identifier the local name (where is possible) is
added. Additional, comments may be generated to improve readability.

3. The reversibility is obtained by storing each URI expressing a class or a
property and its generated Java identifier.

Example 1. Mapping URI’s to Java identifiers

http://example.org/voc/Person ⇒ _35EDA2C34D57C09DCDB4D1544C674779_Person

http://example.org/v/Person ⇒ _DD3A8FFF3850417783DC9651D86B0395_Person

Using MD5 hashes, for each different URI a different signature is obtained.
Two or many URI’s may express the same concept (such as Person from the
above example), but since different URI’s are used, a distinct class or property
is generated for each of them. The mapping from Java identifiers to ERDF
classes/properties is implemented by using a Java Map.

2.2 Mapping Classes and Properties

This section describes the mapping from ERDF classes and properties to Take
vocabulary. The following rule expresses the general mapping from ERDF vo-
cabulary to Java vocabulary:

4 The MD5 Message-Digest Algorithm - http://www.ietf.org/rfc/rfc1321.txt

2



Rule 1 (a) For each ERDF class a Java class is generated; (b) Each ERDF
property maps to a Java property.

Example 2. Mapping classes and properties from ERDF(S) to Java Vocabulary

<erdf:Class erdf:about="http://example.org/v/Person"/>
<rdf:Property rdf:about="http://example.org/v/name">

<rdfs:domain rdf:resource="http://example.org/v/Person" />
<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string" />

</rdf:Property>

// Class related URI: http://example.org/v/Person
public class _DD3A8FFF3850417783DC9651D86B0395_Person {

// Property related URI: http://example.org/voc/name
private Collection<String> _4D9F16067649DF5A90773F7D832D9122_name;

public Collection<String> get_4D9F16067649DF5A90773F7D832D9122_name() {
return this._4D9F16067649DF5A90773F7D832D9122_name;

}
}

Each ERDF property maps in Java as a collection containing all values of
that property. This allows to express multi-valued ERDF properties. Accessors
are generated for each property. Adding an element to collection must be done by
checking some constraints depending by the type of the added value (datatype
or object type).

2.3 Solving rdfs:range, rdfs:domain and rdfs:subClassOf relations

In ERDF multiple ranges are allowed for a property. Types are mapped according
with their nature: (1) datatype mappings and (2) object type mappings.

Datatypes If all property ranges are datatypes then, according with RDF Se-
mantics [1], the property type is the intersection of all those types. For compat-
ible datatypes this intersection is defined, for all the rest the intersection will be
an empty set and therefore the property will not be generated and an exception
is thrown. Only datatypes defined by XML Schema datatypes 5 are allowed. A
mapping from XML datatypes to Java types is defined 6. All datatypes in Java
will be expressed by using corresponding wrapper classes (e.g.Integer for int)
and collections representing properties are parameterized with the correspond-
ing wrapper class. The RDF datatype, rdf:XMLLiteral, maps to String type
in Java.

Example 3. Mapping ranges for datatypes

<rdf:Property rdf:about="http://example.org/v/salary">
<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#int" />
<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#float" />
<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#double" />

5 XML Schema Datatypes - http://www.w3.org/TR/xmlschema-2/
6 XML datatypes mapping - http://java.sun.com/javaee/5/docs/tutorial/doc/bnazq.html

3



<rdfs:domain rdf:resource="http://example.org/v/Employee" />
</rdf:Property>

public class _f2989a52fddb17fa72653625cd9c0374_Employee {
private Collection<Integer> _93ad619912a976c6c56623d3c6b73491_salary;

public Collection<Integer> get_93ad619912a976c6c56623d3c6b73491_salary() {
return this._93ad619912a976c6c56623d3c6b73491_salary;

}
}

Since the Take engine manages itself properties having type Collection, we
just have to define a get method which returns the collection. Before adding
new values for a specific property, some constraints have to be verified (e.g. do
not have the same value many times). An implementation of Collection (i.e.
extending ArrayList by overriding the add method) is provided.

Example 4. Implementing DatatypeArrayList

public class DatatypeArrayList extends ArrayList<Object> {
public boolean add(Object value) {

if(!this.contains(value)) {super.add(value); return true;}
return false;

}
}

Object types All types which are not XML datatypes are considered object
types. In this case, a proper intersection solution cannot be defined using an
automatic method. When a single range is defined for a ERDF property, the
collection will be parameterized with that type. If many ranges are used for the
same property, then the collection representing the property is parameterized
with the Java super type Object. The intersection of ranges is resolved at run-
time by the add method, checking if the value wanted to be added is instance of
all types expressed by its rdfs:range occurrences. For object types, we define
a new Collection implementation, ObjectArrayList, which will be used to
instantiate all object properties from our Java classes.

Example 5. Implementing ObjectArrayList

public class ObjectArrayList extends ArrayList<Object>{
private ArrayList<String> types;

public ObjectArrayList(ArrayList<String> types) {this.types = types;}

public boolean add(Object value) {
boolean valid = true;
for(int i=0;i<types.size();i++) {

try {
valid = valid && (Class.forName(types.get(i)).isInstance(value));

}catch(Exception e){System.out.println(e.toString());}
}
if(valid) {super.add(value); return true;}
return false;

}
}

4



Mapping rdfs:domain Unlike in Java, ERDF properties are global and applies
to all classes defined as their domains. The proposed mapping creates a property
with the same name in each class appearing in their rdfs:domain occurrences.

Example 6. Mapping properties having multiple domains

<erdf:Class erdf:about="http://example.org/v/Person" />
<erdf:Class erdf:about="http://example.org/v/City" />
<rdf:Property rdf:about="http://example.org/v/name" />

<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string" />
<rdfs:domain rdf:resource="http://example.org/v/Person" />
<rdfs:domain rdf:resource="http://example.org/v/City" />

</rdf:Property>

public class _dd3a8fff3850417783dc9651d86b0395_Person {
private Collection<String> _ba6a578397a5a376500712b8cb11e9e9_name;

}
public class _0545f96c913977fbf95b0c52de54d6af_City {

private Collection<String> _ba6a578397a5a376500712b8cb11e9e9_name;
}

Mapping rdfs:subClassOf Since Java does not allows multiple inheritance,
but ERDF supports that by using rdfs:subClassOf property, we need to emu-
late multiple inheritance by using Java interfaces. The following rule defines the
multiple inheritance approach:

Rule 2 (a) For each class implied in an inheritance chain, an empty interface
is generated; (b) Each class from the inheritance chain must implements all
interfaces corresponding to its superclasses; (c) Each class implied in the inher-
itance chain contain a copy of all properties (and corresponding accessors and
comments) of its superclasses.

This methodology allows the usage of the Java operator instanceof for emu-
lating multiple inheritance. All generated interfaces does not contains methods
and are used only for the above purpose.

2.4 Expressing Closed, Open and Partial Properties and classes

ERDF specializes its classes and properties as closed, open or partial. Such a
classification is important during the inference process (OWA or CWA may
applies depending on the classification). The mapping uses Java annotations
as a solution for classifying classes and properties. The following annotations
are defined: (1) @closed - meaning closed class and/or property; (2) @open - to
express open class and/or property; (3) @partial - denoting partial class and/or
property. The default annotation is @open. Using Java annotation provides us
an elegant solution for identifying types of classes and properties.

Example 7. Annotating properties

<erdf:Class rdf:about="http://example.org/v/Person" />
<erdf:ClosedProperty rdf:about="http://example.org/v/authorOf" />

<rdfs:range rdf:resource="http://example.org/v/Publication" />

5



<rdfs:domain rdf:resource="http://example.org/v/Person" />
</erdf:ClosedProperty>

public class _dd3a8fff3850417783dc9651d86b0395_Person {
@closed
private Collection<_64742878a633276917290732b0301d3b_Publication>

_5470da641d7738e11e2e1ef15e3c23a8_authorOf;
}

3 Conclusion and Future work

The paper provides a mapping solution from ERDF Schemas to Take vocabulary.
Some issues such as the intersection of ERDF property ranges are considered and
a concrete distinction between datatypes and object types is made.

Further work includes empowering Take engine with support for reasoning
in both OWA and CWA taking in account classes and properties types and con-
sidering two kinds of negation, namely strong negation and negation as failure.

References

1. RDF Semantics. W3C Recommendation 10 February 2004.
http://www.w3.org/TR/rdf-mt/.

2. A. Analyti, G. Antoniou, C. V. Damasio, and G. Wagner. Extended RDF as a
Semantic Foundation of Rule Markup Languages. Journal of Artificial Intelligence
Research, 32:37–94, 2008.

3. Anastasia Analyti, Grigoris Antoniou, Carlos Viegas Damasio, and Gerd Wagner.
Negation and Negative Information in the W3C Resource Description Framework.
Annals of Mathematics, Computing and Teleinformatics, 1(2):25–34, 2004.

4. Anastasia Analyti, Grigoris Antoniou, Carlos Viegas Damasio, and Gerd Wagner.
Stable Model Theory for Extended RDF Ontologies. In Yolanda Gil, Enrico Motta,
V. Richard Benjamins, and Mark A. Musen, editors, Proceedings of the 4th Interna-
tional Semantic Web Conference, volume 3729 of Lecture Notes in Computer Science
(LNCS), pages 21–36, Galway, Ireland, 6-10 November 2005. Springer-Verlag.

5. D. Brickley and R.V. Guha. RDF Vocabulary Description Language 1.0: RDF
Schema. W3C Recommendation February 2004. http://www.w3.org/TR/rdf-
schema/.

6. Jens Dietrich, Jochen Hiller, and Bastian Schenke. Take - A Rule Compiler for
Derivation Rules. In Proceedings of the International RuleML Symposium on Rule
Interchange and Applications (RuleML-2007), volume 4824 of Lecture Notes in Com-
puter Science (LNCS). Springer, 2007.

7. Heinrich Herre, Jan O. M. Jaspars, and Gerd Wagner. Partial Logics with Two Kinds
of Negation as a Foundation for Knowledge-Based Reasoning. In D.M. Gabbay and
H. Wansing, editors, What is Negation? Kluwer Academic Publishers, 1999.

8. Mandarax. project website. http://www.mandarax.org/.
9. Gerd Wagner, Adrian Giurca, Ion-Mircea Diaconescu, Grigoris Antoniou, and Car-

los Viegas Damasio. ERDF Implementation and Evaluation. Technical report,
March 2008.

6



JSON Rules

Adrian Giurca1 and Emilian Pascalau1

Brandenburg University of Technology, Germany
{giurca,pascalau}@tu-cottbus.de

Abstract. This paper presents a JSON based rule language and its
JavaScript-based rule engine towards providing Web 2.0 applications
with rule-based inference capabilities. For interoperability purposes the
Rule Interchange Format is used. While the rule engine is enough general,
its main purpose is to execute production rules and Event-Condition-
Action rules related to the web page DOM processing. This way the
user’s browsing experience will be enriched with the ability to modify on
the fly the DOM of the current document as well as the browser user
interface (Firefox).

1 Introduction

In the last 10 years business rules were employed to declaratively describe poli-
cies, business processes and practices of an enterprise. Applications in domains
such as insurance, financial services, government, telecom, and e-commerce ben-
efit greatly from using rule engines. Moreover, rules are becoming increasingly
important in business modeling and requirements engineering, as well as in Se-
mantic Web applications. In each of these fields different rule languages and
tools are being used. At the same time the amount of Web 2.0 applications in-
creases heavily. Actual technologies such as Asynchronous JavaScript and XML
(AJAX) [8] allows the development of Rich Internet Applications (RIAs). This
concept was introduced in [2] to denote a web application that typically runs in
a web browser, and do not require software installation. Several Web 2.0 appli-
cations use heavily AJAX in order to provide desktop-like behavior to the user.
The number of RIAs is increasing because of the broad bandwidth of today’s
Internet connections, as well as the availability of powerful and cheap personal
computers. However, traditional ways of programming Internet applications no
longer meet the demands of modern rule-enabled rich Internet applications. For
example a highly responsive Web 2.0 application such as Gmail1, might be much
easily customized by using a declarative description such as rules.

The goal of this paper is to describe a rule language and a client-side rule
engine. The rule language uses JavaScript Object notation(JSON) notation [5]
as its main format. However, for interoperability purposes the Rule Interchange
Format (RIF) [4] is used. The choice of using JSON is due to it’s widely usage by
JavaScript developers. JSON is used for rule descriptions as well as serialization

1 http://mail.google.com

7



for data that is going to be transmitted over network. While the rule engine
is enough general, its main purpose is to execute production rules and Event-
Condition-Action rules related to the web page Document Object Model (DOM)
processing. This way the user’s browsing experience will be enriched with the
ability to modify on the fly the DOM of the current document as well as the
browser user interface (Firefox).

2 Related Work

While the ideas of RIAs are not new (see [2]) the rule-based RIAs proposals
are quite recent. A project was started in May 2008 by Project 6 Research 2.
However, the goals of this project are limited to XPath processing i.e. rules
conditions are similar with test from XSLT while the actions are not clearly
specified. In overall, the concepts are far away to be clear and we did not see
to much advance. Also this product is commercial and no demos are available.
There are also concerns to emulate a rule parser in Adobe Flex framework3 but
the goal seems to be a client side Drools[10] parser.

The most advanced work seems to be in [12] (May 2008) where two-layer
architecture for rule-enabled RIAs is described. This paper is a good starting
point but as a general architecture document, it does not formally provide a
Model-Driven Architecture like, platform independent model. In addition the
paper is not focused on the rule language description neither to the client-side
rule execution. This work was also related in [11].

3 The Rule Language

JSON notation combined with JavaScript function calls offers large capabilities
to express various kinds of rules. Recall that we deal both with production rules
and with Event-Condition-Action (ECA) rules i.e. rules of the form

Rule ID: ON EventExpression IF C1 && ... && Cn DO [A1, ..., Am]

where the event part is optional and denotes an event expression matching the
triggering events of the rule; C1, ... Cn are boolean conditions using a Drools like
syntax and [A1, ... Am] is a sequence of actions.

The metamodel of a JSON Rule is depicted in Figure 1.

Example 1 (Production Rule).

For all elements of class ’note’ having as first child a ’ul’ change the
first child background color to blue. Expressed in a logical form the
above example looks like: ∀x∃y(Element(x) ∧ x.class =′ note′ ∧ y =
x.firstChild ∧ y.nodeName =′ ul′) → changeBackground(y,′ blue′)

2 http://www.p6r.com/articles/2008/05/22/an-xpath-enabled-rule-engine/
3 http://archives.devshed.com/forums/compilers-129/

writing-a-rules-parser-in-actionscript-javascript-2370024.html

8



Atom

id : String
priority : Integer = 1
appliesTo : URL

JSONRule

conditions 0..*

EventExpression

RuleSet
1..*

prr::Action

actions

1..*

Fig. 1. Rules and Rulesets

{"id":"rule101",
"appliesTo": ["http://www.example.org/JRules",

"http://www.google.com/"],
"condition": "$X:Element( class==’note’,

$Y:firstChild)
&&
($Y.nodeName == ’ul’)",

"actions":["changeBackground($Y, ’blue’)"]
}

The above example shows that a JSON rule is first of all, a JSON object. The
appliesTo property states that the rule will apply only on the specific indicated
pages (URLs).

The condition uses a Drools like syntax and state that all elements with
the class attribute equals with note (i.e. $X:Element(class==’note’)) and with
the first child an unsorted list (i.e. $Y.nodeName == ’ul’) must participate in
the action.

The action changeBackground($X, ’blue’) should be an available user-
defined function call. If no such function is available then no action is performed.

JSON Rules are also ECA Rules i.e. they are triggered by events (see Example
4). Below we provide descriptions of the rule constituents.

3.1 Condition

A rule condition is always a conjunction of atoms. Empty conditions are inter-
preted as true conditions. As can be seen in the Figure 2, the language supports
three kinds of atoms: JavaScriptBooleanCondition, Description and XPathCon-
dition. The reader should notice that future extensions may involve other kinds
of atoms.

9



Atom

JavaScriptBooleanCondition

JSONTerm

Description

*
binding1

xPathExpression : String
XPathCondition

*

binding

1

Fig. 2. The language atoms

JavaScriptBooleanCondition This is the simplest conditional atom. Any
JavaScript boolean expression is allowed. For example window.find(’rule’)
or document.getElementById(’id’).value==10 are allowed.

Description This atom is related to the syntax of Drools pattern conditional.
The metamodel of language descriptions is depicted in Figure 3.

A Description is bound to a JSONTerm, has a type and has a list of con-
straints. The type is one of the values described by DescriptionType enumeration.
These values correspond to the node types defined in DOM Level 2 Core speci-
fication 4.

The Description offers two types of constraints PropertyRestriction and
PropertyBinding.

– A PropertyRestriction (see Figure 3) describes a set of value restrictions to
properties of the JSONTerm that are bound to it.
• The string property encodes a property name of a property belonging to

the corresponding bounded JSONTerm.
• operator is relational one.
• The value is either a JSONTerm (Variable or DOM:Node), or a Regu-

larExpression, or a String or a Number.
– A PropertyBinding performs a variable binding of a property belonging to

the related JSONTerm. After that this variable becomes available at the rule
level (See example 1).

The condition below stands for all DOM entities of type Element that are
text input elements with the value date of the form yyyy-mm-dd. Notice that
for the value we used a regular expression that checks its format. Month can be
only between 01-12. The regular value for day can not be greater than 31, and
for month 02 the value for day can not be greater than 29.
4 http://www.w3.org/TR/DOM-Level-2-Core/idl-definitions.html

10



Constraint

Description

1

constraints*

JSONTerm

*

binding

1

property : String
PropertyBinding

property : String
PropertyRestriction

Value

*
1

name : String
Variable

*

1

javascript::Number

javascript::RegularExpression

javascript::String
+EQ
+LE
+LEQ
+GE
+GEQ

«enumeration»
RelationalOperator

*

operator1

+DOCUMENT_TYPE
+PROCESSING_INSTRUCTION
+DOCUMENT
+ELEMENT
+ATTRIBUTE
+TEXT
+CDATA
+COMMENT
+FRAGMENT
+NODE_LIST

«enumeration»
DescriptionType

*

type

1

DOM::Node

Fig. 3. Descriptions

Example 2 (Condition).

$X : Element(nodeName=="input", type=="text",
value=="match(^[0-9]{4}-(((0[13578]|(10|12))-(0[1-9]|[1-2][0-9]

|3[0-1]))|(02-(0[1-9]|[1-2][0-9]))|((0[469]|11)-(0[1-9]
|[1-2][0-9]|30)))$)")

xPathExpression : String
XPathCondition

JSONTerm

*

binding

1

Fig. 4. The XPath Condition

XPathCondition The XPathCondition (see the metamodel in Figure 4) is the
third type of conditional atom. This one compared with the other might be a
little peculiar. For a usage example of this type of conditional we are going to
use the example page below.

Example 3 (An XPath Condition). Consider the following page with the view
depicted in Figure 5:

11



Fig. 5. Page view for XPathCondition example

<?xml version="1.0"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0Strict//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html>
<head>
<title>XPathCondition</title>
</head>
<body>
<div id="_div1" >
<table border="1">
<tr> <td>T1:row 1, cell 1</td> <td>T1:row 1, cell 2</td> </tr>
<tr> <td>T1:row 2, cell 1</td> <td>T1:row 2, cell 2</td> </tr>
</table>
</div>
<div id="_div2">
<table border="1">
<tr> <td>T2:row 1, cell 1</td> <td>T2:row 1, cell2 </td> </tr>
<tr> <td>T2:row 2, cell 1</td> <td>T2:row 2, cell 2</td> </tr>
</table>
</div>
</body>
</html>

Such a conditional can be bound to a JSONTerm (Figure 3. Recall that a
JSONTerm is either a Variable or a DOM:Node.

Assuming that we want to change the background for all rows in all tables
in the DOM of the current page, using the XPathCondition, the condition is:

"$X in "html//table//tr"

The variable $X has been used along with the reserved word in. The meaning is
”forall $X in the collection...” The evaluation of the xPathExpression returns a
list of nodes ( In the previous example, the evaluation of the xPathExpression
returns 4 nodes).

On the other hand, if we want to change the background only for a specific
node by using an XPathCondition the condition is:

12



{"nodeName":"tr",
"firstChild":{"nodeName":"td",

"textContent":"T2:row1, cell 1"
}

} in "html//table//tr"

After evaluating the condition the background should be changed only for the
first row of the second table (see Figure 5).

3.2 Actions

Our approach deals with standard actions of OMG Production Rule Represen-
tation (PRR), [9]. The reader should notice that any user-defined JavaScript
functions can be called in the rule actions part. Below is the mapping of the
PRR standard actions to our language:

PRR Standard Actions JSON Rules

AssignExp change properties of an element

InvokeExp any JavaScript function call

AssertExp insert a DOM node

RetractExp remove a DOM node

UpdateExp update a DOM node

Table 1. PRR Standard Actions and their representation

An invoke action is already provided in Example 1. It corresponds to a
JavaScript function-call. The function must be available otherwise the action
is ignored (not executed).

An assign action is usually intended to change the properties of an element.
For example

$X.setAttribute("value", "25")

is an assign action changing the value attribute of an input element bounded
to the variable $X. If $X is not bounded to an element allowing the attribute
value then the engine will ignore such action.

An assert action is related to the creation of new nodes in the DOM e.g.

$X.appendChild(document.createElement("input"))

is an assert action.
A retract action is the inverse of the assert action i.e. deletes a node from

the DOM.
An update action is usually related to the content update of a DOM node.

For example

$X.replaceChild($Y,$Z)

is an assert action.

13



3.3 Event Expressions

+LOAD = load
+UNLOAD = unload
+ONDBLCLK = ondblclick
+...

«enumeration»
DOM::EventType

+AT_TARGET
+BUBBLING_PHASE
+CAPTURING_PHASE

«enumeration»
DOM::PhaseType

DOM::DOMTimeStamp

EventExpression

type

0..1 *

0..1

*

eventPhase 0..1

*

JSONTerm

eventTarget 1

*

Fig. 6. Event Expressions

The JSON event expression is related to the Event interface specification in
DOM Level 2 Events5, therefore the properties of this expression have the same
meaning as in the Event specification. At the runtime these properties of this
expression are matched against the incoming DOM events and their values can
be processed in the rule conditions and actions.

Example 4 (ECA Rule).

{"id":"rule102",
"appliesTo":["http://mail.yahoo.com/"],
"eventExpression": { "eventType": "click",

"eventTarget": "$X"
},

"condition":" ($X.nodeName == ’a’,
$X.href==’match(showMessage\?fid=Inbox)’)",

"actions":["append($X.textContent)"]
}

The rule from example 4 concerns the Yahoo mail and states that when
click event is raised, if the event came from an a element, and if the href
property matches the regular expression (rudimentary check that the link is an
inbox Yahoo message link) then call append function with the message subject
as parameter.

3.4 Additional parameters

In addition to its main constituents a rule provides some other parameters:

5 http://www.w3.org/TR/DOM-Level-2-Events/

14



– The id is required and denotes the unique identifier of a rule.
– The appliesTo property is required and holds a list of URLs on which the

rule must apply e.g. the rule from Example 1 can be applied to the pages
http://www.example.org/JRules and to http://www.google.com/.

– Priority expresses the order of a rule in a ruleset. If no value is provided for
it, default value is ”1”. Based on priorities the rule engine must execute the
rules in a down counting order (from greater values to lower values). The
execution order is not relevant for rules having the same priority.

4 The Rule Engine

The main characteristics of the rule engine are:

– Is a forward chaining rule engine using a modified RETE algorithm (see [6]
for the standard version) for production rules ;

– Uses the above rule language as well as RIF XML.
– Deals with two different types of rules: production rules and ECA Rules
– DOM events are processed as atomic events (i.e. no duration).
– Rules are stored locally or remote or both.
– The engine execute rulesets (a ruleset is the set of all rules referring to a

specific URL).
– The RETE working memory is the document DOM itself. Rule property

restrictions are matched against DOM entities (such as elements processing
instructions, attributes an so on).

The component view of the engine is depicted in the Figure 7.

InferenceEngine

EventManager

WorkingMemory

RulesRepository

Fig. 7. Rule Engine

A UML state diagram describing the functionality of the engine is depicted
in the Figure 8.

When the InferenceEngine is started it loads the corresponding rules from
the RuleRepository. After the rules are loaded, the EventManager gets active
and it listens for events from the WorkingMemory. When it receives events from
the WorkingMemory, the EventManager informs the InferenceEngine about it.
The InferenceEngine computes rules to fire. If rules are found then it fires them,
and the WorkingMemory is changed. When no rules are computed then it stops.

15



EventManager WorkingMemory

RuleRepositoryInferenceEngine

Rule Loading

ListenForEvents

RulesLoaded

FireEvents

InformOfEventsDeterminePossibleRulesToFire

ChangeWorkingMemoryFireRule

Fig. 8. The Rule Engine State Diagram

16



Opposed to usual rule engines, that stop their activity when no rules can be
fired, this stops only when the WorkingMemory exists no more. When rules can
not be fired, but the WorkingMemory still exists, the engine gets into an idle
state, and waits to be informed about new events from the EventManager.

4.1 The Working Memory

Is represented by the DOM of the current page. The WorkingMemory is special
because it is event based, DOM is changed through events.

4.2 The Inference Engine

Is the ”brain” of the system. Based on the facts (DOM) of the Working Memory
and based on the current page corresponding ruleset, it performs the matching
operation and executes rules.

4.3 The Event Manager

The event manager is a combination between JavaScript and the Working Mem-
ory - DOM of the current page. The Event Manager takes advantage of the fact
that the DOM itself is event based. All changes and in general all DOM events
are reported to the main document object. This is based on the bubbling effect
of DOM events.

4.4 The Rule Repository

Rules are stored in the repository. The repository can be local or remote. In both
cases the storing language is JSON based as described in Section 3.

5 Conclusion and future work

This paper describes an approach of enriching RIAs with rule-based reasoning.
JSON Rules provides the JavaScript engine with reasoning capabilities and the
users can write their own rules. The rules syntax is based on JSON notation,
therefore does not require high effort to accommodate it. Rules are simpler but
powerful, their main goal being to change the DOM of the page they apply. The
rule actions comply with the proposed OMG standard for production rules and
are enough general to achieve all kind of DOM changes as well as any kind of
side effects. The next immediate step will take into account the engine inter-
action with both user defined events and XMLHTTPRequest events to increase
the power of the reaction rules to dynamically handle the page AJAX-based
interactions. On a medium term JSON Rules should deal with metadata (with
emphasis on RDF[7]) both for embedded metadata (such as RDFa [1]) and ex-
ternal metadata (such as RSS [3] and Atom[13]). In addition, sharing rules is
a feature that can improve user experience and also, might spare him the time

17



of writing rules by himself, in the case he can find rules for the page being in-
terested in. The user can share with his friend, or with everybody. Rule sharing
goes hand in hand with rule publishing.

References

1. Ben Adida and Mark Birbeck. RDFa Primer: Embedding Structured Data in
Web Pages. W3C Working Draft 17 March 2008. http://www.w3.org/TR/

xhtml-rdfa-primer/.
2. Jeremy Allaire. Macromedia Flash MXA next-generation rich client. http://www.

adobe.com/devnet/flash/whitepapers/richclient.pdf, March 2002.
3. RSS Advisory Board. RSS 2.0 Specification. http://www.rssboard.org/

rss-specification.
4. Harold Boley and Michael Kifer. RIF Basic Logic Dialect. http://www.w3.org/

2005/rules/wiki/BLD, October 2007.
5. Douglas Crockford. The application/json Media Type for JavaScript Object No-

tation (JSON). http://tools.ietf.org/html/rfc4627, July 2006.
6. Charles Forgy. Rete – A Fast Algorithm for the Many Pattern / Many Object

Pattern Match Problem. Artificial Intelligence, 19:17–37, 1982.
7. Klyne G. and Caroll J.J. Resource Description Framework (RDF): Concepts and

Abstract Syntax. W3C Recommendation 10 February 2004. http://www.w3.org/
TR/rdf-concepts/.

8. Jesse James Garrett. Ajax: A new approach to web applications. http://www.

adaptivepath.com/ideas/essays/archives/000385.php, February 2005.
9. OMG. Production Rule Representation (PRR), Beta 1. Technical report, Novem-

ber 2007.
10. Mark Proctor, Michael Neale, Michael Frandsen, Sam Griffith Jr., Edson Tirelli,

Fernando Meyer, and Kris Verlaenen. Drools 4.0.7. http://downloads.jboss.

com/drools/docs/4.0.7.19894.GA/html single/index.html.
11. Kay-Uwe Schmidt, Jörg Dörflinger, Tirdad Rahmani, Mehdi Sahbi, Susan Thomas,

and Ljiljana Stojanovic. An User Interface Adaptation Architecture for Rich Inter-
net Applications. In Proceedings of 5th European Semantic Web Conference 2008,
ESWC 2008, Tenerife, Spain, volume 5021 of Lecture Notes in Computer Science.
Springer Verlag, June 2008. (accepted).

12. Kay-Uwe Schmidt and Ljiljana Stojanovic. From Business Rules to Applica-
tion Rules in Rich Internet Applications. In Proceedings of Business Infor-
mation Systems 11th International Conference, BIS 2008, Innsbruck, Austria,
May 5-7, 2008, volume 7 of Lecture Notes in Business Information Processing,
pages 447 – 458. Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/
978-3-540-79396-0 39.

13. Atom WG. Atom Publishing Format and Protocol . http://tools.ietf.org/wg/
atompub//.

18



Test-Driven Development of Complex Information
Extraction Systems using TEXTMARKER

Peter Kluegl, Martin Atzmueller, and Frank Puppe

University of Würzburg,
Department of Computer Science VI

Am Hubland, 97074 Würzburg, Germany
{pkluegl, atzmueller, puppe}@informatik.uni-wuerzburg.de

Abstract. Information extraction is concerned with the location of specific items
in textual documents. Common process models for this task use ad-hoc testing
methods against a gold standard. This paper presents an approach for the test-
driven development of complex information extraction systems. We propose a
process model for test-driven information extraction, and discuss its implemen-
tation using the rule-based scripting language TEXTMARKER in detail. TEXT-
MARKER and the test-driven approach are demonstrated by two real-world case
studies in technical and medical domains.

1 Introduction

There are two main paradigms for information extraction approaches: Either the sys-
tems provide automatic extraction techniques, i.e., based on machine-learning tech-
niques, or they are based on manually acquired knowledge, mainly considering rule-
based knowledge. The first approach allows an easy application of the system since no
knowledge acquisition phase is required, and the extraction knowledge can be auto-
matically learned from annotated examples. However, the latter often performs better
for rather complex domains. There are several reasons to prefer a knowledge engi-
neering approach to a machine learning approach [1]: The knowledge can usually be
captured and extended quite easily by a domain specialist and therefore provides flexi-
ble techniques if the requirements change, for extensions, and for exceptions for certain
documents.

In this paper, we present an approach for the test-driven development of complex
text extraction systems using the rule-based scripting language TEXTMARKER: We dis-
cuss a process model for the test-driven extraction process, and discuss the contained
steps in detail. Furthermore, we describe the TEXTMARKER system for rule-based in-
formation extraction. After that, we provide two case studies for demonstrating and
discussing the presented approach in detail.

The rest of the paper is structured as follows: Section 2 presents the process model
for the test-driven development of complex text extraction systems using TEXTMARKER.
Section 3 gives a conceptual overview on the TEXTMARKER system, describing the
core concepts, the syntax and semantics of the TEXTMARKER language and its special
features. Section 4 discusses two real-world case-studies for the presented approach. Fi-
nally, Section 5 concludes with a discussion of the presented work, and provides several
interesting options for future work.

19



2 Test-Driven Process Model

In the following section, we describe the process model for test-driven development of
complex text extraction systems using TEXTMARKER. We distinguish two roles, the
knowledge engineer and the domain specialist. The latter is concerned with the annota-
tion, selection, and formalization of documents/test cases, whereas the former performs
the development and incremental refinement of the rule base for text extraction. The
process is shown in Figure 1, and discussed below.

Extraction 
Rules

Test 
Cases

Text 
Corpus

Document 
Selection Annotation Rule 

Acquisition

Debugging

Quality 
Management

Knowledge 
Engineer

Domain 
Specialist

Fig. 1. Process Model: Semi-Automatic Rule-Based Instance Generation from Texts

– Document Selection: The document selection steps provides a subset of the cases
contained in the text corpus that are applied as test cases later. Synthetic cases can
also be added (as test cases), therefore new cases can also be easily integrated for
coping with new requirements. For document selection also cluster techniques can
be applied in order to select a limited, heterogeneous and diverse set of cases.

– Annotation: During the annotation step, the domain specialist selects text frag-
ments and assigns pre-specified types (i.e., annotations) to these. Each added anno-
tation is either an input type (pre-specified information) or an output type (expected
result). Input annotations are used for testing specific features/rules in their context
(unit-tests). Output types are the expected types of the test. Visual editors allow the
user to annotate the text interactively.

– Rule Acquisition: During the rule acquisition step new extraction rules are formal-
ized, tuned and refined according to the given test corpus based on the results of the
subsequent quality management and debugging steps.

– Quality Management: In the quality management step, the knowledge engineer
assesses the correctness and completeness of the system based on the set of for-
malized test cases. Also, erroneous test cases that were marked during the quality
management step can be incrementally corrected.

– Debugging: The debugging step is mainly concerned with debugging specific rules.
The information about rule applications and their contexts can significantly help for
the improvement of the rule base and also for correcting test cases.

20



3 Conceptual Overview on the TEXTMARKER System

Whenever humans perform manual information extraction they often apply a strategy
according to a highlighter metaphor: First, relevant headlines are considered and clas-
sified according to their content by coloring them with different highlighters. The para-
graphs of the annotated headlines are then considered further. Relevant text fragments
or single words in the context of that headline can then be colored. Necessary addi-
tional information can be added that either refers to other text segments or contains
valuable domain specific information. Finally the colored text can be easily analyzed
concerning the relevant information. The TEXTMARKER 1 system tries to imitate this
manual extraction method by formalizing the appropriate actions using matching rules:
The rules mark sequences of words, extract text segments or modify the input document
depending on textual features.

The current TEXTMARKER implementation is based on a prototype described in
[2] that supports a subset of the TEXTMARKER language described below. The present
TEXTMARKER system is currently being extended towards an integration as a UIMA
(Unstructured Information Management Architecture) component [3]. The default input
for the TEXTMARKER system is semi-structured text, but it can also process structured
or free text. Technically, HTML is often used as a input format, since most word pro-
cessing documents can be easily converted to HTML.

In the following sections we first give a conceptual overview on the TEXTMARKER
language by introducing its core concepts. After that, we discuss the syntax and the
semantics of the TEXTMARKER language in detail, and provide some illustrating ex-
amples. Next, we present special characteristics of the language that distinguishes the
TEXTMARKER system from other common rule based information extraction systems.

3.1 Core TEXTMARKER Concepts

As a first step in the extraction process the TEXTMARKER system uses a scanner to
tokenize the input document and to create a stream of basic symbols, providing the
initial feature selection. The types of the possible tokens are predefined by a manually
created taxonomy of annotation types. Annotations simply refer to a section of the in-
put document and assign a type or concept to the respective text fragment. Figure 2
shows an excerpt of a basic annotation taxonomy: For example, CW describes all to-
kens, that contain a single word starting with a capital letter, MARKUP corresponds to
HTML/XML tags, ANY combines all symbols that are not classified as MARKUP and
PM refers to punctuation.

Using the taxonomy, the knowledge engineer is able to choose the most adequate
types and concepts when defining new matching rules. If the capitalization of a word,
for example, is of no importance, then the annotation type W that describes words of any
kind can be used. The initial scanner creates a basic set of annotations that are used by
the matching rules of TEXTMARKER. Most information extraction applications require
domain specific concepts and annotations. Therefore, the knowledge engineer is able to
define new annotation types depending on the requirements of the given domain. These
types can then be flexibly integrated in the taxonomy of annotation types.

1 textmarker is a common german word for a highlighter

21



8 Die Konzeption von Textmarker

Abbildung 8.1: Ein Ausschnitt aus der Symboltyphierarchie, Erläuterungen dazu finden
sich im Text.

Als letzter Bestandteil kann auf die Heuristiken eine in runden Klammern eingeschlosse-
ne Aktion folgen. Diese besteht wie eine Heuristik aus einem Namen in Großbuchstaben,
evtl. gefolgt von einer durch Kommata abgetrennten Liste von Parametern.

8.3 Die Symboltyphierarchie

Im ersten Schritt der Analyse wird mit einem Scanner ein Symbolstrom aus dem Ein-
gabedokument erzeugt, indem Folgen einzelner Zeichen zu Symbolen unterschiedlicher
Typen zusammengefasst werden. Zu diesen Typen zählen z.B. klein- und großgeschriebe-
ne Wörter (SW und CW ), Zahlen (NUM ), Markup (MARKUP) oder Satzzeichen wie
Punkt (PERIOD) oder Doppelpunkt (COLON ). Den meisten dieser Typen sind aber
noch allgemeinere Typen zugeordnet, etwa den Typen CW und SW ist der Symboltyp
W übergeordnet, der beliebige Wörter beschreibt (siehe Abbildung 8.1). Bei der For-
mulierung von Regeln kann so immer derjenige Typ dieser Hierarchie gewählt werden,
der im aktuellen Fall angemessen ist. Kommt z.B. der Unterscheidung von Groß- und
Kleinschreibung bei Wörtern keine Bedeutung zu, so kann der Typ W gewählt werden.
Eine weitere Spezifizierung ist sowohl über Heuristiken möglich, die etwa die Verwen-
dung regulärer Ausdrücke erlauben als auch über weitere Regelelemente, durch die der
erlaubte Kontext des Symbols eingeschränkt wird. Die folgende Regel veranschauchlicht
die letztere Möglichkeit anhand der Bestimmung einer Zahl als Preisangabe:

ADDTYPE NUM(MARK,price) ’Euro’

8.4 Heuristiken

Im Folgenden werden die einzelnen Heuristiken kurz vorgestellt und ihr möglicher Ver-
wendungszweck mit jeweils einem oder mehreren einfachen Beispielen veranschaulicht.

76

Fig. 2. Part of a taxonomy for basic types. (W=Word, NUM=Number, PM=Punctuations,
SW=Word without capitals, CW=Word starting with a capital letter)

3.2 Syntax and Semantics of the TEXTMARKER Language

One of the goals in developing a new information extraction language was to maintain
an easily readable syntax while still providing a scalable expressiveness of the language.
Basically, the TEXTMARKER language consists of definitions of new annotation types
and matching rules. These rules are based on a list of rule elements headed by the type
of the rule.

The purpose of the different rule types is to increase the readability of rules by
making their semantic intention explicit. Each rule element contains at least a basic
matching condition referring to text fragments or already given annotations. Addition-
ally a list of conditions and actions may be specified for a rule element. Whereas the
conditions describe necessary attributes of the matched text fragment, the actions point
to operations and assignments on the current fragments. Needless to say these actions
will only be executed if all basic conditions matched on a text fragment or annotation
and the related conditions are fulfilled. Table 3.2 contains a short and simplified excerpt
of the TEXTMARKER syntax concerning matching rules.

Rule → RuleType RuleElement+ ’;’
RuleType → ’ADDTYPE’ | ’DEFAULT’ | . . .
RuleElement →MatchType Conditions? Actions? ’+’?
MatchType → Literal | Annotation
Annotation → ’ALL’|’ANY’|’MARKUP’|’W’|. . .
Conditions → ’{’ Condition (’;’ Condition)* ’}’
Condition → ’-’? CondType (’,’ parameter)*
CondType → ’PARTOF’|’CONTAINS’|’NEAR’|. . .
Actions → ’(’ Action (’;’ Action)* ’)’
Action → ActionType (’,’ parameter)*
ActionType → ’MARK’|’FILTER’|’REPLACE’|. . .

Table 1. BNF-Extract of the TEXTMARKER language

22



Due to the limited space it is not possible to describe all of the various conditions
and actions available in the TEXTMARKER system. However, the common usage of the
language and its readability can be demonstrated by simple examples:

ADDTYPE CW{INLIST,animals.txt}(MARK,animal);
ADDTYPE animal ’and’ animal

(MARK,animalpair,0,1,2);

The first rule considers all capitalized words that are listed in an external document
animals.txt and creates a new annotation of the type animal using the boundaries of the
matched word. The second rule searches for an annotation of the type animal followed
by the literal and and a second animal annotation. Then it will create a new annotation
animalpair covering the text segment that matched the three rule elements (the digit
parameters refer to the number of matched rule element).

ADDTYPE ANY{PARTOF,paragraph,ISINTAG,
font,color=red}(MARK,delete,+)+;

ADDTYPE firstname(MARK,delete,0,1) lastname;
DEFAULT delete(DEL);

Here, the first rule looks for sequences of any kind of tokens except markup and
creates one annotation of the type delete for each sequence, if the tokens are part of
a paragraph annotation and colored in red. The + signs indicate this greedy process-
ing. The second rule annotates first names followed by last names with the type delete
and the third rule simply deletes all text segments that are associated with that delete
annotation.

3.3 Special Features of the TEXTMARKER Language

The TEXTMARKER language features some special characteristics that are usually not
found in other rule-based information extraction systems. The possibility of creating
new annotation types and integrating them into the taxonomy facilitates an even more
modular development of information extraction systems than common rule-based ap-
proaches do. Beside others, there are three features that deserve a closer look in the
scope of this work: The robust extraction by filtering the token or annotation set, the
usage of scoring rules for uncertain and heuristic extraction and the shift towards a
scripting language.

Robust extraction using filtering Rule-based or pattern-based information extraction
systems often suffer from unimportant fill words, additional whitespace and unexpected
markup. The TEXTMARKER System enables the knowledge engineer to filter and to
hide all possible combinations of predefined and new types of annotations. Addition-
ally, it can differentiate between any kind of HTML markup and XML tags. The visi-
bility of tokens and annotations is modified by the actions of rule elements and can be
conditioned using the complete expressiveness of the language. Therefore the TEXT-
MARKER system supports a robust approach to information extraction and simplifies
the creation of new rules since the knowledge engineer can focus on important textual

23



features. If no rule action changed the configuration of the filtering settings, then the de-
fault filtering configuration ignores whitespaces and markup. Using the default setting,
the following rule matches all four types of input in this example (see [2]):

DEFAULT ’Dr’ PERIOD CW CW;

Dr. Peter Steinmetz, Dr.PeterSteinmetz,
Dr. <b><i>Peter</i> Steinmetz</b>

Heuristic extraction using scoring rules Diagnostic scores [4] are a well known and
successfully applied knowledge formalization pattern for diagnostic problems. Single
known findings valuate a possible solution by adding or subtracting points on an account
of that solution. If the sum exceeds a given threshold, then the solution is derived. One
of the advantages of this pattern is the robustness against missing or false findings, since
a high number of findings is used to derive a solution.

The TEXTMARKER system tries to transfer this diagnostic problem solution strat-
egy to the information extraction problem. In addition to a normal creation of a new
annotation, a MARK action can add positive or negative scoring points to the text frag-
ments matched by the rule elements. If the amount of points exceeds the defined thresh-
old for the respective type, then a new annotation will be created. Further, the current
value of heuristic points of a possible annotation can be evaluated by the SCORE con-
dition. In the following, the heuristic extraction using scoring rules is demonstrated by
a short example:

ADDTYPE p{CONTAINS,W,1,5}(MARK,hl,5);
ADDTYPE p{CONTAINS,W,6,10}(MARK,hl,2);
ADDTYPE p{CONTAINS,emph,80,100,%}(MARK,hl,7);
ADDTYPE p{CONTAINS,emph,30,80,%}(MARK,hl,3);
ADDTYPE p{CONTAINS,W,0,0}(MARK,hl,-50);
ADDTYPE hl{SCORE,10}(MARK,realhl);
LOGGING hl{SCORE,5,10}(LOG,’Maybe a hl’);

In the first part of this rule set, annotations of the type p (paragraph) receive scoring
points for a hl (headline) annotation, if they fulfill certain CONTAINS conditions. The
first condition, for example, evaluates to true, if the paragraph contains at least one and
up to five words, whereas the fourth conditions is fulfilled, if the paragraph contains
thirty up to eighty percent of emph annotations. The last two rules finally execute their
actions, if the score of a headline annotation exceeds ten points, or lies in the interval
of five and ten points, respectively.

Shift towards a scripting language Some projects using the TEXTMARKER system
have indicated that a rule-based language with a knowledge representation only based
on annotations may not overcome all challenges of a high level information task. Often
it is not possible to express the complex background knowledge with simple matching
rules or to control the matching process without control structures like loops. There-
fore the TEXTMARKER language is being extended with several common features of
scripting languages.

24



– Imperative programming: The TEXTMARKER system does not impose an exe-
cution order on the rules based on the fulfilled conditions and/or their complexity.
The development of bigger sets of rules has shown that a dynamic execution order
holds almost no advantages over imperative program execution order. Additionally,
the linear processing allows a comprehensible usage of filtering rules.

– Variables: The usage of variables can significantly improve the expressiveness of a
simple language. It is already possible in the TEXTMARKER system to e.g., count
the number of certain annotation types and evaluate the result in a condition. But
practice has shown that the additional concept of variables and expressions on vari-
ables is very useful and helps to solve complex rule engineering problems in an
elegant and simple way.

– Conditioned loop blocks: Besides variables and operations another construct known
by scripting and programming languages are conditioned statements and loops. In
the TEXTMARKER system we combine both constructs to the concept of the condi-
tioned loop blocks. These complex statements contain an identifier, a rule and a list
of rules, declarations or even other conditioned loop blocks. The rule defines both
the condition statement and the loop statement: The annotations of the rule match
on adequate text fragments. The conditions of the rule determine if the contained
rules may be executed. Yet the rule can match several times and therefore defines a
list of text fragments, on which the contained rules are applied.

BLOCK(’ID’) headlinedParagraph
{CONTAINS,relevantAnnotation} ( ...
rules, declarations or blocks ...

)

In this short and simplified example, rules, declarations or blocks of rules are only
executed if an annotation of the type headlinedParagraph is located in the text and
if that annotation contains at least one annotation of the type relevantAnnotation
(condition statement). The statements in the block will be applied on all found text
fragments the rule matched and only on them.
More precisely, if the rule has matched on five headlinedParagraph annotations, the
contained statements will be executed five times overall, one time for each matched
annotations. This additional block structure can therefore increase the performance
of the TEXTMARKER system, because the considered text area can be restricted
and the rules do not need to be applied on the complete document.

– Method calls: Another common feature is the declaration and the reference of
methods or procedures. For this purpose we are using the conditioned loop blocks
again. The identifier is used to call the block like a method by the action of a rule.
If the calling rule is not part of the same block or rule file, additional identifiers,
respectively file names must be used to reference the complete namespace of the
block. Introducing method calls is enabling the TEXTMARKER system to utilize
rule libraries and further increases its modularity and reuse.

25



These efforts for extending the TEXTMARKER language towards a scripting language
was one of the reasons to replace the existing and successful development environ-
ment [2]. The new implementation is built on the Dynamic Language Toolkit2 in order
to support the described scripting functionality in the development process.

In test driven development automatic test cases are ideally written for small, atomic
units [5]. The smallest unit of a TEXTMARKER scripting file is a single rule. However,
with the integration in UIMA, the interfaces of a UIMA component and the informa-
tion structure [6] are especially suitable for the specification of test cases. The TEXT-
MARKER system is integrated in UIMA as a component, i.e. an Analysis Engine that
provides the functionality of including several scripting files. If the functionality of a
large rule set is split into several modular scripting files with internal block structure,
then it is still possible to create small and self-contained testing units. Therefore the test
cases are specified independently of the TEXTMARKER implementation by using the
UIMA interfaces, but they can still refer to specific parts of functionality, especially
single block definitions of a TEXTMARKER scripting file.

4 Case Studies

In the following sections we describe two real-world case studies applying parts of
the presented approach. The first case study is concerned with high-level information
extraction in a technical domain. The second case study considers the generation of
structured data records given semi-structured medical discharge letters.

4.1 High-Level Information Extraction

The case study is about a high level information extraction, automatic content seg-
mentation and extraction task. Unfortunately, we can only describe the case study in
a very general way due to non-disclosure terms. As a general setting, word process-
ing documents in common file formats3 like Microsoft Word or OpenOffice are mined
for information specific to certain projects, with temporal margins, e.g., similar to cur-
ricula vitae. The input documents feature an extremely heterogeneous layout and are
each written by a different person. Interesting text fragments may relate from plain text
to structured tables or even combinations or parts of them. Additionally, the layout is
not sufficient enough for a correct classification, since also domain dependent seman-
tics may change the relevance of a fragment. The output of a document are a set of
templates that contain exact temporal information, the exact text fragment related to
the template and various domain specific information, e.g., a project name or company
names in our curriculum vitae example.

Although the application is still under development, it already involves 479 rules
and several domain specific dictionaries with up to 80000 entries. Basically, the TEXT-
MARKER system tries to imitate the human perception of text blocks. For this purpose
interesting named entities, e.g., temporary information, are recognized. Then, the appli-
cation locates text structures of different types of complexity and size, e.g., a headlined

2 Dynamic Language Toolkit: http://www.eclipse.org/dltk/
3 The input documents are converted to HTML

26



paragraph or a row of a table. If one of these text fragments or a set of text fragments
of the same type contains a significant pattern of interesting named entities, then they
are marked as a relevant block of text. Finally, additional rules are used to detect the
domain specific information which is also used to refine the found segments. In the cur-
rent state the TEXTMARKER application was evaluated on correct text fragments and
temporal data only. It achieved an F1 measure of 89% tested on 58 randomly selected
documents with 783 relevant text fragments. These results seem to indicate potential
for further improvements, however, in order to obtain more reliable results we need to
perform more evaluations together with our project partners first.

The development of the application used a process model similar to the common
model with ad-hoc testing. Normally, an information extraction application is tested
automatically for quality assurance. But due to the characteristics of the high level in-
formation extraction task, it is often not suitable to utilize complete annotated docu-
ments for back testing. Therefore a semi-automatic approach with several supporting
tools was used. The applied process works as follows: At the beginning a new appli-
cation or a new requirement is defined by the domain specialist. He or she manually
selects a representative set of documents and creates a test corpus. The knowledge en-
gineer develops new rules using the test corpus and informal specifications. The domain
specialist tests the new rules with the test documents for their functionality. Then he or
she creates a feedback document, a documentation of the errors with examples. Fur-
thermore, the new rules are additionally tested on a new test corpus with randomly
selected documents. The feedback document is extended with the new reported errors.
The knowledge engineer writes new rules to correct the documented errors. If the func-
tionality or the quality of the rules is not sufficient enough, the process is iterated: Either
new features are added or the rule set has to be improved further. In both possibilities
the knowledge engineer receives a new representative corpus for testing.

The experience with this application motivated the development of the presented
test-driven process model. The process has already been partially implemented, and
especially the controlled formalization of test cases, the isolated specification of new
features and the automatic back testing of different kinds of test cases provide distinct
advantages over the current ad-hoc testing process model.

4.2 Diagnostic Case Extraction from Textual Discharge Letters

The second case study considers the generation of cases from semi-structured medical
discharge letters. These letters are written by the physicians when a patient has been
diagnosed and leaves after a hospital stay. The letters are typically written by the re-
sponsible physicians themselves and are stored as MS Office (Word) documents. These
contain the observations, for example, the history of the patient, results from certain ex-
aminations, measurements of laboratory parameters, and finally the inferred diagnoses
of the patient. Figure 3 shows an example of a partial (anonymized) discharge letter
with the diagnosis, anamnesis, and some laboratory values. The available electronic
discharge letters provide the basis for various purposes, for example, for quality control
with respect to a hospital information system, for medical evaluations, or for creating
case-based training sessions.

27



 

Medizinische Klinik und Poliklinik II 
Direktor: Prof. Dr. H. Einsele 
 
Schwerpunkt Gastroenterologie 
Leiter: Prof. Dr. M. Scheurlen 
 
 
Med. Klinik und Poliklinik II, Standort C1 · Josef-Schneider-Str. 2 · 97080 Würzburg 
 
 

 
 

 
 
 
 
 
 

 
 
 
 
 

 

 

 
 

der sich vom 11.06.2007 bis zum 30.06.2007 in unserer stationären Behandlung befindet 
 
Diagnosen:  
Leberzirrhose ethyltoxisch CHILD C 
Therapierefraktärer Aszites (chylös) 
Indikation zur TIPSS-Anlage 
Indikation zur Lebertransplantation 
Z. n. Ösophagusvarizenblutung 
Z. n. spontan bakterielle Peritonitis 
Z. n. Prostataektomie bei Prostata-Karzinom. 
Hyperplastischer Magenpolyp 
Z. n. Polypektomie eines Colon-Polypens an der Bauhin’schen Klappe. 
 
Anamnese: 
Herr X wurde uns mit therapierefraktärem Aszites bei Leberzirrhose vorgestellt. Auch unter gesteigerter Diuretika-
Dosierung waren Aszitespunktionen in kurzen Abständen notwendig. Herr X wurde nun zur erneuter Aszitespunktion und 
Neueinstellung der medikamentösen Therapie stationär aufgenommen. Des Weiteren sollte eine Gastroskopie bei 
bekannten hyperplastischen Magenpolypen durchgeführt werden. Der Patient berichtete über eine Gewichtszunahme 
von 6 kg innerhalb von einer Woche. Die Trinkmenge läge z. Z. bei 2,5 – 3 Liter pro Tag. Wegen zahlreicher 
Nebenwirkungen wurde die aktuelle Medikation in Rücksprache mit unterer gastroenterologischen Ambulanz abgesetzt. 
Zuletzt nahm der Patient an Torasemid 20 mg und Spironolacton 200 mg täglich ein.  
 
Labor: 
(XX.XX.20XX 10:20:00) 
Klinische Chemie: Eisen: 38 [59 - 158] µg/dl;  
Gerinnung: Thromboplastinzeit n. Quick: 44 [70 - 130] %;  Ratio int. norm.: 1.63 [0.85 - 1.18] ;  PTT: 64.1 [23 - 36] s;  
Antithrombin III: 27 [75 - 125] %;  Fibrinogen (Clauss): 2.6 [1.8 - 3.5] g/l;  Faktor II: 27 [70 - 120] %;  Faktor V: 27 [70 - 140] %;  D-
Dimere (immunol.): 0.420 [0 - 0.190] mg/l;  
Serumproteine und Tumormarker: Ferritin: 30 [30 - 400] µg/l;  Transferrin: 169 [200 - 380] mg/dl;  Transferrinsättigung: 15.9 [16 - 
45] %;  
(27.06.2007 11:14:00) 
Schilddrüse: TSH: 0.52 [0.3 - 4.0] mIU/l;  freies T3: 5.96 [2.7 - 7.6] pmol/l;  freies T4: 16.9 [11.0 - 23.0] pmol/l;  
(27.06.2007 10:24:00) 
Serumproteine und Tumormarker: PSA ges.   (ECL,Elecsys,Roche): < 0.002 [0.07 - 4.0] µg/l;  CEA    (ECL, Elecsys, Roche): 12.2 
[0.2 - 3.4] µg/l;  CA 19-9 (ECL,Elecsys,Roche): 84.8 [0 - 37] U/ml;  AFP  (ECL, Elecsys, Roche): 4.6 [0 - 6.2] µg/l;  
Auftragskommentare: Bemerkung: s.Komm [0 - 6.2] µg/l;  
(25.06.2007 10:12:00) 
Klinische Chemie: Natrium: 116 [135 - 145] mmol/l;  Kalium: 4.3 [3.5 - 5] mmol/l;  glomerul. Filtrationsr. (MDRD): 146 [] ml/min/1,73qm;  
Creatinin: 0.6 [0 - 1.17] mg/dl;  GOT (ASAT): 41.1 [50] U/l;  GPT (ALAT): 17.2 [50] U/l;  GGT: 28.8 [60] U/l;  Lactat Dehydrogenase: 182 
[250] U/l;  
Gerinnung: Thromboplastinzeit n. Quick: 49 [70 - 130] %;  Ratio int. norm.: 1.53 [0.85 - 1.18] ;  PTT: 63.0 [23 - 36] s;  
Hämatologie: Leukozyten: 2.4 [5 - 10] n*1000/µl;  Erythrozyten: 2.88 [4 - 6] n*10E6/µl;  Hämoglobin: 9.2 [14 - 18] g/dl;  
Hämatokrit: 24.1 [42 - 50] %;  MCV: 83.7 [82 - 94] fl;  MCH (HbE): 31.9 [27 - 33] pg;  MCHC: 38.2 [32 - 36] g/dl;  Thrombozyten: 62 
[150 - 450] n*1000/µl;  
Serumproteine und Tumormarker: C-reaktives Protein: 0.48 [0 - 0.5] mg/dl;  
(12.06.2007 08:45:00) 
Klinische Chemie: Natrium: 117 [135 - 145] mmol/l;  Kalium: 4.7 [3.5 - 5] mmol/l;  Calcium: 1.9 [2.0 - 2.7] mmol/l;  anorg. Phosphat: 
1.16 [0.87 - 1.45] mmol/l;  glomerul. Filtrationsr. (MDRD): 146 [] ml/min/1,73qm;  Creatinin: 0.6 [0 - 1.17] mg/dl;  Harnstoff: 20.9 [10 - 50] 
mg/dl;  Harnsaeure: 2.6 [3.4 - 7] mg/dl;  Cholinesterase: 576 [5320 - 12920] U/l;  Gesamt-Bilirubin: 2.6 [0.1 - 1] mg/dl;  GOT 
(ASAT): 40.5 [50] U/l;  GPT (ALAT): 21.2 [50] U/l;  GGT: 29.6 [60] U/l;  Alk. Phosphatase: 55 [40 - 130] U/l;  Lactat Dehydrogenase: 157 
[250] U/l;  Gesamt-Eiweiss: 6.2 [6.6 - 8.7] g/dl;  Albumin: 3.1 [3.5 - 5.5] g/dl;  
Gerinnung: Thromboplastinzeit n. Quick: 49 [70 - 130] %;  Ratio int. norm.: 1.52 [0.85 - 1.18] ;  PTT: 61.8 [23 - 36] s;  
Hämatologie: Leukozyten: 2.3 [5 - 10] n*1000/µl;  Erythrozyten: 2.97 [4 - 6] n*10E6/µl;  Hämoglobin: 9.4 [14 - 18] g/dl;  
Hämatokrit: 25.3 [42 - 50] %;  MCV: 85.2 [82 - 94] fl;  MCH (HbE): 31.6 [27 - 33] pg;  MCHC: 37.2 [32 - 36] g/dl;  Thrombozyten: 62 
[150 - 450] n*1000/µl;  
Serumproteine und Tumormarker: C-reaktives Protein: 0.45 [0 - 0.5] mg/dl;  AFP  (ECL, Elecsys, Roche): 3.8 [0 - 6.2] µg/l;  
Auftragskommentare: Bemerkung: s.Komm [0 - 6.2] µg/l;  
(09.07.2007 11:42:00) 
Klinische Chemie: Natrium: 121 [135 - 145] mmol/l;  Kalium: 4.8 [3.5 - 5] mmol/l;  Calcium: 2.0 [2.0 - 2.7] 

Fig. 3. Example of a partial discharge letter (in german): The screenshot shows the diagnoses,
anamnesis, and laboratory examination part ("Diagnosen, Anamnese, Labor"). Then, the seg-
ments corresponding to these need to be extracted, and post-processed for data extraction.

The text corpus is made up of a set of discharge letters for a set of patients. The goal
is to process these and to extract the relevant information (observations, diagnoses)
from the discharge letters. We started with a training corpus of 43 discharge letters. For
extracting the relevant information, we developed a set of rules that take the structure of
the document into account. A discharge letter needs to follow a certain standard struc-
ture: The document is started by the salutation, the diagnosis part, the history of the
patient, textual paragraphs describing the results of various examinations like computer
tomography (CT), and the result of laboratory examinations, i.e., the measured parame-
ters. For applying the TEXTMARKER system, we can therefore focus on these building
blocks of the document. Therefore, the domain specialist provided this information and
annotated several documents concerning the important text blocks, and the respective
concepts. Each of the documents contained in the test corpus was annotated with the
concepts that are mentioned in the document. In this way, we developed a set of rules
for extracting segments of the letter first, for example, considering the diagnosis block.
After that, those segments were split up further, for example, considering the fact that
individual diagnoses are almost always contained in separate lines.

The corpus is still being extended, and new diagnoses and observations are being
added to the set of important concepts. Therefore, this provides for an ideal option for
further applying and testing the presented approach. The new concepts can be integrated
and captured with new rules, and their application can be debugged in context using the
new framework.

28



5 Conclusions

Information extraction is part of a widespread and still growing scientific community
that originates a multiplicity of new systems, tools and approaches. The initial devel-
opment of the TEXTMARKER system was influenced by the LAPIS system [7] and the
LIXTO SUITE [8] with its LIXTO VISUAL WRAPPER.

Test-driven development is a well known and successfully applied development
strategy. It is often combined with agile methods like extreme programming and is sup-
ported by an automatic testing framework. Test-driven development is not only a test
first approach for quality management, but also for the analysis and design process [5].

Various studies have shown that test-driven development reduces the defect rate
and detects defects earlier. Maximilien et al. [9] have shown a reduction of defect by
50 percent compared to an ad-hoc unit testing approach. Baumeister et al. [10] applied
automatic tests and restructuring methods for an agile development of diagnostic knowl-
edge systems. They defined different types of tests, e.g., on correctness, anomalies or
robustness, and noticed significant improvements for the evolutionary development.

In the area of text mining and information extraction, ad-hoc testing against a hand
annotated gold standard is common practice. The tool CFE (Common Feature Extrac-
tion) [11] is a system for testing, evaluation and machine learning of UIMA based
applications. It provides the declarative language Feature Extraction Specification Lan-
guage (FESL) that is interpreted and executed by a generic UIMA component. How-
ever, to the best knowledge of the authors, there is no prominent tool that supports a
test-driven development of information extraction applications beyond common back
testing. The strategy of test-driven development can be used for the development of
complex information extraction applications. Yet, the transfer is not straight forward
for common rule-based or pattern-based tools. The test specification and the test frame-
work has to incorporate the imprecise nature of the unstructured information domain.

In this paper, we have presented a test-driven approach for the development of com-
plex text extraction systems using TEXTMARKER. We have proposed a process model
for the discussed task, and we have introduced the necessary components and features
of TEXTMARKER in detail. Additionally, we have discussed two real-world case stud-
ies for exemplifying the presented approach.

The test-driven strategy is being integrated in our case studies. We expect a sig-
nificant improvement in the development in general and especially in defect detec-
tion, defect reduction and an accelerated development. The process model described
in this paper has some prominent features that are not found in the common develop-
ment strategy. The presented process model supports an incremental development with
minimal initial test cases. Real world test cases that define the common requirements
can be combined with synthetic test cases for specific features and quality management.
Furthermore, the proposed test-driven development process contains short iterations of
different steps and provides a flexible way to create complex information extraction
applications. The debugging step combines the advantages of the rule-based approach
of the language, the powerful integrated development environment and the information
contained in the test cases. Therefore detailed debugging information about the rule ap-
plications, the matched text and the conditions of each rule elements can explain each
occurred error. The common red-green metaphor of the automatic testing frameworks is

29



therefore extended, because the test information can be displayed in combination with
debugging information directly in the textual document of the test case.

In the future, we plan to consider one major part of test-driven development that was
not addressed yet: Refactoring techniques for TEXTMARKER scripts in order to further
enhance the user experience and applicability of the presented approach. Additionally,
we aim to integrate machine learning techniques, e.g., knowledge-intensive subgroup
discovery methods [12], for a more semi-automatic development approach.

Acknowledgements

This work has been partially supported by the German Research Council (DFG) under
grant Pu 129/8-2.

References
1. Appelt, D.E.: Introduction to Information Extraction. AI Commun. 12(3) (1999) 161–172
2. von Schoen, P.: Textmarker: Automatische Aufbereitung von Arztbriefen für Trainingsfälle

mittels Anonymisierung, Strukturerkennung und Teminologie-Matching [TextMarker: Auto-
matic Refinement of Discharge Letters for Training Cases using Anonymization, Structure-
and Terminology-Matching]. Master’s thesis, University of Wuerzburg (2006)

3. Ferrucci, D., Lally, A.: UIMA: An Architectural Approach to Unstructured Information
Processing in the Corporate Research Environment. Nat. Lang. Eng. 10(3-4) (2004) 327–
348

4. Puppe, F.: Knowledge Formalization Patterns. In: Proc. PKAW 2000, Sydney, Australia
(2000)

5. Janzen, D., Saiedian, H.: Test-Driven Development: Concepts, Taxonomy, and Future Di-
rection. Computer 38(9) (2005) 43–50

6. Götz, T., Suhre, O.: Design and Implementation of the UIMA Common Analysis System.
IBM Syst. J. 43(3) (2004) 476–489

7. Kuhlins, S., Tredwell, R.: Toolkits for Generating Wrappers – A Survey of Software Toolkits
for Automated Data Extraction from Web Sites. In Aksit, M., Mezini, M., Unland, R., eds.:
Objects, Components, Architectures, Services, and Applications for a Networked World.
Volume 2591 of Lecture Notes in Computer Science (LNCS)., Berlin, International Confer-
ence NetObjectDays, NODe 2002, Erfurt, Germany, 2002, Springer (2003) 184–198

8. Baumgartner, R., Flesca, S., Gottlob, G.: Visual Web Information Extraction with Lixto. In:
The VLDB Journal. (2001) 119–128

9. Maximilien, E.M., Williams, L.: Assessing Test-Driven Development at IBM. In: ICSE ’03:
Proceedings of the 25th International Conference on Software Engineering, Washington, DC,
USA, IEEE Computer Society (2003) 564–569

10. Baumeister, J., Seipel, D., Puppe, F.: Using Automated Tests and Restructuring Methods for
an Agile Development of Diagnostic Knowledge Systems. In: FLAIRS’04: Proc. 17th Intl.
Florida Artificial Intelligence Research Society Conference. (2004) 319–324

11. Sominsky, I., Coden, A., Tanenblatt, M.: CFE - a System for Testing, Evaluation and Ma-
chine Learning of UIMA based Applications. In: LREC ’08: The sixth international Confer-
ence on Language Resources and Evaluation. Towards Enhanced Interoperability for Large
HLT Systems: UIMA for NLP. (2008)

12. Atzmueller, M., Puppe, F., Buscher, H.P.: Exploiting Background Knowledge for
Knowledge-Intensive Subgroup Discovery. In: Proc. 19th Intl. Joint Conference on Arti-
ficial Intelligence (IJCAI-05), Edinburgh, Scotland (2005) 647–652

30



UML Representation Proposal for XTT Rule
Design Method?

Grzegorz J. Nalepa1 and Krzysztof Kluza1

Institute of Automatics,
AGH University of Science and Technology,
Al. Mickiewicza 30, 30-059 Kraków, Poland
gjn@agh.edu.pl, kluza.krzysztof@gmail.com

Abstract In the paper practical issues concerning the use of UML as
a knowledge representation method for rules are discussed. A proposal
of an UML-based representation for the XTT structured representation
for rules is presented. Since some deep semantical differences between
UML and rule-based representation exist, several possible UML repre-
sentations are evaluated. A practical algorithm for building an UML
representation using activity diagrams from XTT tables is proposed.

1 Introduction

Using Knowledge Engineering (KE) methods in practical Software Engineer-
ing [1] (SE) has gained some momentum in recent years. One of the best exam-
ples is the business rules approach [2]. The fact is that KE is being developed in
parallel with SE, and both approaches use different methods and tools to actually
model and build systems. Important semantical differences between these two
make the use of the KE methods in SE non-trivial, whereas using SE methods
with KE problems is often of limited use.
The paper focuses on analyzing possibilities of the practical use of the UML

language to model XTT rule-based systems. Extended Tabular Trees (XTT for
short) [3] is a structured knowledge representation for rules, based on some classic
KE notions of decision tables and decision trees. Representing XTT with UML
artifacts encounters number of issues addressed in the paper. A new algorithm
for encoding an XTT diagram using UML is introduced.
The paper is organized as follows. In the Sect. 2 possibilities of using UML as

a knowledge representation language are discussed. Then, in Sect. 3 knowledge
representation issues in the HeKatE project are presented. The paper presents
an UML-based representation for the XTT rule representation method. The
application of this method is discussed using the example thermostat control
system presented in Sect. 4, whereas the method itself is introduced in Sect. 6
and 5. The UML representation of the thermostat is then discussed in Sect. 7.
Directions for future work are presented in the final section.

? The paper is supported by the HEKATE Project funded from 2007–2009 resources
for science as a research project.

31



2 UML as a Knowledge Representation Language

UML as a design language identifies two distant domains of SE, that is soft-
ware structure, and behavior modelling. So there are two main diagram classes:
Structure Diagrams and Behavior Diagrams containing different artifacts.
Apparently, Structure Diagrams are often considered the basis of UML. They

are fairly complete and allow for expressing software components and denoting
relationship among them easily (i.e.: Class Diagram, Component Diagram). Be-
havior diagrams model software logic at different abstraction levels. First of all
there is a big picture perspective: modelling what particular software should do,
from the user point of view (i.e.: Use Case Diagram). There is also a detailed
perspective: what particular software components defined by the Structure Dia-
grams should do (i.e.: State Machine Diagram, Interaction Diagram). The prob-
lem is that these two perspectives do not fit together very well with the Structure
Diagram. While the detailed perspective corresponds to classes, the big picture
one serves more as a guideline, than a real modelling tool. So it seems that the
relationship between modelling software behavior and its structure is unclear.
Another issue regards the semantic gap between the design and the imple-

mentation [4]. Even if discussed diagrams support the implementation process by
describing software in a comprehensive way, it is impossible to verify in a reason-
able time if the implementation matches the design. There is also another gap
in the specification-design-implementation process called analysis specification
gap [5]. It regards a difficulty with the transition from a specification to the de-
sign. Formulating a specification which is clear, concise, complete and amenable
to analysis turns out to be a very complex task, even in small projects.
Applying UML as a Knowledge Engineering method is not straight for-

ward [6]. Existing diagrams are not suitable for rule modeling or expressing
knowledge in general. Using an UML profile, which is a redefinition of the se-
mantics of certain diagrams, does not help much, and in some cases might com-
plicate the design. It forces the use of existing diagrams for purposes they were
not designed for i.e. representing rule sets is tricky and inefficient.
There are several possible approaches when it comes to practical UML appli-

cation for knowledge engineering. The first solution is the “classic” and definitely
the easiest one. It consists in modelling the system with a knowledge-based ap-
proach, that uses some classic knowledge representation method, such as deci-
sion trees, then design the software implementation using UML, and generate an
object-oriented (OO) code. In this case, KE methods are used in the “design”
stage, while SE methods provide “implementation” means.
In the second approach the rule-based knowledge is modelled with UML

diagrams, and then the corresponding OO code is generated. This approach
relies on either extending, or redefining the original semantics of UML. Some
early beginning can be observed in OMG Production Rule Representation [7],
where some ideas of extending existing semantics of UML were contained. How-
ever, a complete example of this approach may be found in the Unified Rule
Modelling Language (URML), (see [8]). In this case, existing UML diagrams
are used to model different type of rules. In URML a simple production rule

32



If car is new, then increase premium by $400. is modeled in URML as
shown in Fig. 1.

Figure 1. Production rule in URML

The last one is possibly the most complicated approach. It relies at incor-
porating a complete rule-based logic core into an OO application. It aims at
minimizing the semantic gap between SE and KE. Such a solution is being de-
veloped in the HeKatE project, where a declarative, rule-based core is integrated
into an OO application as a logical model (as in the Model-View-Controller de-
sign pattern [9]). In this paper it is proposed to find a UML representation
corresponding, to XTT. Such a representation could then be used to present a
complete UML application model designed with KE methods.

3 Knowledge in the HeKatE Design Process

The HeKatE project aims at applying selected AI tools into SE. It is based on
incorporating an extended rule model as a logical application core. The model
uses the XTT rule representation and design method, with the support of the
ARD (Attribute Relationship Diagrams) [10,11] rule prototyping method. The
project provides a hierarchical design process, which should ultimately be rep-
resented by both custom XTT/ARD methods, as well as an UML-bases repre-
sentation. The main difference between the HeKatE knowledge representations
and UML diagram is, that UML, after all, does not provide a design process.
Whereas, HeKatE is about the integrated design process. So the methods on
which HeKatE is based, have been invented with the design process in mind.
The XTT (EXtended Tabular Trees) knowledge representation [3], has been

proposed in order to solve some common design, analysis and implementation
problems present in rule-based systems. In this method three important rep-
resentation levels has been addressed: visual – the model is represented by a
hierarchical structure of linked extended decision tables, logical – tables corre-
spond to sequences of extended decision rules, and implementation – rules are

33



processed using a Prolog representation. On the visual level the model is com-
posed of extended decision tables, see Fig. 2. The table represents a set of rules,
having the same attributes. On the logical level, a table corresponds to a number
of rules, processed in a sequence. If a rule is fired and it has a link, the inference
engine processes the rule in another table.
In addition to XTT which represents rules, there is a rule design process in-

volved. The process begins with the ARD model, and ends with the XTT model.
The key underlying assumption in the ARD design with knowledge specification
in attributive logics is that, similarly as in the case of Relational Databases [12],
the attributes are functionally dependent. An ARD diagram is a conceptual sys-
tem model at a certain abstract level. Attributes are subsequently identified at
more and more detailed levels. The process includes all levels. At the most de-
tailed level, XTT diagrams are added to define dependencies among attributes
and to describe how to calculate attribute values. The ARD process is similar,
in terms of its goals, to Structure Diagrams. However, while the Structure Di-
agrams tend to describe what elements the software consists of, ARD describes
what is known about it.

4 Thermostat Case Study

The analysis of the UML representation is conducted using a classic rule-based
control system example, a Thermostat case, found in [13]. The main problem
consists in creating a temperature control system for an office. The system needs
to take into account current date, including the day of the week, as well time of
the day. The original design has 18 rules, and has been studied in detail in the
HeKatE project. Here only the complete XTT design is presented in Fig. 2.
In the subsequent sections several approaches to the XTT representation in

UML are presented, with the optimal one used to represent the whole XTT
Thermostat design.

Figure 2. XTT Thermostat Design

34



5 Modeling XTT with UML

In this section the evolution of the UML representation for XTT is discussed.
Several attempts to provide such a representation are presented, in order to
expose the semantic and conceptual differences between UML and knowledge-
based systems. Finally, an optimal solution is proposed.
Decision tables in XTT represent rules that have the same attributes. The

rules in a single table are processed sequentially. So at this point a reasonable
idea is to try to use diagrams that show not so much the structure of the system,
but its behavior (dynamics). It could be diagrams such as use case diagrams,
activity diagrams or state diagrams, as well as diagrams of interaction (sequence
or collaboration diagrams).
According to [6] State Machine Diagrams and Activity Diagrams seem to be

the best UML candidates for rule modeling, but not good enough to serve the
purpose of rule modeling with similar expressiveness as XTT. It is possible to
use them to express rules in case of smaller systems. However, in case of larger
systems, where the number of states grows fast their use poses some practical
problems. So the first attempt to use UML for XTT is to investigate activity
and state diagrams.
Activity and state diagrams are related. However, it is important to under-

stand the differences between them. A state diagram shows the possible states
of the object and the transitions that cause a change in state. It focuses on an
object undergoing a process (or on a process as an object). However, an activity
diagram focuses on the flow of activities involved in a single process and shows
how they depend on one another [14].
The first attempts were carried out using state diagram for XTT modelling.

State diagrams capture the behavior of a software system and state machine
uses graph notation to represent the behavior of a component of a system [15].
The Table 1 lists the types of pseudostates used in state diagrams.

Table 1. Types of used pseudostates

Initial pseudostate – the starting point of a state machine.

Choice – allows the execution of a state machine to choose between
several different states based on guard conditions on the transitions.
Fork and join – represents a split in the execution of the state machine
into orthogonal regions. The join reunites the regions into a single tran-
sition. The state machine won’t transition from the join until all regions
have transitioned to the join pseudostate.

All of the attempts to find a UML representation are presented on a single
XTT table from the Thermostat systems, the TH table.

35



Figure 3. First attempt: State diagram corresponding to XTT TH diagram

The first abandoned attempt The Fig. 3 shows the corresponding UML
state diagram for the sample XTT table. However, in this case, where XTT is
transformed into activity diagrams it is not clear which attributes should be
transformed to the states and which to guard conditions.

The second abandoned attempt To avoid the problem from the first attempt
(how to transform XTT attributes), let:

– values of the XTT output attributes (H in XTT) become states,
– individual rows from XTT (conjunction of values in their cells) become guard
conditions.

The Fig. 4 shows the modified UML state diagram corresponding to the sample
XTT table. Unfortunately, with when the number of rules in XTT table grows,
the diagram becomes poorly readable.

Figure 4. First attempt: State diagram corresponding to XTT TH diagram

The third abandoned attempt The diagram could be more readable if we
use a fork pseudostate instead of a choice pseudostate. The Fig. 5 shows the
corresponding UML state diagram for the sample XTT table with the fork pseu-
dostate. If there is an deficiency in an XTT table (e.g. as a result of a mistake)

36



Figure 5. Third attempt: State diagram corresponding to XTT TH diagram

and different rows will not exclude each other, than the fork pseudostate dupli-
cates the input value and may transfer the control to more than one edge of the
subsequent states.
The limitation of all of these three approaches is the lack of the output

attribute naming, and for getting the names of input attributes it is needed to
search for them in the guard conditions.

6 UML Model for XTT

Considering the previously analyzed approaches, in this section a more optimal
translation is proposed. In general, activity diagrams are related to flow diagrams
and can illustrate the activities taking place in the system. The Table 2 lists the
types of nodes used in activity diagrams.

Table 2. Types of used pseudostates

Action

Decision node

Merge node

Fork node

Join node

Partitions (swimlanes)

Parameter of activity

Finally, an algorithm to transform XTT diagrams to UML activity diagrams
has been formulated. The proposed transition algorithm from XTT table to UML
activity diagram is as follows:

37



1. All input attributes become input parameters and output attribute becomes
output parameter of an activity (for the demarcation the diagram can be
divided into the partitions with a swimlane), see Fig. 6.

Figure 6. Example of applying of the first step of algorithm

2. For each attribute (activity parameter), if there is more than one unique
value in the XTT, a decision node and for every unique value of attribute
needs to be added (see Fig. 7):
(a) the control flow with guard condition is introduced (with that unique
value in it),

(b) if the value occurs frequently, the flow is finished with a fork node with
number of outputs equal to the number of times the value appears in
XTT table.

Figure 7. Example of applying of the second step of algorithm

3. For each rule (a row in XTT) a join node with the number of inputs equal
to the number of input parameters is drawn and another one for output, see
Fig. 8. For each join node:
(a) inputs are connected using an adequate flow control (in accordance with
the values of attributes in the rule),

(b) outputs are connected using a flow control with the action having a value
corresponding to the output attribute in the rule:
i. directly, if the value of attribute occurred in XTT only once,

38



Figure 8. Example of applying of the third step of algorithm

ii. otherwise through a merge node.
4. Outputs of all actions are merged in a merge node and a control flow is lead
to output parameter of activity, see Fig. 9.

Figure 9. Example of applying of the fourth step of algorithm

It is worth noting, that in general a counter-wise transformation could be
considered. This would allow for UML-based XTT rule design in any standard-
compliant UML editor. However, this is not possible without introducing some
kind of special annotations in the UML model. Ultimately, an UML profile for
XTT is considered as a solution for this problem.

7 XTT for Thermostat in UML

Activity diagrams constructed with the algorithm above for the thermostat will
look as in the Tables 3, 4, 5, 6. For the sake of transparency, modeling the diagram
of the entire thermostat, these activities are nested. An activity presented in a
nested form refers to a number of actions of this activity. (However, it is not
presented directly in the diagram). Figure 10 shows the diagram for the whole
thermostat system as discussed in the Sect. 4.

8 Evaluation and Future Work

In this paper the use of UML as knowledge representation for rule-based systems
has been considered. Several possibilities have been described in order to expose

39



Table 3. Activity diagram corresponding to XTT MS table

Table 4. Activity diagram corresponding to XTT DT table

some non-trivial issues concerning this representation. The original contribution
of the paper is an UML-based representation of XTT diagrams.
Since the problem is not new, some other approaches exist, so it is worth

noting how the HeKatE approach compares to the existing solutions. Currently,
two most important representations include OMG PRR [7] and REWERSE
URML [8]. The fact is, that both of these aim at detailed modelling of sin-
gle rules. On the other hand, by definition, in the XTT approach the design
is focused on the tree like structure of decision tables. So the representation
introduced in this paper aims at translating the whole structure of extended
decision tables into UML. Another difference is, that the HeKatE approach does

Figure 10. Activity diagram for the whole thermostat

40



Table 5. Activity diagram corresponding to XTT TH table

Table 6. Activity diagram corresponding to XTT OS table

not introduce new UML artifacts. It also does not aim at redefining some of the
UML semantics by using a custom profile (such a profile could be considered for
the means of bidirectional translation though). Instead it tries to explore and
efficiently use the existing diagrams.
It also worth emphasizing, that while the XTT representation scales well in

larger examples than the one presented here, its UML representation is not as
efficient. In general from a modeling point of view, the XTT table provides a more
compact representation than the activity diagram. The UML representation is
considered in order to allow interoperation with UML modeling tools, as well as
MOF-based description of XTT.
The work presented in the paper is in progress. The proposed algorithm is

being implemented and tested. Several methods are considered, including an
XSLT translation to the XMI format. In order to fully evaluate the algorithm a
formalized description will be ultimately provided. The current UML transfor-
mation closely follows both syntax and extended semantics of XTT, so it is not

41



directly aimed at other rule formalisms. However, the approach for providing the
transformation is a generic one, so in the future its application to different rule
formats may be considered. Ultimately the model designed with this method
should be embeddable into any business application using the MVC pattern. In
the future, the whole HeKatE design process including rule prototyping with
ARD and design with XTT should be put into the context of the MDA [16].

References

1. Sommerville, I.: Software Engineering. 7th edn. International Computer Science.
Pearson Education Limited (2004)

2. Ross, R.G.: Principles of the Business Rule Approach. 1 edn. Addison-Wesley
Professional (2003)

3. Nalepa, G.J., Ligęza, A.: A graphical tabular model for rule-based logic program-
ming and verification. Systems Science 31(2) (2005) 89–95

4. Mellor, S.J., Balcer, M.: Executable UML: A Foundation for Model-Driven Ar-
chitectures. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA
(2002)

5. Rash, J.L., Hinchey, M.G., Rouff, C.A., Gracanin, D., Erickson, J.: A tool for
requirements-based programming. In: Integrated Design and Process Technology,
IDPT-2005, Society for Design and Process Science (2005)

6. Nalepa, G.J., Wojnicki, I.: Using UML for knowledge engineering – a critical
overview. In Baumeister, J., Seipel, D., eds.: 3rdWorkshop on Knowledge Engineer-
ing and Software Engineering (KESE 2007) at the 30th annual German conference
on Artificial intelligence : [September 10, 2007, Osnabrck, Germany]. (september
2007) 37–46

7. OMG: Production rule representation. Technical report, Object Management
Group (br/2003-09-03)

8. Lukichev, S., Wagner, G.: Visual rules modeling. In: Sixth International An-
drei Ershov Memorial Conference Perspectives Of System Informatics, Novosibirsk,
Russia, June 2006. LNCS, Springer (2005)

9. Burbeck, S.: Applications programming in smalltalk-80(tm): How to use model-
view-controller (mvc). Technical report, Department of Computer Science, Uni-
versity of Illinois, Urbana-Champaign (1992)

10. Nalepa, G.J., Ligęza, A.: Conceptual modelling and automated implementation of
rule-based systems. In Krzysztof Zieliński, T.S., ed.: Software engineering : evolu-
tion and emerging technologies. Volume 130 of Frontiers in Artificial Intelligence
and Applications., Amsterdam, IOS Press (2005) 330–340

11. Nalepa, G.J., Wojnicki, I.: Towards formalization of ARD+ conceptual design and
refinement method. In: FLAIRS2008. (2008) accepted.

12. Connolly, T., Begg, C., Strechan, A.: Database Systems, A Practical Approach to
Design, Implementation, and Management. 2nd edn. Addison-Wesley (1999)

13. Negnevitsky, M.: Artificial Intelligence. A Guide to Intelligent Systems. Addison-
Wesley, Harlow, England; London; New York (2002) ISBN 0-201-71159-1.

14. Miller, R.: Practical UML: A Hands-On Introduction for Developers,
http://dn.codegear.com/article/31863#activity-diagrams. (2003)

15. Pilone, D., Pitman, N.: UML 2.0 in a Nutshell. O’Reilly (2005)
16. Miller, J., Mukerji, J.: MDA Guide Version 1.0.1. OMG. (2003)

42



Proposal of a Prolog-based Knowledge Wiki?

Grzegorz J. Nalepa and Igor Wojnicki

Institute of Automatics,
AGH University of Science and Technology,
Al. Mickiewicza 30, 30-059 Kraków, Poland
gjn@agh.edu.pl, wojnicki@agh.edu.pl

Abstract This paper presents a proposal of a knowledge wiki system
and describes its prototype implementation. The system design is based
on a wiki concept regarding authoring policies and user access, extended
with an ability of storing knowledge in addition to the human-readable
content. The knowledge is expressed in the Prolog language by means of
predicate logic. An inference engine is coupled with the wiki providing
means for an automated knowledge processing and interpretation. Se-
lected applications, examples, and further extensions are also presented.

1 Introduction

The Internet has become a single most important resource for instant infor-
mation sharing. From the point of view of ordinary users it can be considered
to constitute a very flexible and powerful version of the so-called blackboard
architecture. The rapid growth of the Internet prompted a rapid development
of specific software. This software addresses different aspects of information or-
ganization and interchange related issues, such as storing, retrieval, searching,
indexing, aggregating, sharing, updating, etc. Taking into account the size and
flexibility of the system as a whole, these problems constitute a real challenge.
Today web technologies constitute an advanced and universal programming

framework. This framework has a very heterogeneous structure including: data
encoding and structuring languages (such as HTML and XML), meta-data lan-
guages (such as RDF), data transformation languages (such as XSL/T/FO),
data presentation languages (such as CSS), server-side programming languages
(such as PHP, JSP), and client-side programming languages (such as Javascript).
Building on these Content Management Systems (CMS for short) emerged

as a technology providing a unified interface for large databases or data ware-
houses. However, they do not solve all the challenges in the area. Some of the
persistent problems include distributed authoring, where number of users pro-
vide and modify the content, the difference between content and knowledge,
where the system should not just store data. Some of these issues were partially
resolved with the introduction of specialized CMS called wikis, that introduce a

? The paper is supported by the HEKATE Project funded from 2007–2009 resources
for science as a research project.

43



highly distributed authoring model. This technology is being enhanced with the
development of semantic wikis allowing for semantic annotation of the content.
The next step towards true knowledge-based systems is provided by knowledge
wikis, that introduce explicit knowledge representation.
In this paper a new approach to the knowledge wiki architecture is proposed.

It is based on a simple yet flexible and powerful idea of incorporating Prolog
language code into the content stored in the wiki system. In the paper the
design of such a wiki, based on the DokuWiki is introduced and a prototype
implementation is discussed.
The rest of the paper is organized as follows. In Sect. 2 a discussion of main

features and limitations of CMS is contained. Next, in Sect. 3 the wiki systems
are discussed. The main problem with classic CMS, including wikis, is the lack
of support for true knowledge management, as pointed out in Sect. 4. Some Wiki
extensions, such as semantic and knowledge wikis presented in Sect. 5, aim at
overcoming it. A knowledge wiki can be built around the classic knowledge rep-
resentation techniques used in the Prolog language (see Sect. 6). A Prolog based
extension to a wiki system is proposed in Sect. 7, with a prototype implemen-
tation for the DokuWiki introduced in Sec. 8. Some examples for the prototype
are shown in Sect. 9. The paper ends with directions for future work in Sect. 10.

2 Content Management Systems

In a broad sense a Content Management System (CMS) consists of: a RDBMS
(Relational Data Base System) which stores the data, and a complex web-based
application or interface providing the access to the data. The web interface is
built around common web technologies. This software requires a proper and
efficient run-time environment, including a web server. An important aspect of
a CMS system is the possibility of user personalization, and interactive use.
Multiple CMS categories can be identified: web portals, groupware suites,

forum sites, and e-learning toolkits. In each of these cases the content they man-
age differs. Several classes or groups can be identified. The main differentiating
factor is the type of services they are oriented for. A special case of CMS is a
wiki, described in the next section.
From a knowledge engineering and management perspective, content may be

seen as a particular kind of knowledge. While all of the CMS systems provide
some kind of content structuration, few of them focus on using proper knowl-
edge representation methods. The gathered content is only human readable, and
hardly subject to machine processing. This, in fact, exposes an important con-
ceptual gap between content and knowledge management systems. Wheres the
former simply store data, the latter should allow for a semantic-aware processing.

3 Wiki Systems

The wiki concept emerged in the 90’s. The main idea was to create a simple
and expressive tool for communication and knowledge sharing. A wiki system is

44



mainly a collaboration tool. It allows multiple users to access, read, edit, upload
and download documents. It has a regular client-server architecture. Documents
are text-based, enriched with so-called wiki markup. It is a simplistic, tag-based,
text only language which allows the user to annotate text with information re-
garding its structure and presentation. Such an enriched text is called wikitext.
The tags allow users to make sections, subsections, tables, items and other ty-
pographic and structural operations. A wikitext remains human readable, tags
are intuitive and easy to learn.

Each document is uniquely identified by a keyword, which makes the wiki
concept similar to the encyclopedia concept. Furthermore a document, in ad-
dition to typographic tags mentioned earlier, can contain hyperlinks to other
documents. A hyperlink is a document name enclosed by a link tag. The wiki
allows users to upload images, as well as other files and link them together. One
of the most important features of a wiki is an integrated version control. Each
page modification is recorded. At any time a user can access any previous version
of any page.

Wikis are mostly web-based. The web interface allows users to access, see
and edit wiki pages. Depending on the particular solution, there might be access
control and authorization mechanisms implemented. A wiki system is usually
based on server side processing technologies providing the web application, and
optionally a database back-end. As a front-end a web browser is used.

It is worth pointing out that wiki systems currently blend with regular Con-
tent Management Systems. Some CMS provide wiki functionality while some
wikis evolve into CMS. Similarly wikis are more and more often merged with
e-Learning systems to support collaborative knowledge gathering and sharing.

One of the most interesting wiki systems for developers is DokuWiki (wiki.
splitbrain.org/wiki:dokuwiki). It is designed to be both easy to use and easy
to set up. DokuWiki is based on PHP and does not require any database back-
end. Pages are stored as versioned text files which enables easy backup-restore
operations. It allows for image embedding, and file upload and download. Pages
can be arranged into so-called namespaces which act as a tree-like hierarchy
similar to directory structure. It also provides syntax highlighting for in-page
embedded code for programming languages such as: C/C++, Java, Lisp, ADA,
PHP, SQL and others, using GeSHi (qbnz.com/highlighter).

Furthermore, it supports extensive user authentication and authorization
mechanisms including Access Control Lists (ACL). Its modularized architec-
ture allows the user to extend DokuWiki with plugins which provide additional
syntax and functionality. The most popular plugins provide: user and ACL man-
agement, blog, gallery of pictures, discussion board, calendar, LATEX symbols
rendering, and GraphViz visualization.

45



4 Content vs. Knowledge

A review of the selected CMS, including wikis reveals some common limitations;
namely: technical limitations, content management and portability problems,
and most importantly, oversimplified knowledge representation.

When it comes to the the actual management of the content the main problem
is, that CMS systems provide limited content portability. As long as content is
simply data, such as HTML, PDF documents, pictures and so-on, CMS acts as a
repository. When it comes to sharing information about the content, meta-data,
or meta-knowledge, CMS systems do not provide appropriate facilities. This is
mainly related to the lack of some common knowledge representation standards,
while focusing on low-level encoding, and visual presentation of content.

From a knowledge management point-of-view, the crucial problem with CMS
systems is, that they escape the knowledge representation and management pit-
falls by assuming some predefined CMS structure, e.g. a portal. In this sense a
CMS is only a set of modifiable portal templates. It is difficult to choose knowl-
edge representation for current CMS solutions, because the knowledge they store
can be considered implicit, or even hidden.

This criticism implicitly assumes that what CMS were designed to manage,
and make available, is somehow knowledge. That would put the process of de-
ploying a CMS in the context of knowledge engineering. In this field concepts
such as knowledge representation, management, or validation are used referring
to common tasks. However, considering how most of CMS are built, they can-
not be considered Knowledge Management Systems. Turning current CMS into
knowledge-oriented CMS should involve an introduction of number of features.

There seems to be generic areas that should be supported by any ”knowl-
edge server”; these are: knowledge representation and organization support; the
system should provide appropriate structures and languages, knowledge process-
ing and inference; the system should be capable of multi-paradigm reasoning
and automated operations on knowledge, inference and operation control, user
support, and operational decision making, knowledge acquisition support and
extraction of knowledge from different sources, contextual user interface - both
for operational use and administration/design, truth-maintenance, verification
and validation support, learning and optimization.

There are numerous efforts to meet these requirements. However, because of
lack of consistent and uniform theoretical foundations, efforts oriented towards
building a knowledge server replacing, subsuming and covering database services,
web applications and decision processes, are far from being satisfactory. Recent
developments in the area of intelligent web authoring and collaboration tools
include the development of semantic wiki systems. They offer the functionality
of semantic annotation of the content. The next stage is provided by knowledge
wikis, which add explicit knowledge representation and processing capabilities
with the introduction of decision rules and trees.

46



5 Semantic Knowledge Wikis

A first step in the direction of enriching standard wikis with the semantic infor-
mation has been performed by the introduction of the so-called semantic wikis,
such as the IkeWiki [1], or OntoWiki [2]. In such systems the standard wikitext is
extended with the semantic annotation. Such annotations allow for building an
ontology of the domain with which the content of the wiki is related. This exten-
sion introduces not just new content engineering possibilities, but also semantic
search and analysis of the content. In order to provide annotations semantic
wikis allow for RDF or OWL annotations.
However, from the knowledge engineering point of view expressing semantics

is not enough. In fact a knowledge-based system should provide effective knowl-
edge representation and processing methods. In order to extend semantic wikis
to knowledge-based systems, the concept of semantic knowledge wikis has been
introduced, see [3,4]. An example of such a system is the KnowWE semantic
knowledge wiki [3,5]. In such a system the semantic knowledge is extended with
the problem-solving domain-specific knowledge. The system allows for introduc-
ing knowledge expressed with decision rules and trees related to the domain
ontology. So conceptually it is built on top of the semantic wikis.
The approach presented in this paper shares goals with the semantic knowl-

edge wikis. However, it differs with respect to the methods used. In the paper a
generic solution based on the use of Prolog as the language for expressing both
the semantics, and the knowledge processing information is presented.

6 Prolog Knowledge Representation Model

The Prolog language [6,7] is a prime example of applied programming in logic,
where knowledge representation and processing is critical. Knowledge is rep-
resented with use of facts and rules as Horn clauses in First-Order Predicate
Calculus. This formal representation intuitively corresponds to statements in
the natural language. The language offers powerful knowledge processing capa-
bilities, including recursive processing, unification and resolution. The flexibility
of this approach, and the extensibility of the language made it an AI tool of
choice for many systems.
Prolog natively uses a backwards chaining reasoning strategy, that corre-

sponds to logical abduction. However, thanks to its meta-programming facilities
it is easy to build any Prolog-based interpreter for a custom reasoning, including
forward chaining.
Knowledge is expressed as clauses being facts or rules, often referred to as

the knowledge base. Clauses constitute predicates. The way how facts are stated
is close to the natural language, with a verb and a set of nouns being predicate
name and predicate arguments respectively. Let us assume that there are some
facts regarding student project management: there is a student Frank, a teacher
Bob, both of them work on project knowledgeWiki, and the project is already
finished (done).

47



is_student(frank).
is_teacher(bob).
works_on_project(frank,knowledgeWiki).
works_on_project(bob,knowledgeWiki).
project_status(knowledgeWiki,done).

Rules are expressed in a similar way with use of Predicate Calculus which in-
troduces a concept of variable (indicated as capitalized identifiers). Finding out
which student needs to be graded can be formulated as:

need_grade(Who,Project):-
is_student(Who), works_on_project(Who,Project),
project_status(Project,done), \+ grade(Who,Project,_).

which can be read as: Who needs a grade from Project if Who is a student and
he works on Project, and the project status is done and Who dos not have a
grade assigned (\+ means negation).
Combining facts and rules gives a very powerful and expressive technique for

storing knowledge. It is far more capable than simple representations such as
RDF, which defines facts only.
Furthermore, Prolog allows to specify a goal to the inference engine to ac-

tually query the knowledge base. To find out who works on the knowledgeWiki
project a query could be issued:

?- works_on_project(Who,knowledgeWiki).

Prolog will try to unify a solution with Who variable giving the answer. Queries
are just like complex clauses, they can be integrated with the knowledge base.
The following displays on standard output who works on knowledgeWiki:

:- works_on_project(Who,knowledgeWiki), write(Who).

Prolog-based knowledge representation can be possibly far richer than the
ones used in the current knowledge wikis implementations. In the next section a
new proposal of a knowledge wiki is introduced. It allows for a direct integration
of Prolog code with the wikitext.

7 Prolog Knowledge Wiki Proposal

A simple concept for a generic knowledge wiki is to integrate Prolog code into the
wiki text. Such Prolog annotations or attachments would enhance the content
with semantics, as well as provide an inference technique. This idea was first
proposed in [8].
The basic functionality should at least include:

1. ability to include Prolog code into wikitext,
2. spawning the Prolog inference engine in order to interpret the code embedded
in wiki pages,

48



3. possibility of analyzing wiki contents by the Prolog program.

This would ultimately mean that a bidirectional Wiki-to-Prolog interface has to
be developed.
The first requirement seems to be easy to fulfill. Considering how wikitext

is built, a special markup for the Prolog code can be provided. A function to
interpret larger Prolog files included as files in the wiki can also be considered.
The second one needs some low-level runtime integration, where the web-

server is able to spawn custom process. A Prolog interpreter would be run, with
Prolog-related wiki contents provided.
It should be possible to access and analyze the contents of the wiki from

within the Prolog code. A special library of predicates that access the wiki,
using wiki-specific references should be provided.
Another issue are the actual use scenarios for the system. Several possibilities

have to be taken under consideration:

– enhance wiki with some meta-knowledge,
– describe the meaning of wiki contents with Prolog,
– provide knowledge processing for the wiki.

Common vocabulary, predicate names, their arities, and meaning should be
defined as well. It would give a common meaning to the knowledge gathered in
the wiki forming an ontology. Applying OWL or RDFS at this point should be
evaluated. The proposed enhancement addresses issues presented in Sect. 4.

8 System Implementation

A preliminary implementation of concepts described in the previous section has
been carried out within two students projects in the Knowledge Engineering
Methods class of 2008 at AGH UST and a master’s thesis research, see [9].
The prototype is based on the DokuWiki system. The implementation uses a
dedicated Prolog plugin for DokuWiki. The plugin meets requirements 1. and 2.
(see Sect. 7), being able to interpret Prolog code embedded into wiki, as well as
spawning the Prolog interpreter.
The Prolog code is included using a simple construct:

wikitext

<prolog>
color(red).
</prolog>

wikitext

This instructs the wiki, that the contents should be parsed by the Prolog
plugin.
In order to run the code, thus spawn the Prolog interpreter, a Prolog goal

should be explicitly stated with the plugin invocation, e.g.:

49



wikitext

<prolog goal="color(X),write(X),nl,fail.">
color(red).
color(green).
color(blue).
</prolog>

wikitext

Input output issues are resolved as follows. Knowledge gathered in the wiki
is treated as input, there is no explicit user input of any kind (no forms, input
fields etc.). This knowledge is subject to processing in the way specified above.
Prolog standard output is rendered in the page in the place where the plugin
invocation is present. Thus, the above example is seen as a wiki page as follows:

wikitext

red
green
blue

wikitext

since write/1 generates variable value and nl/0 a new line on standard out-
put. In this very case fail/0 forces backtracking, which makes X to be resolved
with red, green, blue values in turn.
The interpreter can access selected areas of the wiki, using an explicit scope

specification, such as:

<prolog goal="color(X),write(X),nl,fail." scope="pl:miw">
<prolog goal="female(X),write(X),nl,fail." scope="pl:miw:proj.*08">

In the first case the contents of the whole wiki namespace1 is parsed (all
documents within pl:miw namespace). In the second case a number of pages
matching the given regular expression are parsed (which are pages within pl:miw
namespace which names start with proj. and end with 08). The contents of all
the pages are concatenated into a single Prolog file and then analyzed by the
interpreter.
Another solution allows for using Prolog files stored in wiki, or outside it,

accessible with an URL. This is especially useful in case of larger files e.g.:

<prolog goal="female(X),write(X),nl,fail" file="pl:miw:test.pl">
<prolog goal="female(X),write(X),nl,fail" url="http://sth.org/test.pl">

The current implementation is a proof-of-concept prototype. It does have
some limitations, including:

1 The concept of a namespace is typical to DokuWiki, however it is also present in other
wiki systems, particular syntax indicating a namespace differs between systems.

50



– scope specification – it is not entirely compatible with the default DokuWiki
namespace handling,
– full input/output from the Prolog program – currently it is limited to explicit
output handling encoded in the goal specification for the plugin,
– flexible goal specification – in general one can use the :- expression anywhere
in the Prolog file, to provide a goal, with the current version of the plugin
this not always works as expected,
– caching – this poses some important problems related to both functionality
as well as efficiency; in some cases it is desirable to override or disable the
DokuWiki rendering cache to get results generated by the Prolog engine; on
the other hand a separate caching mechanism for the Prolog code itself is
provided, however, it does have certain limitations,
– unidirectional interface – currently it is only possible to invoke Prolog in-
terpreter from the wiki; there is no way to actually query the wiki from
Prolog,
– there is no syntax checking of Prolog code – it is possible to enter syntacti-
cally incorrect code without any notification about it,
– there is no editing support such as code completion.

See https://ai.ia.agh.edu.pl/wiki/prolog:prologwiki for project pro-
gress as well as testing area. There is also an ongoing master’s thesis research
carried out in this domain.

9 Use Example

The examples discussed here present some basic use for the plugin. They are also
available online, see https://ai.ia.agh.edu.pl/wiki/prolog:prologwiki.

====== Smith Family ======
There is Kate and Liz obviously girls, and a couple of boys: Tom and Bob.
Kate is Bob’s mom, while Tom is his dad.
Tom is also Liz’s dad.
<prolog scope="family">
female(person(kate,smith)).
female(person(liz,smith)).
male(person(tom,smith)).
male(person(bob,smith)).
parent(person(kate,smith),person(bob,smith)).
parent(person(tom,smith),person(bob,smith)).
parent(person(tom,smith),person(liz,smith)).
</prolog>

Figure 1. smith family: Smith family description

Expressing family relationships is a good example for using knowledge wiki.
An example description of Smith Family as smith family page, is given in Fig. 1.

51



It defines both a description of the family (clear wikitext) and corresponding,
formal definition with use of female/1, male/1 and parent/2 predicates. Fur-
thermore there is a scope defined, which interprets knowledge gathered in family
page, see Fig. 2. These are additional, common rules allowing to infer family re-
lationships such as maternity or paternity.

====== Family Definitions ======
===== Father and Mother =====
A parent and a female is somebody’s mother.
A parent and a male is somebody’s father.
<prolog>
mother(X,Y) :- parent(X,Y),female(X).
father(X,Y) :- parent(X,Y),male(X).
</prolog>

Figure 2. family: Common definitions regarding families

====== Families ======
Knowledge about all families is gathered in this namespace.
<prolog scope=".*_family">
</prolog>

Figure 3. families: Gathering knowledge about all families

There could be another page (families) which gathers knowledge about all
families present in the wiki (within current namespace), see Fig. 3.

10 Perspectives for Future Work

This paper presents an original idea of implementing a semantic knowledge wiki
using Prolog for knowledge representation and processing. In the paper a proof-
of-concept prototype implementation for the DokuWiki system is described.
Since the current prototype has number of limitations, there is an ongoing effort
to extend this idea.
Embedding predicate logic in terms of Prolog code into a wiki system delivers

a powerful tool for expressing and processing knowledge. However, there are some
constraints needed to make knowledge exchangeable and reusable. A similar
approach can be observed in the AceWiki [10] project (http://attempto.ifi.
uzh.ch/acewiki). It provides a semantic wiki that uses a controlled natural
language called ACE. Compared to most other semantic wikis it does not use
RDF or OWL directly, the semantics is contained directly in the wiki text and
not in form of annotations.

52



A vocabulary should be defined which establishes a relationship between
predicates and their meaning. Knowing a list, probably structured, of predicates
and their meanings, gives a basis for using, reusing and extending them. Simi-
larly, there should be a clear mechanism for defining such relationships. Existing
technologies such as ontologies should be considered, as well as these close to
the Prolog language, such as self-documenting help mechanism. There are three
directions visible now: an OWL or RDF based ontology, a wiki-based one, or a
purely Prolog-based one.
Current version of the prototype does not introduce Prolog debugging fea-

tures. It is not possible to check the syntax of the Prolog code, or assist the user
in entering it. In the future both debugging and syntax highlighting features
are planned. And extended interface that uses automatic hinting could also be
provided.
There are obviously some performance issues regarding knowledge processing

within a wiki system based on Prolog code interpretation. Extracting knowledge
from many pages and processing it could be a time consuming operation. Some
smart caching techniques should be used then. A research regarding this issue
has already been started. It is based on the caching mechanism present in the
DokuWiki system.
As it is described in Sect. 8 a goal for the inference engine could be specified

at the prolog tag. This approach seems to be a little redundant since there
is already a Prolog built in mechanism to state a goal, integrating it with a
knowledge base, with use of :-, see Sect.6. Application of either one and their
semantical differences will be researched.
Using scope attribute can lead to some ambiguity. If there are many prolog

elements within a page with different scopes, a global scope of the page is a sum
of all the scopes. Alternatively there could be no such a concept as the page
global scope. In this case scopes will be applied on element basis. Alternatively
a scope could be defined with use of a special predicate instead of an attribute.
The proposed Prolog-based knowledge wiki is not compatible with the se-

mantic annotation mechanism found in semantic wikis. These include the use
of technologies such as OWL or RDF. There should be some bridging interface
allowing for such cooperation and knowledge exchange established.
One of the promising applications of the proposed technology is to provide

a learning environment for students taking Artificial Intelligence courses. The
knowledge wiki gives a chance to learn Prolog without using other technolo-
gies than a web browser. Furthermore, even complicated knowledge repositories
with distributed facts and rules spanning over many wiki pages, with multiple
users and cooperative user interaction, can be build this way. It suits very well
demonstration purposes as gathered knowledge can be put to work immediately.

References

1. Schaffert, S.: Ikewiki: A semantic wiki for collaborative knowledge management. In:
WETICE ’06: Proceedings of the 15th IEEE International Workshops on Enabling

53



Technologies: Infrastructure for Collaborative Enterprises, Washington, DC, USA,
IEEE Computer Society (2006) 388–396

2. Auer, S., Dietzold, S., Riechert, T.: Ontowiki - a tool for social, semantic collab-
oration. In Cruz, I.F., Decker, S., Allemang, D., Preist, C., Schwabe, D., Mika,
P., Uschold, M., Aroyo, L., eds.: International Semantic Web Conference. Volume
4273 of Lecture Notes in Computer Science., Springer (2006) 736–749

3. Baumeister, J., Reutelshoefer, J., Puppe, F.: Knowwe: community-based knowl-
edge capture with knowledge wikis. In: K-CAP ’07: Proceedings of the 4th in-
ternational conference on Knowledge capture, New York, NY, USA, ACM (2007)
189–190

4. Reutelshoefer, J., Baumeister, J., Puppe, F.: Ad-hoc knowledge engineering with
semantic knowledge wikis. In: Proc. of SemWiki 2008 - The Wiki Way of Semantics,
Workshop co-located with the 5th European Semantic Web Conference, Tenerife,
Spain (2008)

5. Baumeister, J.; Puppe, F.: Web-based knowledge engineering using knowledge
wikis. In: Proc. of the AAAI 2008 Spring Symposium on ”Symbiotic Relationships
between Semantic Web and Knowledge Engineering”, Stanford University, USA
(2008) 1–13

6. Bratko, I.: Prolog Programming for Artificial Intelligence. 3rd edn. Addison Wesley
(2000)

7. Covington, M.A., Nute, D., Vellino, A.: Prolog programming in depth. Prentice-
Hall (1996)

8. Nalepa, G.J., Wojnicki, I.: Concept of an interactive web portal for teaching prolog.
In: FLAIRS2008. (2008) accepted.

9. Kotra, M.: Dokuwiki plugins for graphviz and prolog. Knowledge Engineering
Project (MIW), G. J. Nalepa supervisor (2008)

10. Kuhn, T.: AceWiki: Collaborative Ontology Management in Controlled Natural
Language. In: Proceedings of the 3rd Semantic Wiki Workshop, CEUR Workshop
Proceedings (2008)

54



Learning to Cope with Critical Situations - An
Agent based Approach

Régis Newo and Klaus-Dieter Althoff

University of Hildesheim, Institute of Computer Sciences,
Laboratory of Intelligent Information Systems
Email: newo|althoff@iis.uni-hildesheim.de

Abstract. How does someone react when he faces a critical situation
in his life? In this paper we present an initial initial implementation
architecture based on a simulation model described in [10] In our model
we mainly consider the interactions between a person concerned and
factors like his environment and his own abilities. Using the empolis
information access suite, we currently implement our model by means of
a multiagent system approach, realized by distributed knowledge-based
systems with a specific focus on case-based reasoning technology.

1 Introduction

In our everyday life, we consistently face situations which pose more or less im-
mense challenges. Examples can be the breakup with a partner, the loss of a
job, an illness or even the death of a relative. As different as those challenges
can be, the reactions of the persons who are facing the same kind of challenges
can be very different as well. The problem consists in finding out, how someone
reacts when he/she faces up a given challenge. The problem being a psycholog-
ical one, there have been many research groups in psychology working in that
direction, beginning in the early 1980s. They developed psychological models
and paradigms in order to represent and analyse people’s behaviours as well as
theories, sotware-based models, and simulation approaches.
In this paper, we present an agent-based approach for the representation and
simulation of human behaviours in critical situations. For this purpose we de-
veloped - in cooperation with Werner Greve (Institute of Psychology, Univer-
sity of Hildesheim1) - the SIMOCOSTS (SImulation MOdel for COping STra-
tegy Selection) model. In the SIMOCOSTS project we are actually aiming at
a threefold goal, namely (1) developing a research software tool for supporting
psychologists, who are working on cognitive modelling and learning as roughly
described above, in their research work, (2) realizing what we call ”collaborative
multi-expert-systems” (CoMES; see below), and (3) instantiating the SEASALT
software architecture we developed in our research lab as a first step towards
realizing CoMES. In this paper, we elaborate on how we currently intend to
implement our simulation while focussing on the representation of the needed
1 http://www.uni-hildesheim.de/psychologie/mitglieder/werner greve.htm

55



knowledge.
In the next section, we will shortly introduce CoMES and SEASALT and dis-
cuss related work. We describe the SIMOCOSTS model, its functionality, the
developed knowledge representation and processing in Section 3, and the status
of its implementation in Section 4. Finally in Section 5 we give a short outlook
on relevant future work.

2 Background and related work

In this section we shortly explain the underlying CoMES approach and its first
instantiation via the SEASALT architecture. Related work from the areas of
cognitive architectures, coping processes, and other related psychological areas
can be found in [10] and [9].

2.1 Collaborative Multi-Expert-Systems

Collaborative Multi-Expert-Systems (CoMES, see also [2]) denote a new research
approach that is both, a continuation of the well-known expert system approach
and a research direction based on the ideas of case factory and knowledge-line [3].
In the Knowledge-line concept we systematically apply the software product-line
approach [11] from software engineering to the knowledge of knowledge-based
systems. This enables the necessary ”knowledge level modularization” for build-
ing potential variants in the sense of software product-lines. The modularization
can be achieved by making use of multi-agent systems [6, 12] as a basic approach
for knowledge-based systems. An intelligent agent - as a first approximation - is
implemented as a case-based reasoning (CBR) system [1], which, besides case-
specific knowledge, can also include other kinds of knowledge. Each CBR agent
is embedded in a case factory [3] that is responsible for all necessary knowledge
processes like knowledge inflow, knowledge outflow as well as knowledge analysis.

While many early (and also some current) expert systems had the problem of
acquiring and maintaining their knowledge, the underlying idea in CoMES is to
”develop CoMES where knowledge is produced”. Another idea is to keep the
resulting learning scenarios/tasks as simple as possible, thus having more agents
and having each one learning in a rather simple way.

2.2 Sharing experience using an agent based system architecture
layout

A first step towards realizing the CoMES approach is the SEASALT (Sharing
Experience using an Agent based System Architecture LayouT) architecture.
The architecture can be vertically split in two parts as can be seen in Figure
1. On the left hand side the knowledge provision and on the right hand side
the knowledge acquisition. For the current stage of the SIMOCOSTS project
we focus on the knowledge provision part only (a more detailed description of

56



Fig. 1. The SEASALT Architecture

SEASALT is given in [4]). If a user enters a question using the Interface, it passes
the question on to the Coordination Agent. The Coordination Agent analyzes
the question, looks up the matching Topic Agent(s) and sends its requests to
them. A response based on the existing case base is created by each Topic Agent
and passed back to the Coordination Agent. Finally, the response of the Topic
Agents is used by the Coordination Agent to compile an answer.

3 A Simulation Model for Coping Strategies

SIMOCOSTS (SImulation MOdel for COping STrategy Selection) is the under-
lying model for our simulation. The model is based on the psychological theories
developed by Brandstädter and Greve [5]. One main difference between our sim-
ulation approach and other ones consists in the fact that all the other view the
respective persons as agents. But we intend to represent a person with many
agents while following the holonian concept [8] in order to have a detailled and
agent-based representation of each individual. A detailled picture and descrip-
tion of the model can be found in [9] and [10]

57



Fig. 2. The Implementation Architecture of SIMOCOSTS

4 An Implementation Architecture for the Simulation of
Coping Strategies

We developed the model mentioned in the previous Section with a main focus
on the processes needed for the simulation. The main drawback of that model
is that it is not suitable for an (initial) implementation. We thus present in
this Section the implementation architecture of our simulation tool. We want to
start with a rather simple architecture which will be later expanded, because of
the complexity of the task. The main idea of our architecture is based on the
fact that each person has some goals that he wants to achieve (see [10]). In our
scenario, a critical situation occurs when there exist some facts that prevent the
person from reaching those goals.
As we know, human acts (especially while loosing problems) is mostly based
on past experiences. For our purpose, the achievement of goals as well as the
general knowledge that will be used for the achievement of the goals will be based
on past experiences. That is why we will make use of the case-base reasoning
technology in our implementation. Furthermore, we will implement the goals by
using the so called practical reasoning agents paradigm [13], which is based on
the Belief-Desire-Intention (BDI) principle.
Our architecture (see Figure 2) consists of the three main following parts.

Knowledge Base The knowledge base consists of all the general knowledge,
that can be helpful while loosing the problem. That knowledge include skills,
material and/or social environment, etc. We plan to use many differents case

58



bases for the different case bases for the distinct parts of the general knowledge
needed (e.g. skills).

The Strategies In our architecture, the strategies represent the actions (in
analogy to BDI agents) that can be used for the computation of the plan in
the means-ends reasoning stage. These actions mostly have an impact on the
knowledge base defined earlier (e.g. the acquisition of a new skill) as well as on
the internal goals (i.e. adaptation of the goals). We plan to implement those
strategies as rules in a case-base reasoning system.

The (internals) Goals The initial goals of the person are the initial beliefs of
the agents which are used for the computation of the intentions when a critical
situation occurs. Each agent is responsible for analyzing if its goals are still
reachable (i.e. there is no critical situation). , we will implement the goals as
cases in a case-base reasoning system.
When a situation is judged as critical, each affected goal try to find out how
it can be achieved. The achievement is done by using the strategies, which are
based on the general knowledge of the person. Actually we started to build,
using CBR, a knowledge base needed for a specific example (i.e. breakup of a
partner). This has to be very sound in order to have a plausible simulation. We
plan to use the Information Access Suite of empolis [7] GmBH for the realization
of our architecture, because it is a powerful tool which gives us the possibility
to handle case bases as well as rules.

4.1 Classification of the Architecture

Our Architecture follows the principle of the CoMES approach introduced in
Section 2.1 and leans on the SEASALT architecture which we presented in Sec-
tion 2.2. We have a knowledge line in our implementation architecture which
contains the three parts presented above. In fact, the knowledge line in our ar-
chitecture can be seen as all the informations needed to represent a person. We
thereby achieve the reusability which is important while developing a knowledge
line in terms of CoMES.
As for the similarities with the SEASALT architecture, we will also have a com-
munity which will consist of experts in the area of psychology. The goals can be
seen as the topic agents in SEASALT and we also a knowledge engineer whose
task will be the acquisition of the information needed for a person. We also have
a distributed architecture because it is based on the CoMES approach.

5 Outlook and Conclusion

In this paper, we presented an architecture for the implementation of the simu-
lation of coping processes. After the introduction of the CoMES approach and
the SEASALT architecture, we presented our an implementation architecture

59



based on the SIMOCOSTS model. Our implementation will be based on two
main technologies, namely case base reasoning and multi-agent systems, while
following the CoMES approach.
Further work include an accurate specification of the knowledge base an its im-
plementation as well as the implementation of strategies and goals for given
examples.

References

1. Klaus-Dieter Althoff. Case-based reasoning. In S.K. Chang, editor, Handbook on
Software Engineering and Knowledge Engineering. Vol.1, World Scientific, pages
549–587. 2001.

2. Klaus-Dieter Althoff, Kerstin Bach, Jan-Oliver Deutsch, Alexandre Hanft, Jens
Mänz, Thomas Müller, Régis Newo, Meike Reichle, Martin Schaaf, and Karl-Heinz
Weis. Collaborative Multi-Expert-Systems – Realizing Knowlegde-Product-Lines
with Case Factories and Distributed Learning Systems. In J. Baumeister and
D. Seipel, editors, Accepted for Proc. 3rd Workshop on Knowledge Engineering
and Software Engineering (KESE 2007), Osnabrück, Germany, Berlin, Heidelberg,
Paris, 2007. Springer Verlag.

3. Klaus-Dieter Althoff, Alexandre Hanft, and Martin Schaaf. Case factory – main-
taining experience to learn. In Mehmet H. Göker, Thomas Roth-Berghofer, and
H. Altay Güvenir, editors, Proc. 8th European Conference on Case-Based Rea-
soning (ECCBR’06), Ölüdeniz/Fethiye, Turkey, volume 4106 of Lecture Notes in
Computer Science, pages 429–442, Berlin, Heidelberg, Paris, 2006. Springer Verlag.

4. Kerstin Bach, Meike Reichle, and Klaus-Dieter Althoff. A Domain Independant
System Architecture for Sharing Experience. In Alexander Hinneburg, editor, Pro-
ceedings of the LWA 2007: Lernen - Wissen - Adaptivität, pages 296–303, Septem-
ber 2007.

5. J. Brandtstädter and W. Greve. The aging self: Stabilizing and protective pro-
cesses. Developmental Review, 14:52–80, 1994.

6. Hans-Dieter Burkhard. Software-agenten. In Günther Görz, Claus-Rainer
Rollinger, and Josef Schneeberger, editors, Handbuch der Künstlichen Intelligenz,
4. Auflage, pages 943–1020. Oldenbourg, 2003.

7. empolis GmbH. Technisches white paper e:information access suite. Technical
report, empolis GmbH, September 2005.

8. S. Glückselig. Holonische Multiagentensimulation. Master’s thesis, Universität
Würzburg, 2005.

9. Thomas Müller. Simulation kognitiver Prozesse mit Multiagentensystemen. Mas-
ter’s thesis, Universität Hildesheim, 2006.

10. Régis Newo, Thomas Müller, Klaus-Dieter Althoff, and Werner Greve. Learning to
Cope with Critical Situations - A Simulation Model of Cognitive Processes using
Multiagent Systems. In Alexander Hinneburg, editor, Proceedings of the LWA
2007: Lernen - Wissen - Adaptivität, pages 159–164, September 2007.

11. Frank van der Linden, Klaus Schmid, and Eelco Rommes. Software Product Lines
in Action - The Best Industrial Practice in Product Line Engineering. Springer,
Berlin, Heidelberg, Paris, 2007.

12. Gerhard Weiß, editor. Multiagent Systems. A Modern Approach to Distributed
Artificial Intelligence. The MIT Press, 1999.

13. Michael Wooldridge. An Introduction to MultiAgent Systems. John Wiley & Sons,
June 2002.

60



On Restaurants and Requirements: How
Requirements Engineering may be Facilitated by

Scripts

Christoph Peylo

Deutsche Telekom Laboratories, Berlin
christoph.peylo@telekom.com

Abstract. Requirements engineering is a central part of software projects.
It is assumed that two third of all errors in software projects are caused
by forgotten requirements or mutual misunderstandings in the require-
ment gathering process. Due to the inherent structure of project planning
and the project management process, it is very unlikely that this problem
will be solved unless the process itself is changed or we develop tools that
possess some intelligence to facilitate the assessment of requirements. In
this paper a position for the latter approach is formulated. It is argued
that it is feasible to establish a domain ontology based on meta informa-
tion and explanations that are represented as scripts. It is shown that
this ontology has to be constructed in a dynamic way to reflect the dy-
namics of the requirements engineering process. Finally, it is sketched
how use cases and test cases can be derived from this ontology.

1 The Difficulty of Creating Novel Things in Time and
Budget

A project is a temporary endeavour undertaken to create a unique product,
service or result [1]. Consequently, a project has a limited time frame and creates
unique deliverables like services, products or results. The success of a project
depends on the meeting of the outcome with its expected result. Thus, the
deliverables of a project have to fit in their intended niche.

Accordingly, identifying the project requirements is of uttermost importance
for any project. The project requirements describe the characteristics, i. e. con-
ditions or capabilities, that must be met by the deliverables [1]. Further steps of
project management such as establishing objectives, balancing the demands for
scope, time, cost and quality, etc., have the clear and comprehensive definition
of requirements as a prerequisite.

Hence, the identification of requirements (requirements engineering) is crit-
ical for the success or failure of a project. It is assumed that two thirds of all
errors in system development are caused by forgotten requirements or misunder-
standings.

61



1.1 Project Requirements and Project Risks

The understanding of project requirements must be reached (according to the
classical project management approach) in the very early stages of the project
(initiation stage), in order to formulate the project scope statement.

The project scope statement describes the project’s deliverables and the work
that is to be accomplished to create them. Frequently, it is quite a coarse grained
level of detail in which the conditions and capabilities of the intended system are
described at that time. Nevertheless, this will build the basis for further planning
during the next stages.

From a business point of view, this is a quite disadvantageous setting: the
gathering and analysis of the key project deliverables and the decision of how to
supply them is in a project phase before there is a signed contract. Consequently,
the time and work in this phase is not payed by the intended customer-to-be.
It is quite common in large projects to get compensation for feasibility studies,
but this does not apply to all projects.

In summary, if this stage is not performed well, it is unlikely that the project
will be successful in meeting the expectations of the stakeholders.

2 On the Difficulty to Represent Understanding with
Imprecise Formalisms

To understand the project requirements it is important to understand the back-
ground, i. e. the business processes from which the need of a new product or
service has arisen. This helps to understand the stakeholder’s needs, wants and
expectations and what has to be achieved to satisfy a contract.

Alas, the setting of such a task is often quite complex. The general back-
ground is often quite specialized and not easy to understand, business processes
are sometimes ill defined. The terminology used by the stakeholders may differ
from the vocabulary of the requirements engineer or, even worse some terms may
be used with a slightly different semantics (which usually becomes apparent later
in the project). Last but not least, some terms may turn out to be not terms at
all but business processes (cf. [2]).

Thus, there are numerous and well known reasons (cf. [3]) why requirements
are left out or not fully understood:

– Business processes are ill defined. A business process may consist of several
sub-processes which may be too trivial for the stakeholders to mention.

– Terms are used with (slightly) different semantics.
– Business processes of a new (innovative) setting are ill defined.
– Novel business processes may interfere with existing business processes.
– There are contradictionary processes involved.

It would be necessary to describe the system and its background in a comprehen-
sive and almost complete way to eliminate all sources of those mistakes. There
are hardly any projects where there is time and budget for such a comprehensive

62



approach. It is important to remember that in the initiation phase of a project a
contract is not signed, i. e. there is no or insufficient compensation for an in-depth
approach available.

Consequently, it is quite common to concentrate on the representation of
the functional requirements with use cases. A use case describes the interaction
between a system and a request that originates from outside of that system.
Use cases represent that interaction as a sequence of single steps and events to
achieve a specific goal. There are several representation schemes (most common:
the Uml use case diagram in various versions) to graphically express this kind
of interaction. The meaning (or semantics) of the use case is not represented
by the well defined building blocks of the formalism [4], [5], but shall constitute
itself (helped by various annotations) in the mind of the reader. This approach
is quite common but prone to misunderstandings.

Admittedly, those representation formalisms have a certain beauty: they rep-
resent complex interactions in a compact way that may be perceived quickly
(at least in comparison to lengthy (and often tiresome to read) definitions in
natural language). Due to their seeming clarity and formality they are often
over-estimated. Nevertheless, they are deceptive with respect to their precision
and expressiveness. There main limitations are:

1. Weak and not well defined semantics of relations.1

2. The expressiveness of graphical representation schemes is limited per se to a
fragment of first order logic (existential quantified, conjunctive connected).
Trying to extend the symbology by annotations (to cover modal or second
order constructs) will increase the confusion, not the expressiveness.

3. Use cases represent the interaction in the communication between user and
system. Commonly, they refer to sub processes and documents that are in-
terchanged during those process steps without explaining the content in full
detail. Thus, generally, it is not possible to decide by the study of a use
case whether the process flow may lead to the desired result (i. e. the system
output may be achieved, given the set of input).

After this synopsis of the requirements gathering process and the difficulties
that exist in avoiding misunderstandings it is concluded that either this process
should be upvalued considerably (in terms of time and money), or tools for
facilitating this process on a more semantic level should be applied.2

In the remaining part of this paper, an approach is sketched how existing Ai
concepts could be deployed for this purpose.

1 This is no new insight, as shown by Woods [6].
2 There are several approaches that try to support the requirements engineering pro-

cess in linking use cases to contextual scenarios (e. g. [7] and [8]). But the represen-
tation of scenarios is done in natural language and suffers from the known problems
connected with that approach (cf. sec. 2 and sec. 4).

63



3 Contributions from AI

How can Ai facilitate the requirements engineering process, and, more specifi-
cally, how can Ai contribute to avoid misunderstandings? From an Ai perspec-
tive, the problem is situated in the context of formalizing domain knowledge and
to explain and to communicate this knowledge (cf. [9], [10]).

3.1 On Explanations and Understanding

Explanation can be regarded as the process by which we make sense of the
world [11]. Thus, we construct structures from which knowledge can be derived
at a later stage. Explanations seem to be linked to the process where knowl-
edge structures are constructed or communicated. Thus, explanations connect
phenomenon in a systematic way to make outcomes predictable. Whereas expla-
nations reflect the process of understanding, knowledge seems to be more about
the management of realization. Thus, knowledge can be understood as a tertiary
relation (someone assigns someone knowledge about something).3

At a very basic level explanation equals understanding: We believe that we
understand why a person is doing what he is doing if we can point to a script
that he or she is following [11]. A script is a structured representation describing
a stereotyped sequence of events in a particular context and forms a very basic
knowledge structure [11]. In that sense the famous restaurant script [13] was
used to understand the basic interactions in a restaurant. This script-type of
understanding is equivalent to making sense and is to be distinguished from
the deeper (cognitive) understanding, of course. For the purpose of this paper
making sense will do. Thus, scripts as condensed or compiled explanations may
be considered as suitable building blocks for a system with a shallow degree of
self-awareness.4

3.2 The Structure of a Script

As stated above, a script models a flow of action in a specific setting. To under-
stand this setting, i. e. to interact in a limited communication [11], it is necessary
to tag structural information to its building blocks to facilitate the semantic pro-
cessing in a computer system. The components of scripts are

– Entry conditions that must be met before the script may be started.5
– Results or conditions that are true once the script has terminated. Thus, a

script has a specific setting as an entry condition and after the script termi-
nated, the setting (the state of affairs) is different from the initial setting.6

3 This holds true especially in educational contexts, see [12].
4 A script resembles goals and scenarios in the Cosmod-Re approach of Pohl [14].

But this approach is a methodology (cf. [15]) which does not result in a system as
proposed here.

5 In the famous restaurant script these include a restaurant that is open and a customer
that is hungry.

6 In the restaurant script effects of the script are that the customer is not hungry and
has less money.

64



– Roles as placeholders for actors or objects in actions that the individual
participants perform.

– Scenes that reflect temporary aspects of a script. A scene works like a script
in a script. It encapsulates operations that change the state of affairs.

– The entities involved as objects or passive parts in that script.
– A set of well defined actions. Actions are distinguished by the arity of the

relation (e. g. transitive verbs are a binary relation, double-transitive verbs
a tertiary relation), and a type restriction with respect to roles and entities.

Those components offer the tools, by which a lightweight understanding may
be modeled. Logically, entities may be modeled as predicates, actions may be
represented as relations on roles. Roles are variables (with type restrictions) for
entities. A state of affairs may be represented as a list of predicates that hold in
that moment.

3.3 Example: the Restaurant Script

The classic example of Schank’s theory is the restaurant script. The script theory
is closely related to Schank’s concept of conceptual dependencies [13]. According
to that concept, the meaning of natural language sentences should be expressed
by using conceptual primitives. In the example given below the conceptual depen-
dencies are marked using uppercase letters and a typewriter font. The meaning
of these primitives is as follows:

PTRANS: Transfer of the physical location of an object (i.e. go).
MBUILD: Building new information of old information (i.e. decide).
MTRANS: Transfer of mental information (i.e. tell).
ATRANS: Transfer of an abstract relationship (i.e. give).
MOVE: Movement of a body part by its owner.
ATTEND: Focusing of a sense organ toward a stimulus (e.g. listen).

The subject of the sentences is represented by S which is a role and con be
instatiated by any agent. The script consists out of four scenes:

Scene 1: Entering: S PTRANS S into restaurant, S ATTEND eyes to tables, S
MBUILD where to sit, S PTRANS S to table, S MOVE S to sitting position.

Scene 2: Ordering: S PTRANS menu to S (menu already on table), S MBUILD
choice of food, S MTRANS signal to waiter, waiter PTRANS to table, S MTRANS
’I want food’ to waiter, waiter PTRANS to cook.

Scene 3: Eating: Cook ATRANS food to waiter, waiter PTRANS food to S, S
INGEST food.

Scene 4: Exiting: waiter MOVE write check, waiter PTRANS to S, waiter ATRANS
check to S, S ATRANS money to waiter, S PTRANS out of restaurant.

It is not compulsory to adopt the concept of conceptual dependencies to utilize
scripts. Nevertheless, it is necessary to define entities, roles and operations (i. e.
actions) in a way, that offers some generality and transferability. Thus, a set of
universals with predefined semantics and support for roles seems to be helpful.7

7 Further work will include an analysis how ongoing efforts on semantic modeling
could be integrated in this approach (cf. [16]).

65



3.4 Semantic Expressiveness

As sketched above, a script transforms one state of affairs into another state.
States may be modeled adequately with a fragment of first order logic (existential
quantified, conjunctive connected predicates). Accordingly, entities, e. g. objects
or actors, that are referred to in a script may be formalized as well by a set of
attributes, i. e. as predicates. Generally, first order logic is not sufficient to model
the dynamic interdependencies and actions in a domain, due to the necessity of
modal, temporal or second order (quantification about predicates) constructs.
These language constructs have to be provided by modeling the actions and
roles accordingly. Thus, type restrictions and quantifications on predicates or
attributes have to be considered in the process of defining and implementing
roles.

Consequently, the static aspects (situations as constellations of entities at a
given point in time) are modeled with a fragment of first order logic. Actions,
as well as operations on entities, permit more advanced constructs like quantifi-
cation on predicates and additional qualifiers. This augments the expressiveness
of the whole formalism considerably. A script forms a context in which the se-
mantics for at least one - and to avoid misunderstandings: exactly one - valid
assignment and interpretation is provided.

This approach is computationally feasible, since the domain of the variables
of the predicates are restricted in most application scenarios to reasonably sized
sets of possible instantiations.

3.5 Scripts and Ontologies

Generally, a software system is intended to be representationally and inferen-
tially adequate with respect to its application area. Thus, the entities in the
software system and their real world counterparts shall be describable by the
same attributes. Inferences over attributes and entities in the system shall hold
in reality and vice versa. Thus, the conceptualization of the application domain
in the software system shall model those entities, relationships and processes
that are essential for achieving the intended level of adequacy. Such a concep-
tualization may be referred to as an ontology [17]. In this setting the role of
an ontology is twofold. It shall represent the body of knowledge from which the
deliverables of the system shall be derived and it shall provide the vocabulary
and the rules from which the interactions with the system may be described (cf.
[9]).

The ontology has to be dynamic: the project goals may be subject to change
and therefore the underlying ontology respectively. Since a project is an unique
endeavor we can not take some ontology from the shelf, but it is more likely
that each project (even if located roughly in the same domain) will need its own
ontology.

Such an ontology will be referred to as an agreed ontology to express that it
shall represent the common understanding of the domain by all stakeholders of
the project. The term agreed implies a certain dynamics as well in the process

66



of defining and refining the ontology. It reflects the processes as mutual under-
standing as the project group grows and implies that the formalism should be
mighty enough to tackle well known problems with respect to knowledge bases
(frame problem, non-monotone logic, etc.).

3.6 The Building Blocks of an Agreed Ontology

Accordingly, there have to be building mechanisms for both: scripts as con-
stituents of an ontolgy and the ontology itself. Given the inherent structure of a
script as outlined above it lies at hand that scripts can be defined by a context-
free grammar. Basically, a context-free grammar has four components (cf. [18]):

– A set of terminal symbols. These are the elementary symbols of the language
defined by this grammar.

– A set of nonterminal symbols or syntactic variables.
– A set of rules, where each rule consists of a nonterminal (head) and a se-

quence of terminals or nonterminals (body), by which the head may be
replaced.

– A designation of one of the nonterminals as start symbol.

Applied to this context, it is evident that scenes, roles and actions form the
nonterminal symbols of this grammar. The terminal symbols are either domains
of the syntactic variables, such as instantiations of roles (i. e. a specific user or a
specific entity) or outcomes of a script, i. e. a state of affairs.

This shall be illustrated with a scenario where a device fails, and calls for
a technician. This scenario is taken from a setting that has been accomplished
by the Deutsche Telekom Laboratories [19]. It is situated in a context where
machine-to-machine techniques are deployed to automate facility management
processes. This scenario is built up from several scenes. The scenes of the scenario
have to be applied in a distinct order, thus the scenes are numbered.

1. A device fails. A notification is sent calling for the technician. His credentials
are activated, so that he may enter the room where the device is located. A
process is triggered which waits for the technician. If the technician has not
arrived during an interval, the call is sent again.

2. The technician arrives at the building. The technician has to authorize him-
self with his credentials to be able to enter the room where the device is
located. This will trigger another event. This event includes a success pa-
rameter, stating whether the door opened or not. This can generate an alarm,
should the technician enter the wrong credentials.

3. During the repair process the device has to be queried several times. Since
the technician is authorized, the conditions for a repair process are met and
no further call is sent.

4. Once the device works again and the technician is finished the authorization
lifespan will be ended. Again, an alarm is triggered if the technician fails to
authenticate himself when leaving the location. The credentials are deacti-
vated to ensure that the technician may enter the location only in the course
of a repairing process.

67



The scenario is comprised of several actions that result in specific situations,
i.e. events. The scenario is represented with a grammar in Backus-Naur form as
given below. The terminal symbols are enclosed with quotes. Head and tails of the
rules are separated by a ’::=’, ’,’ is used as concatenation and ’;’ as termination
symbol.

1. accessAndServiceControl::=queryStateOfDevice;

2. queryStateOfDevice::= device, deviceWorks;

3. queryStateOfDevice::= device, deviceFails, isAuthorized,

queryStateOfDevice;

4. queryStateOfDevice::= device, deviceFails, callTechnician,

waitingForTechnician;

5. device ::= "specificDevice";

6. deviceWorks ::= "deviceWorks";

7. deviceFails ::= "deviceFails";

8. callTechnician::= technician, notifyTechnician;

9. technician ::= "specificTechnician";

10. notifyTechnician ::= "technicianNotified";

11. setCredentials::= "techniciansCredentialsActivated";

12. unsetCredentials ::= "techniciansCredentialsDeactivated";

13. waitingForTechnician::= openDoor;

14. waitingForTechnician::= callTechnician, waitingForTechnician;

15. openDoor::= arrivesTechnician, setCredentials, authenticate,

isAuthorized;

16. soundAlarm::= setCredentials, authenticate, isNotAuthorized;

17. arrivesTechnician= "technicianHasArrived";

18. authenticate::= credentials, isAuthorized;

19. authenticate::= invalidInput, isNotAuthorized;

20. credentials ::= "credentials";

21. invalidInput::= "invalidInput";

22. isAuthorized ::= "isAuthorized";

23. isNotAuthorized ::= "isNotAuthorized";

24. repairDevice ::= queryStateOfDevice, leaveRoom;

25. leaveRoom::= authenticate, unsetCredentials;

The terminal symbols in this example are placeholders for specific instantiations
of roles, e. g. a specific technician, location or device, or situations. A situation
s is a configuration (cf. sec. 3.4) which holds true for all state of affairs ∆ in the
system at a given point t in time.8 Thus: ∆t � s∧∆t 2 ¬s. It surely is a challenge
to model the action and role part in a way that supports explanations and
allows quantifications. Nevertheless, although the exact definition and modeling
of actions and roles may be demanding in specific cases, it is considered that this
does not present an obstacle in principle to this approach. Since there are several
approaches documented and available, where this problem has been solved (c.f.
[11]).

8 For example, ∆t may be the set of all relations in a database system at a specific
point of time t.

68



3.7 Constructing Agreed Ontologies

Scripts form the nonterminal vocabulary of an agreed ontoloy, the terminals are
representations of outcomes of scripts. The challenge to define the rules for the
ontology is quite demanding, since they model the order and interdependencies
of scripts and the dynamics of the ontology depends on them.

The dynamics is achieved by adding new scripts to the ontology, removing
and modifying existing scripts or changing the order of the scripts. This shall
be sketched by extending the service scenario given above with further use cases
from that domain. 9

Access and Service Control: Maintenance personnel are given key (e. g. RFID
tags, access cards) for accessing facilities and identification at devices to be
maintained. Tags store employee credentials, doors to be used, work orders
as well as operations carried out. The usage of doors is monitored and alerts
are generated if needed.

Inventory Management: Every asset may have one or more unique identifier.
This provides knowledge of the connected devices, their functionalities, and
attributes. Automatic inventory of assets using fixed and handheld readers
helps locating displaced and mobile assets. Absence of a reading event can
be used to detect stolen equipment.

Predictive Maintenance: Continuous monitoring of operational (e.g. load)
and non-operational (e.g. temperature) parameters using sensors to predict
breakdowns. Estimate individual maintenance intervals for different equip-
ments. Using maintenance history (data logging) to analyze tradeoffs be-
tween cost to maintain old equipment and investment in new equipment.

Remote Control: Remotely monitor and query about the status of individual
persons (in terms of location) and devices. Devices shall be reconfigured
remotely.

The script for access and service control was explained in detail in sec. 3.6.
The other use cases may be represented as scripts in analogous way.10 A simple
example grammar that models an ontology for this facillity management setting
is given below:11

1. FacilityManagementOntology::= InventoryManagement, PredictiveMaintenance,

RemoteControl, AccessAndServiceControl;

2. InventoryManagement ::= establishedAutoID;

3. PredictiveMaintenance ::= establishedPMProcesses, remoteControl;

4. AccessAndServiceControl ::= establishedAASProcesses, remoteControl;

5. RemoteControl::= "establishedRemoteControl";

9 Additionally, it might be necessary to ensure global consistency of the outcomes of
the different scripts. The approach of assumption based truth maintenance systems
(Atms) [20] can be deployed to solve this problem. A script of this approach roughly
plays the role of an assumption in de Kleer’s concept.

10 In this context use cases are subsumed by scripts.
11 The grammar is represented in BNF, terminal symbols are enclosed with quotes.

69



It is obvious that the scenarios are not independent from each other but
imply an order. Thus, to enable predictive maintenance remote monitoring has
to be established. The granularity can be increased, by splitting the scenario of
access and service control in two scenarios: an access control and a service control
scenario. This leads to a change in the definition of the inventory management
process:

1. AccessAndServiceControl ::= remoteControl, AccessControl;

2. AccessControl ::= "establishedACProcesses";

3. InventoryManagement::= AccessControl, establishedAutoId;

It is possible to change a sequence or to edit the starting conditions or the
outcome of a script. Thus, by manipulating the grammar the ontology of the
domain of interest can be managed. In addition an Atms could administer the
consistency of the general state of affairs of the model of the application domain.
Since each script affects the state of affairs of the whole system and the changes
that have been applied by the operations of a script are recorded, each state
of affairs can be tracked down to the scripts involved. Thus, it may be easily
discovered, if starting conditions of a script never appear or if scripts lead to
inconsistencies.

Since scripts not only model the interaction flow but are more detailed with
respect to the semantics of the process and the outcome, scripts may even act
as blue print for test cases. Consequently, this approach enables to transfer the
methodology of test driven development to the requirement engineering process.
As production code in this setting has to pass the predefined test cases, new
requirements would have to be formulated as scripts and checked against the so
far agreed ontology. Consequently, it can be decided for each requirement (that
is well-formed in terms of the ontology’s grammar) whether it may be derived, is
subsumed, leads to contradictions or augments the set of requirements gathered
so far.

4 Conclusion

In this paper a position was formulated that points out some general deficits in
requirements engineering. It was argued that the tools to represent functional
requirements of a non-trivial software system are commonly restricted in their
semantic expressiveness and thus inept to establish mutual understanding con-
cerning those processes. Misunderstandings will easily arise due to the ill defined
semantics of the representation formalism: each stakeholder will underlay his or
her individual semantic reference system for understanding. To describe the sys-
tem‘s functional requirements in a comprehensive way in natural language is
possible in theory but not feasible either. It is known from experience that large
volumes are scarcely read by their target audience.

Thus, it is argued that this problem can be solved by an agreed ontology
that models the understanding of the target system in a way that explanations
on functional requirements can be given. This ontology should be implemented
in a system that forms the semantic grounding of all assumptions about the

70



domain of interest and the interactions within the future software system. Mis-
understandings and contradictions can be managed due to its semantic-enabled
constituents, i. e. scripts, and the internal management of the system.

5 Consequences and Further Work

Although the argumentation in this paper did not provide detailed examples,
it should be comprehensible, that this approach is technically feasible and will
hold true. Future work will provide comprehensive examples and flesh out the
approach.

Nevertheless, applying this approach to software projects will result in a ma-
jor change in the administrative setting of a project and communication between
the stakeholders that will hinder its acceptance. The biggest issue in that respect
is that presently, the documentation of all relevant organisational stipulations
is essentially paper-based. Utilizing this approach would mean to transfer an
essential part of the project documentation, i. e. the written and signed require-
ments specification, to a different medium. The legal issues are no hindrance,
since a system that implements this approach could be serialized and signed with
the certificates of the stakeholders. Nevertheless, major shifts in administrative
procedures are not done lightly. Thus, future work will have to prove that the
benefit of this approach to software engineering will outweigh the inconvenience
of changing an administrative process.

References

1. Project Management Institute, ed.: A guide to the project management body of
knowledge: PMBOK guide. 3 edn. Project Management Institute, Inc. (2004)

2. Knauss, E.: Einsatz computergestützter Kritiken für Anforderungen.
Softwaretechnik-Trends 27 (2007)

3. Wiegers, K.: Software Requirements. Microsoft Press (2005)
4. Jeckle, M., Rupp, C., Zengler, B., Queins, S., Hahn, J.: Uml 2.0 - Neue

Möglichkeiten und alte Probleme. Informatik Spektrum 27 (2004) 323 – 332
5. Nalepa, G., Wojnicki, I.: Using UML for Knowledge Engineering - A Critical

Overview. In Baumeister, J., Seipel, D., eds.: 3rd Workshop on Knowledge En-
gineering and Software Engineering (KESE 2007) at the 30th Annual German
Conference on Artificial Intelligence. (2007) 37 – 47

6. Woods, W.: What’s in a Link: Foundations for Semantic Networks. In Borow, D.,
Collins, A., eds.: Representation and Understanding. Academic-Press, New York
(1975) 36–81

7. Sutcliffe, A.: Scenario-based requirements analysis. Requirements Engineering
Journal 3 (1998) 48 – 65

8. Allmann, C.: Situations- und szenariobasierte Entwicklung von Anforderungen in
der technischen Entwicklung. Softwaretechnik-Trends 28 (2008)

9. Walton, D.: Can Argumentation Help AI to Understand Explanation. Künstliche
Intelligenz 2 (2008) 8 – 11

10. Richter, M.: Logik versus Approximation. Künstliche Intelligenz 4 (2004) 62 – 64

71



11. Schank, R., Kaas, A., Riesbeck, C.: Inside case-based Explanation. Lawrence
Erlbaum Associates, Inc. (1994)

12. Peylo, C.: Wissen und Wissensvermittlung im Kontext von internetbasierten intel-
ligenten Lehr- und Lernumgebungen. Volume 257 of Dissertationen zur künstlichen
Intelligenz. Akad. Verl.- Ges. Aka, Berlin (2002)

13. Schank, R., Abelson, R.: Scripts, Plans, Goals and Understanding. Lawrence
Erlbaum Associates, Hilsdale, New Jersey (1977)

14. Pohl, K., Sikora, E.: The Co-Development of System Requirements and Functional
Architecture. In Krogstie, J., Opdahl, A., Brinkkemper, S., eds.: Conceptual Mod-
elling in Information Systems Engineering. Springer, Berlin, Heidelberg, New York
(2007)

15. Bramsiepe, N., Sikora, E., K.Pohl: Ableitung von Systemfunktionen aus Zielen
und Szenarien. Softwaretechnik-Trends 28 (2008)

16. Colomb, R.: Ontology and the Semantic Web. IOS Press, Amsterdam (2007)
17. Guarino, N.: Formal Ontology and Information Systems. In Guarino, N., ed.:

Formal Ontology in Information Systems. Proceedings of the First International
Conference, June 6-8, Trento, Italy, Amsterdam, Berlin, Oxford, Tokyo, Washing-
ton, IOS Press (1998) 3–19

18. Aho, A., Lam, M., Sethi, R., Ullman, J.: Compilers, Principles, Techniques, &
Tools. Addison-Wesley, Reading, Massachussets (2007)

19. Krishnamurthy, S., Anson, O., Sapir, L., Glezer, C., Rois, M., Shub, H., Schlöder,
K.: Automation of Facility Management Processes using Machine-to-Machine
Technologies. In: The Internet of Things. Volume 4952 of LNCS. Springer, Berlin,
Heidelberg, New York (2008) 68 – 86

20. de Kleer, J.: An assumption based truth maintenance system. Artificial Intelligence
(1986)

72



Improving Result Adaptation through 2-step
Retrieval

Meike Reichle and Kerstin Bach

Intelligent Information Systems Lab
University of Hildesheim

Marienburger Platz 22, 31141 Hildesheim, Germany
{reichle|bach}@iis.uni-hildesheim.de,

Abstract. In this paper we present the retrieval and adaptation mech-
anisms used in our information system on travel medicine, docQuery.
The retrieval method’s main feature is an overall improved accuracy of
retrieval results’ similarities through a more diverse distribution of simi-
larities over the retrieved result sets. Its underlying idea is the execution
of several consecutive retrievals on one case base, where attributes from
the cases resulting from the first query are used to refine a subsequent
query in order to yield better results than the first retrieval. The re-
fined result sets narrow down the search space for cases to be used in
result adaptation, which improves adaptation quality. The mechanisms
are implemented in the docQuery information system on travel medicine.

1 Introduction

Intelligent information systems provide a technology for covering even complex
topics in a comprehensive but flexible way. Realising such systems requires high
quality data sources, knowledge models, and maintenance techniques. To achieve
this, knowledge has to be acquired, analysed, stored, and retrieved, which chal-
lenges a knowledge-based system and is crucial for its continuous existence over
a longer period of time. Case-Based Reasoning (CBR) is a methodology that
has proven most effective for knowledge storage, retrieval and adaptation in all
kinds of intelligent information systems [1].

In this paper we present the 2-step retrieval mechanism, a retrieval mecha-
nism for CBR systems that works in an iterative way, executing two consecutive
retrieval steps on the same case base, using information gained from the results of
the first retrieval step in order to refine the second one. This consecutive retrieval
strategy leads to an overall improved accuracy of retrieval results’ similarities
through a more diverse distribution of similarities over the retrieved result set.

Our first application of the 2-step retrieval mechanism is the docQuery
project [2], an intelligent information system on travel medicine that is being
developed in a joint project by the Intelligent Information Systems Lab and
mediScon worldwide. docQuery is built using the SEASALT architecture [3],
which is a first instantiation of the CoMES approach [4].

73



The paper is structured as follows: Section 2 presents the docQuery project,
the application domain travel medicine and its particular challenges with regard
to knowledge-based systems. Section 3 presents the actual 2-step retrieval algo-
rithm, with an illustrated example. Section 4 finally presents an evaluation of
the 2-step retrieval algorithm based on its application in the docQuery project,
describing the evaluation’s setup in subsection 4.1 and its results in subsection
4.2 followed by a description of related approaches in section 5. The paper closes
with a conclusion and an outlook on future work in section 6.

2 Travel Medicine as an Application Domain: the
docQuery System

Travel medicine is an interdisciplinary speciality concerned with the prevention,
management and research of health problems associated with travel and covers
all medical aspects a traveller has to take care of before, during and after a jour-
ney. For that reason it covers many medical areas and combines them. Further-
more, information about the destination, the activities planned and additional
conditions have to be considered when giving medical advise to a traveller. Travel
medicine starts when a person moves from one place to another by any kind of
transportation and stops after returning home healthy. In case a traveller gets
sick after a journey a travel medicine consultation might also be required.

The research project presented in this paper is supported by mediScon world-
wide, a Germany based company with a team of physicians specialized on travel
medicine and TEMOS1, a tele-medical project of the Institute of Aerospace
Medicine at the German Aerospace Center DLR2. Together we will develop
docQuery, an intelligent information system on travel medicine which provides
relevant information for each traveller for their individual journey. First of all
we will focus on prevention work, followed by information provision during a
journey and information for diseased returnees.

Since common sources on the World Wide Web are not authorized by physi-
cians and/or experts, we aim at providing reliable information for everybody. In
preparation for a healthy journey it is important to get a high quality and reli-
able answer on travel medicine issues which both laymen and experts should be
able to use. Based on the SEASALT architecture [3], we propose building a web
community which gives information to travellers and physicians (non-experts in
the field of travel medicine) by experts on travel medicine. docQuery will pro-
vide an opportunity to share information and ensure a high information quality
because it is maintained by experts. Furthermore it will rise to the challenge
of advancing the community alongside their users. Travellers and experts can
visit the website to get the detailed information they need for their journey. A
traveller will give docQuery the key data on their journey (like travel period,

1 TEMOS means TElemedicine for a MObile Society, see http://www.temos-
network.org

2 http://www.dlr.de/me/

74



destination, age(s) of traveller(s), activities, etc.) and docQuery will prepare an
information leaflet the traveller can take to his or her general practitioner to
discuss the planned journey. The leaflet will contain all the information needed
to be prepared and provide detailed information if it is required. In the event
that docQuery cannot answer the traveller’s question, the request will be sent
to experts who will answer it. The computation of the answer follows the steps
a physician would take during a consultation. Since travel medicine touches on
different topics such as geographic information, diseases, medicaments, activities
etc. We developed a modularised knowledge base, with a case base for each re-
spective topic. These case bases are queried and their results are then combined,
observing the constraints given by the user and domain itself (e. g. medical
preconditions or medicines that cannot be taken in combination).

Modularising case bases into subdomains instead of simply partitioning them
into smaller ones with the same case format, has several advantages. Firstly the
individual case bases are easier to maintain with regard to the correctness of their
contents, since they represent a more simple knowledge domain. Also, breaking
up the rather complex domain of travel medical advisories into more simple
subdomains that are than recombined as needed, gives the whole information
system more flexibility. Providing the appropriate combination rules exist, the
contents of the individual case bases can also be combined into cases that have
not yet been presented to the system, as long as they adhere to the respective
combination rules.

Further, not all knowledge domains that are included in an information sys-
tem on travel medicine require the same type of maintenance and are subject
to the same amount of change over time. While it is for instance no problem
to keep a rather simple domain such as countries and regions as minimal and
consistent as possible, the domain of travel related diseases is better served by
including as many cases as possible, even if some of them are very similar. By
splitting the knowledge domain into these smaller subdomains, each of them can
be maintained in a way that is best suited for the respective subdomain.

Since the topic of this paper is the retrieval on one individual case base, we
only gave a short overview of the docQuery System and its modularised case
bases in this section. More on modularised case bases, their maintenance, and
the combination of their results can be found in [5].

3 2-Step Retrieval

When dealing with a topic like travel medicine we cannot assume that all users
ask complete and/or correct questions and like Weibelzahl [6] we enrich the
user’s query enhancing it with additional information from the case base.

Our initial retrieval is based on the geographic position of a country and be-
cause of the fact that the earth is divided in a manageable amount of countries,
which are completely covered in our case base’s similarity measure in the form
of a geographic taxonomy, we can rely that every requested country can be re-
trieved. However, we cannot be sure that we will have (complete) information on

75



that country. Also, due to the nature of our domain, travel medicine, geographic
proximity is not sufficient to find feasible adaptation candidates to complete the
retrieved country’s information – also occurring diseases have to be noticed. In
our retrieval mechanism we thus start by requesting the destination country, this
step is followed by an enhanced query including additional information about
the initial country’s diseases. The second retrieval’s results with the highest sim-
ilarity will be the adaptation candidates we take into account. In the current
approach we randomly pick one of the cases with the highest similarity as adap-
tation source. In the future we will add maintenance information to the cases to
be able to compute the most updated or most recently maintained adaptation
candidate.

The approach presented here concentrates on interdependent attributes that
are not completely given for every single case. We will show how we can narrow
the result set by retrieving reliable information snippets in order to adapt them
to create a (complete) response.

Assuming that we have a traveller planning a journey, the retrieval will start
based on the destination region. We know that our model contains all countries
of the world, so the retrieval algorithm will be able to find the appropriate
destination. But due to many changes of disease outbreaks we have to provide
up to date country and regional information. Therefore we do not only retrieve
the country we have searched for, we also include in our result set countries with
a similar structure considering travel medical aspects. To realize this we also use
information about vaccinations that can be divided in three categories:

1. Obligatory Vaccinations: Those vaccinations are required in order to be al-
lowed enter a country.

2. Standard Vaccinations: Those vaccinations are required if one is travelling
to a certain country - although they are not a regulation.

3. Risk Vaccinations: Those vaccinations are required for people with an en-
feebled immune system such as pregnant women, children, elderly people,
or those who suffer from different kinds of (chronic) diseases and require a
higher protection provided by a vaccination.

Additionally our system will give information about diseases that can be con-
tracted during a journey. According to [7] those can be divided in the following
categories of diseases: vectors (In medicine a vector is a carrier of infections,
diseases, etc. because it carries for example the parasitic agent i.e. in malaria a
mosquito serves as the vector), person-to-person contact, ingestion of food and
water, bites and stings, and water/environmental contact.

Currently we do have information about vaccination advices, but we do not
have complete information about diseases contracted during a journey, because
they rely until a certain point on up-to-date information. Nevertheless we will
provide this kind of information to the users of docQuery and since we do have
similarity models for each type of disease we will adapt the information from
similar countries.

In order to ensure that our system adapts correct data we will use the 2-
Step-Retrieval to reduce the amount of cases we can adapt from. In the first

76



step we will only do the retrieval based on our geographic taxonomy, then we
narrow the set of retrieved cases by adding vaccination information to a second
query. The taxonomy includes 228 countries and islands arranged by continents,
subcontinents (e.g. Western Europe), regions (e.g. Iberian Peninsula) followed
by the country. A generalization step leads to a value of 0.5 and specialization
to a value of 0.8.

When performing a standard 1-step retrieval on Laos, a whole of 10 countries
in it’s geographic proximity have a similarity of 40%. When performing a 2-step
retrieval, the distribution of similarities is much more diverse, as illustrated in
figure 1.

Fig. 1. 2-Step-Retrieval for the example of Laos

Laos does not yet have complete information on the diseases contracted there,
so these attributes have to be filled using adaptation from another, similar case.
To complete the disease information we now have to choose one country to adapt
from. Using 1-step retrieval there are 10 adaptation candidates to chose from,

77



some of which, such as e. g. the Philippines are in fact quite different from Laos
with regard to travel medicine.

To ensure that the cases we adapt from are more similar to the requested
country, we now also consider vaccination information in our request, using it in
a second retrieval step as illustrated in figure 2. Since we need information on
countries with a similar disease structure in order to be able to find a country
profile with an appropriate amount of information, even if the destination origi-
nally given by the user does not offer those, we use 2-step retrieval. An example
query (again using the country, this time plus the vaccination information of
the originally retrieved country) for the second retrieval step would be: ”Laos,
Yellow fever, Diphtheria, Hepatitis A, Measles, Tetanus, Cholera, Hepatitis B,
Japanese Encephalitis, Rabies, Typhoid fever”.

After the second retrieval step, the countries situated around Laos now have
more differentiated similarities and offer a higher amount of information con-
sidering their disease structure. As can be seen in figure 1, this time only the
countries near Laos as well as Malaysia are returned with the same similarity to
Laos, reducing the number of adaptation candidates to 5. If we are taking one
of those countries into account the likelihood of retrieving a valid result set will
be highly increased.

4 Evaluation: 2-Step-Retrieval

Following the example given in section 3 we will now present the evaluation of
our approach in the travel medicine domain. Therefore we will present how the
2-Step-Retrieval affects the retrieved result sets and we illustrate its advantage
in comparison to a straightforward 1-step retrieval approach. In the architecture
of docQuery, the case bases Destination, Associated Information, and Activity
are adequate to do 2-step retrieval, since our other case bases contain health
critical information that require a more strict retrieval.

4.1 Experimental Setup

The Destination case base covers country characteristics that are used to prepare
an information leaflet for a traveller. It contains vaccination requirements and
vaccination-preventable infectious diseases, pre-travel information on different
kinds of diseases that might occur in a certain country or region, as well as
hygiene and prevention advise.

The experimental data contain a case base covering all countries in the world
and the vaccination information abroad we have to consider preparing informa-
tion leaflets for travellers. To carry out the experiment we took a controlled
sample of 18 countries of East and South East Asia, representative with respect
to country borders, coasts, islands and climatic conditions and manually filled
in the data on transmittable diseases, so that we have 18 cases with complete in-
formation. The sample comprises all countries of East and South East Asia that

78



Fig. 2. 2-step retrieval and adaptation using Laos as the query and Thailand as the
randomly picked adaptation candidate.

79



ensures that we are able to find neighbouring countries, non-neighbouring coun-
tries, and countries associated to different nodes (e.g. China which is situated in
Eastern Asia and Thailand which is in South East Asia).

We carried out our evaluation as a leave-one-out experiment. For each country
in the case base we did the following steps:

1. Remove diseases information from country.
2. Do a one-step retrieval using the country name.
3. Do a two-step retrieval using the country name and vaccination information

as additional information.
4. Do an adaptation with each respective result set.
5. Compare the set of diseases obtained from the two respective adaptation

candidates to the original set of diseases.

For the experiment we use the following weights:

sim = 6× [Region] + 4× [V acc Risk] + 3× [V acc Std] + 2× [V acc Obl] (1)

In our similarity measure ”Region” is weighted times 6 because it is the most
diverse and reliable fact, and because we expect that travellers know their desti-
nation, but not the diseases. ”Risk people vaccination” information are weighted
times 4 because vaccination advices depend on each traveller’s profile and in par-
ticular his or her disease history in combination with chronic illness(es). Also,
this attribute differentiates countries from each other. ”Standard vaccination”
advices are weighted times 3 because they describe the disease structure from
the medical point of view and allow a general classification. ”Obligatory vacci-
nation” is weighted times 2 because obligatory vaccination requirements depend
on the geographic region as well as on official orders.

For each country we did 5 runs3and compared the result of the 1-step-retrieval
and the 2-step-retrieval to the expected result. First we compared the number
of adaptation candidates and then the resulting adaptation quality, checking
if all expected disease were found, if one or more diseases were missed (false
negatives), or if incorrect extra diseases were added to the case (false positives).

4.2 Results of the Experiment

Figure 3 shows how the number of adaptation dropped significantly in 90% of our
test cases. These numbers illustrate that result sets are indeed more diverse when
enriching the queries with extra information. Moreover not only the number of
adaptation candidates change, also the adaptation candidates differ between 1-
step and 2-step retrieval. For example the retrieved countries for Japan: In the
1-step-retrieval North Korea, Mongolia, Taiwan, China, as well as Macau are
returned, but the adaptation candidates for the 2-step retrieval do not include
Mongolia, but Hong Kong, because of the fact that the disease structure of Hong

3 We chose to perform several runs, since the randomising element in the final choice
of the adaptation candidate can yield different results for the same query.

80



Kong is much more similar to Japan than Mongolia. In all test cases at least
one country has been dropped out of the adaptation candidates, but on average
3.3 countries were not taken into account in the 2-step retrieval. In 39% of the
cases an adaptation candidate has been add.

Fig. 3. Comparison of the number of adaptation candidates in 1- and 2-step retrieval

In the next step we investigated whether the adaptation candidates remaining
after the 2-step retrieval were in fact the better ones, that is, if their adaptation
results were better than the adaptation results from the candidates resulting
from one-step retrieval. The results of the adaptations can be seen in Figure 4.

Fig. 4. Result Comparison of the 1-Step vs. the 2-step Retrieval

Each column pair represents the aggregated results of one country – the first
column shows the adaptation results of the 1-step-retrieval and the second of the

81



2-step-retrieval. The y-axis shows the number of correct diseases (true positives,
positive scale, light-coloured) and extra (false positives, positive scale, dark-
coloured) diseases found as well as missed diseases (false negatives, negative scale,
dark-coloured). The result sets used for the evaluation result from requesting
the following countries: Korea, Mongolia, Taiwan, China, Macau, Japan, Brunei,
Indonesia, Myanmar, Malaysia, Singapore, Vietnam, Cambodia, Laos, Thailand,
Timor-Leste, Hong Kong, and the Philippines.

In total we did 90 single-case requests and after the 1-step-retrieval 62% of
the adapted cases contained all of the expected diseases. Applying the 2-step
retrieval to the same cases 76% of the adapted cases contained all expected dis-
eases. Although both retrieval variants also return false positives in most of the
tests, the solutions of the 2-step retrieval are generally more reliable, especially
according to false negatives. The 2-step retrieval performed significantly better
than the 1-step retrieval with regard to false negatives as can be seen in Figure
5.

Fig. 5. Unaggregated comparison of missed diseases (false negatives).

In summary the experiment shows that the 2-step retrieval provides more
robust results and especially in the field of travel medicine a query can be sig-
nificantly enhanced by adding more information on the destination, because, for
example, disease and vaccination advice can only be provided by an expert, not
by the traveller. Furthermore the information stored in the case bases can be
used to create more refined queries.

5 Related Work

The idea of using and combining information from different cases has also been
discussed in [8], in which Redmond describes how snippets of different cases
are combined to receive a solution for a given problem. In comparison to our
approach, Redmond uses similar case representations from which he extracts

82



parts of cases in order to combine them, but in our approach we take the whole
retrieved case as a snippet of our solution. Nevertheless those two approaches
have in common that each snippet has to match the other snippets and limits
solutions that go along with it.

A similar approach has been presented in [9, 10] in which the incremental
CBR (I-CBR) mechanism for diagnosis has been introduced. The I-CBR sepa-
rates information in between ”‘free”’ and ”‘expensive”’ features and starts the
first retrieval steps based on the free features before the user is asked to give
information about expensive features to narrow the set of information. In com-
parison with this approach we have a different point of view. Our system already
holds the user’s information and we do not necessarily narrow the result set, but
we use the 2-step retrieval to tighten the set of candidates we derive information
from to adapt single information. Another approach on how I-CBR can influence
the result sets has been presented in [11], but in comparison to our approach
Jurisica et. al. did not receive additional information from exiting case, they
used query series and user interaction instead.

In [6, 12] Weibelzahl uses a travel domain consisting of two case bases with
different knowledge models. The first case base, called customer case base, holds
information on the customers’ needs and desires which are mapped to attributes
describing products provided in the second case base. In the first step the query
containing the user’s expectation on their vacation is analysed to set relevant at-
tributes creating a request which can be sent to the product case base regarding
the users’ expectations. The second request contains especially those product at-
tributes the user would not request on their own, but help to find an appropriate
solution in the product case base.

6 Conclusion and Outlook

In this paper we have presented a retrieval mechanism that enhances a query with
information in order to receive a more diverse result set. Using 2-step retrieval
provides us with robust results to dispatch the subsequent retrieval and result
combination. The 2-step retrieval algorithm presented in this paper exemplifies
how the retrieval strategy can be implemented in a CBR system. Further on
we use this approach to combine and adapt parts of cases and attributes of
different case bases, because we expect that our information obtained of the
travel medicine community will be incomplete. Also we suppose that taking more
attributes into account might help the algorithm to receive even more diverse
result sets.

As a next step we will enable our system to combine the retrieval results of
cases retrieved of modularised heterogeneous case bases in order to create a whole
individual information leaflet for travellers containing information on activities,
diseases, medication, etc. Hence, we will implement a multi-agent system centred
around a coordination agent (or broker agent) combining retrieval results and
ensuring complete information regarding given constraints.

83



Another aspect of our future work is generalising the 2-step retrieval algo-
rithm and evaluating whether the algorithm can by applied to other case bases
and domains as well, or if this only works for our specific domain. Also, we have
to figure out if the algorithm of using retrieval results for refining queries can be
applied to other case bases in the travel medicine application domain as well as
in other application domains.

Integrating the 2-step retrieval algorithm in SEASALT puts forward our idea
of using knowledge lines for building CoMES upon existing knowledge sources.

References

1. Bergmann, R., Althoff, K.D., Breen, S., Göker, M.H., Manago, M., Traphöner, R.,
Wess, S.: Selected Applications of the Structural Case-Based Reasoning Approach.
In: Developing Industrial Case-Based Reasoning Applications: The INRECA-
Methodology. Volume 1612 of Lecture Notes in Computer Science. Springer (2003)
35–70

2. Bach, K.: docquery - a medical information system for travellers. Internal project
report (September 2007)

3. Bach, K., Reichle, M., Althoff, K.D.: A domain independent system architecture
for sharing experience. In: Proceedings of LWA 2007, Workshop Wissens- und
Erfahrungsmanagement. (September 2007) 296–303

4. Althoff, K.D., Bach, K., Deutsch, J.O., Hanft, A., Mänz, J., Müller, T., Newo, R.,
Reichle, M., Schaaf, M., Weis, K.H.: Collaborative multi-expert-systems – realiz-
ing knowlegde-product-lines with case factories and distributed learning systems.
In Baumeister, J., Seipel, D., eds.: Workshop Proceedings on the 3rd Workshop
on Knowledge Engineering and Software Engineering (KESE 2007), Osnabrück
(September 2007)

5. Althoff, K.D., Reichle, M., Bach, K., Hanft, A., Newo, R.: Agent based maintenance
for modularised case bases in collaborative multi-expert systems. In: Proceedings
of AI2007, 12th UK Workshop on Case-Based Reasoning. (December 2007) 7–18

6. Weibelzahl, S.: Conception, implementation, and evaluation of a case based learn-
ing system for sales support in the internet. Master’s thesis, Universität Trier
(1999)

7. The International Society of Travel Medicine: The body of knowledge for the prac-
tice of travel medicine (2003)

8. Redmond, M.: Distributed cases for case-based reasoning: Facilitating use of mul-
tiple cases. In: AAAI. (1990) 304–309

9. Cunningham, P., Bonzano, A., Smyth, B.: An incremental case retrieval mechanism
for diagnosis (1995)

10. Cunningham, P., Smyth, B., Bonzano, A.: An incremental retrieval mechanism for
casebased electronic fault diagnosis (1998)

11. Jurisica, I., Glasgow, J., Mylopoulos, J.: Incremental iterative retrieval and brows-
ingfor efficient conversational cbr systems. Applied Intelligence 12(3) (2000) 251–
268

12. Weibelzahl, S., Weber, G.: Benutzermodellierung von Kundenwünschen durch Fall-
basiertes Schliessen. In Jörding, T., ed.: Adaptivität und Benutzermodellierung in
interaktiven Softwaresystemen, ABIS-99, Magdeburg (1999) 295–300

84



Translating Cooperative Strategies for Robot Behavior⋆

Florian Ruh and Frieder Stolzenburg

Hochschule Harz, Automation and Computer Sciences Department, D-38855 Wernigerode
{fruh,fstolzenburg}@hs-harz.de

Abstract. This paper presents a method for engineering and programming multi-
robot systems, based on a combination of statecharts and hybrid automata, which
are well-known in the fields of software engineering and artificial intelligence.
This formal specification method allows graphical presentation of the whole mul-
tiagent system behavior. In addition, these specificationscan be directly executed
on mobile robots. We describe the transformation process from the specifica-
tion to executable code, after introducing the necessary definitions. A translator
that automatically converts hybrid hierarchical statecharts into simple flat hy-
brid automata (i.e. without hierarchies) has been implemented. The respective
tool allows the text-based input of hybrid hierarchical automata specifications of
multiagent system with synchronization. The translation into flat automata is per-
formed by means of different plug-ins, leading e.g. to executable code for Sony
Aibo robot dogs. The plug-in just mentioned has been successfully applied in the
RoboCup four-legged league.
Key words: agent-oriented software engineering; multiagent systems; RoboCup;
tools for intelligent systems.

1 Introduction

Robotic soccer provides many research challenges and one ofthem is behavior control
including the subjects of team play, cooperation and flexible, quick reaction. A soccer
team can be designed as a homogeneous multiagent system. Since the behavior of mul-
tiagent systems and agents alone can be understood as drivenby external events and
internal states, an efficient way to model such systems are state transition diagrams,
which are well-established in software engineering. They are graphical representations
of finite state machines with hierarchically structured states and transitions which lead
from one state to another depending on the input or events. Outputs or actions can be
done during transitions or in states. State transition diagrams have been applied success-
fully for multiagent systems in general and in the RoboCup, asimulation of (human)
soccer with real or simulated robots (see e.g. [2, 5, 19]).

However, state transition diagrams do not properly cover all aspects of multiagent
systems. Therefore, hybrid hierarchical automata (HHA) with timed synchronization
have been developed to take continuous processes in the environment into account [7].
Moreover, they can consider time as an additional factor forsynchronization processes.
This formalism can help to model situations when two or more agents have to deal with
one resource. In the domain of soccer e.g., the agents have toconsent that exactly one
player goes to the ball.

⋆ This paper emerged from the master thesis of the first author [16].

85



Fig. 1.Statechart for Makaay move.

Therefore, as a running
example, we consider a sce-
nario influenced by the UEFA
champions league competition
2006/2007: theMakaay move
(see Fig. 1). Let there be one
player of typeA and two play-
ers of typeB in the offensive
team. PlayerA performs the
kick-off, while the players of
type B are waiting in different
sectors on the pitch, which is
divided into sectors (cf. [6]).
Player A chooses a direction
for passing (right or left mid-
field, sectors 3 or 5), then kicks
off and passes to one player
of type B in the destination
sector. PlayerA runs to sec-
tor 1 (middle offense) whereB
has passed the ball to. Finally,
player A tries to shoot to the
goal directly. If it fails,A tries
it again. Meanwhile,B goes to
the ball if it is nearer to it.B
then passes toA in sector 1
again.

In the sequel, Sect. 2 covers the formal specification of hybrid statecharts. Corre-
sponding description and target languages are defined and compared in Sect. 3. With
these foundations, we can create a concept for the translation process. Sect. 4 then deals
with the design of the application and shows an example of use. Finally, we discuss
related works in Sect. 5 and conclude with Sect. 6.

2 Hybrid Statecharts

2.1 States and Transitions

In a realistic physical environment, it is inevitable to consider continuous actions in
addition to discrete changes. Hybrid automata extend regular state transition diagrams
with methods that deal with those continuous actions. To understand the characteris-
tics, we will introduce several definitions for hierarchical hybrid automata with timed
synchronization now [7, 8] – called HHA.

Definition 1 (basic components).The basic components of astate machineare the
following disjoint sets:

86



S: a finite set ofstates, partitioned into three disjoint sets: Ssimple, Scomp, and Sconc
— called simple, composite and concurrent states, containing one designatedstart
states0 ∈ Scomp∪Sconc;

X: a finite set of variables, partitioned into two disjoint sets: Xreal and Xint — the
continuous/real-numbered and the integral/integer variables, respectively; for each
x∈ X we introduce the variables x′ for the conclusions of a discrete change;

T: a finite set of transitions with T⊆ S×S.

Definition 2 (state hierarchy).Each state s is associated with zero, one or moreinitial
statesα(s): a simple state has zero, a composite state exactly one, and aconcurrent
state more than one initial state. In the latter case, the initial states are calledregions.
Moreover, each state s∈S\{s0} is associated to exactly one superior stateβ(s). There-
fore, it must holdβ(s)∈Sconc∪Scomp. A concurrent state must not directly contain other
concurrent ones. Furthermore, it is assumed that all transitions s1Ts2 ∈ T keep to the
hierarchy, i. e.β(s1) = β(s2). Furthermore, we writeαn(s) or βn(s) for the n-fold appli-
cation ofα or β to s, in particular,α0(s) = β0(s) = s. Variables x∈ X may be declared
locally in a certain stateγ(x) ∈ S. A variable x∈ X is valid in all states s∈ S with
βn(s) = γ(x) for some n≥ 0, unless another variable with the same name overwrites it
locally.

As said earlier, Fig. 1 depicts the statechart for our running soccer example. Here,
states are named after their affiliation to the players or theactions which are being done
at that moment. The statessoccermakaay(which is the start states0 here),kickoff,
go-to-ball, player-Aandplayer-Bare composite states;teamplayis a concurrent state
while all others are simple states. The oval symbolball is a synchronization point and
will be discussed in Sect. 2.2.

Definition 3 (jump and state conditions).For each transition, there exists ajump
condition. This is a predicate with free variables from the valid variables of X∪X′.
Additionally, each state s∈ S contains a state condition which describes continuous
changes in s. It is a predicate with free variables from X∪{t}.

Events are well-known in UML statecharts [12] and hybrid automata [8]. They can
easily be expressed by (binary) integer variables in our formalism. Therefore, we do not
introduce them explicitly in our definitions. But in contrast to simple hybrid automata,
we introduce hierarchies. Fig. 2(a) shows an example state tree, which is induced by
the β-function. Here,R is the root of the tree, and e.g. state 1 can be reached from 5,
i.e. 1= β3(5). Note that the value ofβn is always uniquely determined due to the tree-
like (and not graph-like) structure of the state hierarchy.Furthermore, letα3(R) = 3. A
configuration (defined next) is the subset of the active states in the state tree.

Definition 4 (configuration and completion). A configurationc is a rooted tree of
states with the root node as the topmost initial state of the overall state machine. When-
ever a state s is an immediate predecessor of s′ in c, it must holdβ(s′) = s. A config-
uration must becompletedby applying the following procedure recursively as long as
possible to leaf nodes: if there is a leaf node in c labeled with a state s, then introduce
all α(s) as immediate successors of s.

87



The semantics of our automata can now be defined by alternating sequences of
discrete and continuous steps. Following the synchrony hypothesis, we assume that
discrete state changes (via transitions whose annotated jump condition holds in the
current situation) happen in zero time, while continuous steps (within one state) may
last some time. Due to the lack of space, for details on the semantics of HHA, the reader
is referred to [15].

Fig. 2(b) demonstrates the relationship between state trees and configurations. It
depicts several configurations that are created from the state tree in Fig. 2(a). A config-
uration itself can be connected to another one. The originaltransitiont, which was used
for the completion ofs2 in c2, is used in a discrete step while its origin is changed from
s1 to c1 and its target froms2 to c2.

(a) State tree with syn-
chronization pointx.

(b) Configurations with synchronization problem.

Fig. 2.State tree and configurations of an automaton.

2.2 Synchronization

Synchronization is significant for modeling multiagent systems. Usually, a system deals
with limited resources. The interaction with them can take part in several states. Espe-
cially when reacting to events from the environment, the reaction process takes some
time τ > 0. For this, asynchronizationtakes care of the common resources defined at
a synchronization point. While synchronization is associated with transitions, imple-
mented via labels in original hybrid automata [8], synchronization is associated with
states in HHA, i.e. actions which last some certain time. In contrast to this, the syn-
chrony hypothesis states (for discrete steps), that a system is infinitely fast and therefore
can react immediately within zero seconds, i.e., a transition takes zero time.

Definition 5. A synchronization point is identified by a variable x∈ Xsync⊆ X with
a maximum capacity C(x) > 0. Each state connected to the synchronization point is

88



classified by one of the following relations, R+ ⊆ S×Xsyncor R− ⊆ Xsync×S. If a state
increases the capacity, it will be classified by R+ and otherwise by R−, if it decreases
it (or resets the resource). In general, each connection in R+ ∪R− is annotated with a
number m with0 < m≤C(x) which identifies the volume to be increased or decreased
from the synchronization point, respectively.

Synchronization may take some time, since they are connected to (continuous)
states and not to discrete transitions. Thus, the synchronization process can theoreti-
cally be interfered by other actions or concurrent states which also try to share the same
synchronization point. To avoid side effects that may lead to inconsistency or even sys-
tem failure, the process is separated into allocation and (future) occupation of resources.
For this, the allocation variablesx+ andx− register the request for occupation or release
for each synchronization pointx. Therefore,x+ andx− must be added toX.

In this case (synchronization pointxand connected states), s1Ts2 is calledincoming
transitionfor s iff αn(s2) = s for somen≥ 0, initializing transition iff it is an incoming
one withαn(s) = γ(x), outgoing transitioniff s1 = βn(s) for somen≥ 0 wheres1 occurs
in the current configuration andx is valid in s, successful outgoing transitioniff it is an
outgoing transition withs1 = s andfailed outgoing transitioniff it is not a successful
outgoing transition. Note that outgoing transitions cannot be characterized statically but
only dynamically by investigating the configuration trees.This is an important issue for
the revoking of the allocation (see Sect. 4.2). At a synchronization pointx, additional
constraints must be defined which affect the transitions that are incident with all states
s connected tox. Due to the lack of space, for details on the synchronizationconcept,
the reader is referred to [7].

The synchronization pointball in Fig. 1 has a capacity of 1. Thus, it can be in-
terpreted as a Boolean value as there is only one ball in a soccer match. Both states
go-to-ball occupy the synchronization pointball. Hence, they belong to the relation
R+. The stateskick-to-goalandpass-to-sectorrelease it and therefore belong toR−.

The example in Fig. 2(a) also makes use of a synchronization point. As seen in the
tree, the stateR introduces the synchronization pointx while 4 is somehow using it
here. The definition is marked with the dashed arrow pointingat x. However, for some
multiagent systems, the synchronization must be convertedinto ordinary variables if a
target platform does not provide synchronization interfaces.

3 Specification Languages

After having defined basic concepts, let us now consider concrete languages for pro-
gramming multiagent systems with HHA. Therefore, we will discuss two languages
briefly in the sequel: HAL and XABSL.

The project goals of HAL [3] were the definition of an ASCII-formatted specifi-
cation language for hybrid automata with timed-synchronization and, furthermore, its
transformation into an input format for model checkers suchasHyTech[8]. HAL is
at the same time the name of the project and the name for the specification language
(Hybrid Automaton Language). This corresponds to the definitions introduced in the
previous section. A HAL specification is usually written into an ASCII formatted file.

89



According to the syntax, it consists of a global frame which must be a composite au-
tomaton. It may include several other automata following the rules of hybrid automata
with timed synchronization. Even though the terms of inheritance, polymorphism are
not defined in HAL syntax, modularization is actually known.The namespace of two
parallel automata cannot collide while subsequent automata can access variables of their
superiors. An example is shown in the listing (Fig. 3).

composi te makaay {
s t a r t ( teamplay ) ;
concur ren t teamplay {

syn cp o in t ( b a l l , 1 ) ;
reg ion p laye r A {

c a r d i n a l i t y := 1 ;
s t a r t ( k i c k o f f ) ;
composi te k i c k o f f {

s t a r t ( c h o o s e p a s s s e c t o r ) ;
var p a s s s e c t o r := 0 ;
var random 05 3 5 = 0 ;
s imp le c h o o s e p a s s s e c t o r {

f low := p a s s s e c t o r ˜ = random05 3 5 ;
i n v a r i a n t := p a s s s e c t o r != 3 & p a s ss e c t o r != 5 ;
t r an s := ( g o t o b a l l , p a s s s e c t o r == 3 |

p a s s s e c t o r == 5 ) ;
} % c h o o s e p a s s s e c t o r
s imp le g o t o b a l l {

sync( b a l l , 1 ) ;
f low := g o t o b a l l w i t h o u t t u r n i n g m a x s p e e d 1 2 0 ;
i n v a r i a n t := b a l l s e e n d i s t a n c e >= 70 ;
t r an s := ( p a s s t o s e c t o r , b a l l s e e n d i s t a n c e < 70

) ;
} % g o t o b a l l
% ( . . . )
i n v a r i a n t := b a l l s e c t o r == 4 ;
t r an s := ( g o t o s e c t o r 1 , b a l l s e c t o r != 4 ) ;

} % k i c k o f f
% ( . . )

} % p l a y e r A
% ( . . . )

} % teamplay
} % makaay

Fig. 3. HAL specification.

Another successful approach of modeling agent behavior isXABSL(Extensible
Agent Behavior Specification Language) [11]. It was developed and integrated into
the code basis of theGermanTeam, several times world and German champion in the

90



RoboCup four-legged league, as a language for behavior engineering. The specifica-
tions can be transformed automatically into intermediate code which has to be inter-
preted on the target platform by theXabslEngine. The XABSL package also provides
functionalities for visualization, debugging and documentation. Theoptiondivision in
XABSL specifications includes a global symbol file to get access to the environment. It
consists of one initial and several other states with their own decision trees. Theaction
division specifies all assignments that are executed there.A subsequent option call is
also possible.

4 The Translator Tool

The HAL converter provides a window-based flattening mechanism for state machine
specifications, a batch mode for quick processing, and re-usability. Additionally, there
should be a graphical editor to easily create source code from hybrid statecharts. Al-
ready created files (or files that are created manually) are allowed to be used as an
input for the application. Hence, a lexer and a parser provide the conformity with the
HAL syntax. With this design, it is possible to create a hybrid automaton which can be
used later as input for the flattening algorithm (see below).The translator from HAL
to XABSL shall cover all features of synchronized hybrid state machines that can be
transferred to XABSL.

4.1 Flattening Algorithm

For the translation process, there is no simple one-to-one structural mapping between
HHA and XABSL. As XABSL and also standard verification tools often are not able
to cope with hierarchies, it is required to flatten the automaton, i.e., all states except
the initial one are transformed into simple ones. As the translator shall be feasible of
creating processable output for those tools, this gives us another reason to flatten the
hierarchical structure. Though this transformation may lead to state explosion, it could
be avoided, nevertheless, if hierarchical configurations could be processed as directly
as in some logic-based implementations [7, 15].

In the implementation, configurations are used to clarify which agent currently is in
which state. The flattening algorithm processes an input state tree and converts it to a set
of configurations. In particular, the output can be used to simplify the agent’s behavior
structure and to gain performance due to less complexity. For this, the algorithm is
divided into four major parts.

1. Copy regions
Expand the regions in the tree according to their cardinality c (given in the upper
right corner of a region). Modify each region to a composite state, copy itc-times
and replace the original with the copies.

2. Globalize variables and constants
Each state may introduce variables and constants. Each local definition must be
globalized as it will be used in the configuration flows and transitions later on. The
global definitions must be uniquely named to avoid namespacecollisions.

91



3. Convert synchronizations
If a state uses a synchronization point to interact with other states, these synchro-
nizations must be resolved. Due to their complexity, a relatively extensive inspec-
tion is required which is explained in detail in Sect. 2.2 and4.2. Although the
resulting additions to transition guards reduce readability, the even more complex
process of inter-state synchronization could be eliminated. A practical approach for
the detection of the correct place to revoke an allocation isgiven below.

4. Create configurations
Each state tree possesses an initial configurationc0. This contains all the initial
states that can be reached in the tree beginning at the root. According to the com-
pletion algorithm (Def. 4), the configurations are created recursively beginning at
c0. Already existing configurations will be recognized and used if transitions lead
to them. These newly created transitions form the discrete steps of the system.

The synchronization conversion in the third step is a rathercomplex process. At first,
all synchronization points in the automaton are collected.After this, the automaton will
be traversed, and the occupation, the release, as well as theallocation, and its revoke
are added for each synchronization found in the state tree. The synchronization pointx
itself, its maximum capacityC(x), and its allocation variablesx+ andx− are converted
into global variables. For each transition type, differentexpressions must be added to
the guards and the discrete expressions. However, a flagxf for each synchronization
pointx is introduced indicating its current status. Ifx is occupied thenxf := −1. If x is
allocated but not occupied yet thenxf := 1. Otherwise,xf := 0. For all not initializing
incoming transitions,xf := 1 will be added to their discrete expressions,xf := 0 will be
added for all initializing incoming transitions,xf := −1 will be added for all successful
outgoing transitions. For each not successful outgoing transition, it must be checked if
x is already allocated but not occupied by this synchronization. Therefore, the transition
must be duplicated. The comparisonxf = 1 is added to the guard of the first transition,
xf 6= 1 is added to the second one. The revocation of the allocationis added only to the
discrete expression of the first one. Finally, all synchronization points can be erased as
they are now properly converted into ordinary variables.

4.2 Allocation in Synchronizations

During the development of the theoretical model of hybrid automata with timed syn-
chronization, a problem concerning not successfully outgoing transitions occurs. The
correct situation has to be found, when the allocation shallbe revoked, since it must
actually be done only once per occupation. For this purpose,some definitions have to
be introduced.

Let δ(s) return all variables used in the states but not defined there. Furthermore,
we introduce a mappingζ which returns all state successors ofs that usex and are part
of the configurationc:

ζ(s,x,c) = {si | βn(si) = s∧x∈ δ(si)∧si ∈ S(c),n > 0}

Fig. 2(a) depicts a simple example for that synchronizationproblem. The dashed
arrows indicate the definition and the usage of the synchronization pointx. The state tree

92



shows – among others – a transition from state 2 to 7. Fig. 2(b)shows the appropriate
configurations withc0 being the initial one. In this case, the synchronization point x is
defined in the stateR while only 4 is usingx. In fact,R must be a concurrent state as
it defines a synchronization point. Though concurrent states usually have two or more
regions, this example reduces complexity and actually usesonly one.

Let us now have a closer look on what is happening inc1 when the process has
activated state 5. State 4 is also active as it is the immediate predecessor of state 5 in the
tree. The transition from 2 to 7 is a not successful outgoing transition for 4 as 2= βn(4)
with n = 1 > 0.

Now, to collect all states that may have allocatedx before the transitiont induces a
discrete step toc2, the mappingζ can be applied. Here,ζ is used with the parameter 2
as this state is the origin of the transition. In the configuration c1 this is a set containing
one single state:ζ(2,x,c1) = {4}. That statement confirms that (only) 4 has allocated
the synchronization pointx in this situation. There has no occupation been done yet.
So for the transitiont, the allocation has to be revoked and further actions can be done
during the process. On the contrary, the configurationc3 does not have an active allo-
cation or occupation sinceζ(2,x,c3) = /0. Therefore, the synchronization point remains
unchanged for the transitiont.

4.3 User Interface

Fig. 4. HAL screen-shot before starting the trans-
lation.

From a shell the user can start
the Java application in console or
window mode with several manda-
tory and optional parameters. As
shown in Fig. 4, all configurations
can be set intuitively in the win-
dow mode. The required input file
can either be typed into the text-
field on the top of the main content
pane or it can be chosen by using
a file dialog window. The tempo-
rary and the target output file are
named accordingly. However, they
can be defined individually, too.

4.4 XabslFish

The XabslFish plug-in defines constraints which check the input automaton for the
proper structure. For this, the flattener algorithm must have processed the automaton.
The regions must be copied according to their capacities, the variables must be global-
ized to provide an efficient handling of the XABSL symbol file and the synchronizations
must be converted into ordinary variables. The variables must not be renamed during
their globalization as they will later be translated by use of the configuration file.

The conversion of the flattened automaton starts with reading the appropriate con-
figuration file. This is used to transform HAL variables to expressions, to basic behavior

93



calls or for their declaration in the output symbol file. In the second step of the trans-
lation, the symbol file is generated. A Boolean flag indicatesif any symbol has to be
written at all. In case that there is no symbol to write, the file will not be created. In con-
sequence of that it can be decided if the future options will include this file or not. The
third step is the major part of the translation. Here, the automaton tree is traversed and
each node will be converted into an option. The subsequent automata become accessi-
ble via internal states while initial subsequent states keep their status. Each transition
from a successor to another automaton is implemented into the state decision tree where
discrete expressions are converted into actions in the target state. If all successor nodes
are completed the own flow expressions of the current automaton will be converted into
actions. This algorithm is processed recursively for each automaton.

4.5 An Example of Use

Let us now come back to our running example (Fig. 1). For purpose of clarity, the
transition labels with the jump conditions and the discreteexpressions are omitted as
well as the flow expressions and invariants in the states. However, within this example
there are several main features of synchronized hybrid automata covered. The soccer
team has at least three players: one of typeA, two of typeB. Furthermore, there is
exactly one ball on the field which can be interpreted as a resource with the maximum
capacity 1. Due to the lack of space, for further details on the implementation, the reader
is referred to [16].

5 Related Work

There are many related works on the specification of multiagent systems and also on
software engineering of multiagent systems (see e.g. [2]),including Agent UML [13],
where UML statecharts for modeling agent behavior are also considered, but not in the
main focus of interest, however. We will therefore only briefly discuss some work on
multi-robot coordination architecture, coordination mechanisms, and on formal speci-
fication of multi-robot systems.

As proposed by [17], multiagent systems have to deal with allocation and synchro-
nization of tasks and concurrent subtasks. There are market-based approaches which
support the coordination of the robot teams while each robotis paid revenue for each
accomplished subtask and otherwise incurs cost for allocating team resources. AL-
LIANCE [14] is the name of an architecture for fault tolerantmulti-robot cooperation.
With this, it is possible to create multiagent systems that can deal with failures and
uncertainties in the selection and execution of actions anddynamically changing envi-
ronment.

In [10], coordination mechanisms are introduced in a concrete multi-robot archi-
tecture. The scenario description language Q in [9] concentrates on social agents that
interact with humans. However, these articles deal with teamwork behaviors and inter-
action rather than translating a formalism to a specific hardware platform. Nevertheless,
modeling and implementing multiagent systems is proposed in [2, 5]. Though this is

94



based on UML statecharts, yet, we use hybrid automata with timed synchronization in
addition, in order to construct those systems.

The paper [1] presents a case study in multi-robot coordination, employing linear
hybrid automata. By a rectangular approximation of the physical environment, the geo-
metric regions in which a robot reaches a given goal faster with the help of communica-
tion, can be computed. [19] employs Petri nets for the specification of multiagent plans.
Here, synchronization also can be expressed quite naturally within the Petri net frame-
work. The MABLE language [18] is based on BDI agents, described textually, and a
tool for modeling and verifying multiagent systems. However, the focus in the papers
just mentioned is on verification or analysis and not on implementation and generat-
ing executable code on mobile robots, whereas we apply standard software engineering
methods to real robots in this paper.

6 Discussion and Conclusions

XabslFishallows the behavior control of Aibo robots (or any other XABSL-driven
robots) to be designed as a multiagent system with formal methods. Therefore, the
performance of the robot is enhanced. The safety of a correctbehavior control is based
upon the fact that the translation from HAL to XABSL can precisely be adjusted man-
ually for each input automaton. The applicationXabslFishsupports the modeling of
hybrid automata with timed synchronization and translatesthe specification to an un-
derstandable format for the target platform. The soccer domain is used as an example
for multiagent systems, which have to act autonomously in a dynamic environment.

XabslFishtranslates multiagent system specifications from the hybrid automaton
languageHAL to XABSL. It is designed as a plug-in for the application, theHAL con-
verter, that deals with hybrid automata. Even though it can translate the major part of a
state machine automatically, some individual mappings must be defined in a configura-
tion file. In summary, this paper exemplifies that multiagentsystems can be specified by
formal methods based on standard modeling procedures (namely state machines). It is
also demonstrated, how by transformation techniques executable code can be generated,
running on a mobile robot (namely the Aibo robot).

Future work will concentrate on an implementation of the formalism with constraint
logic programming (CLP), which can be used for both, engineering and analysis of
multiagent systems, following the lines of [15]. This will lead to an even more realistic
knowledge engineering system.

References

1. R. Alur, J. M. Esposito, M. Kim, V. Kumar, and I. Lee. Formalmodeling and analysis of
hybrid systems: A case study in multi-robot coordination. In World Congress on Formal
Methods (1), pages 212–232, 1999.

2. T. Arai and F. Stolzenburg. Multiagent systems specification by UML statecharts aiming at
intelligent manufacturing. In Castelfranchi and Johnson [4], pages 11–18. Volume 1.

3. T. Bernstein, D. Borns, C. Colmsee, K. Czarnotta, H. Germer, N. Nause, M. Pacha,
R. Thomas, A. Vellguth, T. Wiebke, and M. Windler. HAL – hybrid automaton language.

95



Technical report, Department of Automation and Computer Sciences, Hochschule Harz,
2006. Team project description (in German).

4. C. Castelfranchi and W. L. Johnson, editors.Proceedings of the 1st International Joint Con-
ference on Autonomous Agents & Multi-Agent Systems, Bologna, Italy, 2002. ACM Press.

5. V. T. da Silva, R. Choren, and C. J. P. de Lucena. A UML based approach for modeling and
implementing multi-agent systems.Autonomous Agents and Multiagent Systems, 2:914–921,
2004.

6. F. Dylla, A. Ferrein, G. Lakemeyer, J. Murray, O. Obst, T. Röfer, S. Schiffer, F. Stolzenburg,
U. Visser, and T. Wagner. Approaching a formal soccer theoryfrom behaviour specifications
in robotic soccer. In P. Dabnichcki and A. Baca, editors,Computers in Sport, pages 161–185.
WIT Press, Southampton, Boston, 2008.

7. U. Furbach, J. Murray, F. Schmidsberger, and F. Stolzenburg. Hybrid multiagent systems
with timed synchronization – specification and model checking. In M. Dastani, A. El Fal-
lah Seghrouchni, A. Ricci, and M. Winikoff, editors,Post-Proceedings of 5th International
Workshop on Programming Multi-Agent Systems at 6th International Joint Conference on
Autonomous Agents & Multi-Agent Systems, LNAI 4908, pages 205–220, Honolulu, 2008.
Springer, Berlin, Heidelberg, New York.

8. T. Henzinger. The theory of hybrid automata. InProceedings of the 11th Annual Symposium
on Logic in Computer Science, pages 278–292, New Brunswick, NJ, 1996. IEEE Computer
Society Press.

9. T. Ishida and S. Yamane. Introduction to scenario description language q. InICKS ’07: Pro-
ceedings of the Second International Conference on Informatics Research for Development
of Knowledge Society Infrastructure, pages 137–144, Washington, DC, USA, 2007. IEEE
Computer Society.

10. G. A. Kaminka and I. Frenkel. Integration of coordination mechanisms in the BITE multi-
robot architecture. InICRA-07, 2007.

11. M. Lötzsch, M. Jüngel, M. Risler, and T. Krause. XABSL:The Extensible Agent Behavior
Specification Language. URI: http://www2.informatik.hu-berlin.de/ki/XABSL/, 2006.

12. Object Management Group, Inc.UML Version 2.1.2 (Infrastructure and Superstructure),
November 2007.

13. J. Odell, H. V. D. Parunak, and B. Bauer. Extending UML foragents. In G. Wagner, Y. Les-
perance, and E. Yu, editors,Proceedings of the Agent-Oriented Information Systems Work-
shop at 17th National Conference on Artificial Intelligence, pages 3–17, 2000.

14. L. E. Parker. Alliance: An architecture for fault tolerant multirobot cooperation. IEEE
Transactions on Robotics and Automaton, 1998.

15. C. Reinl, F. Ruh, F. Stolzenburg, and O. von Stryk. Multi-robot systems optimization and
analysis using MILP and CLP. In P. U. Lima, N. Vlassis, M. Spaan, and F. S. Melo, editors,
Workshop 1: Formal Models and Methods for Multi-Robot Systems at 7th International Joint
Conference on Autonomous Agents and Multi-Agent Systems, pages 11–16, Estoril, Portugal,
2008. International Foundation for Autonomous Agents and Multi-Agent Systems.

16. F. Ruh. A translator for cooperative strategies of mobile agents for four-legged robots. Master
thesis, Fachbereich Automatisierung und Informatik, Hochschule Harz, 2007.

17. A. T. Stentz, M. B. Dias, R. M. Zlot, and N. Kalra. Market-based approaches for coordination
of multi-robot teams at different granularities of interaction. In Proceedings of the ANS 10th
International Conference on Robotics and Remote Systems for Hazardous Environments,
March 2004.

18. M. Wooldridge, M. Fisher, M.-P. Huget, and S. Parsons. Model checking multi-agent systems
with MABLE. In Castelfranchi and Johnson [4], pages 952–959. Volume 2.

19. V. A. Ziparo and L. Iocchi. Petri net plans. InProceedings of the Fourth International
Workshop on Modelling of Objects, Components and Agents, MOCA’06, pages 267–289,
2006.

96



Author Index

Althoff, Klaus-Dieter . . . . . . . . . . . . . . 55
Atzmueller, Martin . . . . . . . . . . . . . . . . 19

Bach, Kerstin . . . . . . . . . . . . . . . . . . . . . 73

Diaconescu, Ion-Mircea . . . . . . . . . . . . . 1
Dietrich, Jens . . . . . . . . . . . . . . . . . . . . . . 1

Giurca, Adrian . . . . . . . . . . . . . . . . . . 1, 7

Kluegl, Peter . . . . . . . . . . . . . . . . . . . . . .19
Kluza, Krzysztof . . . . . . . . . . . . . . . . . . 31

Nalepa, Grzegorz . . . . . . . . . . . . . . 31, 43
Newo, Régis . . . . . . . . . . . . . . . . . . . . . . .55

Pascalau, Emilian . . . . . . . . . . . . . . . . . . 7
Peylo, Christoph . . . . . . . . . . . . . . . . . . 61
Puppe, Frank . . . . . . . . . . . . . . . . . . . . . 19

Reichle, Meike . . . . . . . . . . . . . . . . . . . . 73
Ruh, Florian . . . . . . . . . . . . . . . . . . . . . . 85

Stolzenburg, Frieder . . . . . . . . . . . . . . . 85

Wagner, Gerd . . . . . . . . . . . . . . . . . . . . . . 1
Wojnicki, Igor . . . . . . . . . . . . . . . . . . . . .43

97




