
Preface
Rules are becoming increasingly important in business modeling and requirements en-
gineering, and as a high level programming paradigm especially in the engineering of
e-business applications and of Semantic Web applications. In each of these the fields
different rule languages and tools are being used.

Rules are used in applications to model and manage some parts of the application
business logic. They are best used in applications with a dynamic business logic i.e.
applications where changes in the business logic are frequently and they need to be
immediately reflected in the application behavior.

Applications in domains such as insurance (for example, insurance rating), finan-
cial services (loans, claims routing and management, fraud detection), government
(tax calculations), telecom customer (care and billing), e-commerce (personalizing the
user’s experience, recommender systems, auctions), and so on benefit greatly from us-
ing rule engines.

This volume presents some results of researchers in the rules community. The
maturity of the research in the discipline and the recent development in commer-
cial/industrial rule applications provided an opportunity to produce this workshop.

This workshop aims for contributions contributions that address theoretic founda-
tions, practical techniques, empirical studies, experience, and lessons learned related
to

• Applications and Use Cases using languages for Enterprise Rules such as JBoss
Rules and Oracle Business Rules (including Rule-based Auctions, Classification
rules, Fuzzy Rules, Association Rules in Data Mining)

• Artificial Intelligence Rules and Rule Systems (such as F-Logic and Jess)

• Best Practices in Business Rules Applications

• Combining rules and ontologies

• Implemented tools and systems

• Languages for Rule Interchange (such as RIF and R2ML)

• Modeling of Business Rules (including Production Rules and ECA Rules)

• Rule base Visualization, Verbalization, Validation, Verification and Exception
Handling.

• Rule-based modeling of mechanisms, policies, strategies and contracts.

• Rule Engines Architecture

• Rules and Web Services Integration

• Web Rules and Semantic Web Applications

RuleApps’2008, Program Committee Chairs

i

Conference Organization

Programme Chairs
Adrian Giurca
Anastasia Analyti
Gerd Wagner

Programme Committee
Grigoris Antoniou
Costin Badica
Nick Bassiliades
Philippe Bonnard
Carlos Viegas Damasio
Vladan Devedzic
Jens Dietrich
Dragan Gasevic
Antoni Ligeza
Grzegorz Nalepa
Viorel Negru
Paula-Lavinia Patranjan
Mark Proctor
Dave Reynolds
Kuldar Taveter
Laurentiu Vasiliu
Sanja Vranes

External Reviewers
Francisco Azevedo
Mirel Cosulschi
Mihai Gabroveanu
Elvira Popescu

ii

Table of Contents

Preface i
Conference Organization ii

Extracting Semantic Annotations from Moodle Data 1
Mihai Gabroveanu, Ion-Mircea Diaconescu

Using Rules for the Integration of Heterogeneous and Autonomous, Context-Aware Systems 6
David Mosen, Arantza Illarramendi, Mohand-Said Hacid

XTT+ Rule Design Using the ALSV(FD) 11
Grzegorz Nalepa, Antoni Ligeza

Defining a subset of OCL for expressing SWRL rules 16
Sergey Lukichev

Can URML model successfully Drools rules? 19
Emilian Pascalau, Adrian Giurca

iii

Extracting Semantic Annotations from Moodle Data
Mihai Gabroveanu1 and Ion-Mircea Diaconescu2

Abstract. The purpose of this paper is to provide a solution which
allows automatic reasoning processes over Moodle activities logs, in
order to obtain user-personalized recommendations. Activities logs
are mined for association rules, which are the translated into Jena
Rules. The information is then used by specific learning rules to cre-
ate recommendations for specific users. Using this technique, addi-
tional information is obtained starting from activities database.
Keywords: e-Learning, association rules, Jena, RDF(S), ERDF.

1 Introduction

Nowadays, e-Learning systems are widely used, specially in schools,
colleges and universities but not only. More and more corporations
involve continuous learning in their management systems. A num-
ber of e-Learning systems such as Moodle, Sakai, ATutor, CLIX are
available either open source or commercial either as a standalone ap-
plications or online learning platforms (such as Microsoft Learning
Manager, BlackBoard).

All these systems accumulate a large amount of data suitable for
analyzing the users behavior using data mining technics. The goal of
extracted information is to improve the educational process.

This work describes an extension of Moodle e-Learning system,
which extracts semantic metadata helpful in delivery of user per-
sonalized content. In a previous work ([6] and [13]) we improved
Moodle by adding rules and semantics to enrich the reports genera-
tion. In this work we follow the idea that, additionally to the standard
information that users can see, it is possible to obtain supplemen-
tary information indirectly available (i.e. obtained by processing data
stored in Moodle activity logs). Using this Moodle module, users are
informed about some specific changes or are advised to do some ac-
tions. For example a student can be advised to read some specific
resources in order to obtain necessarily skills for a specific test. This
module is user-based, meaning that all information and suggestions
are made depending of which user authenticates to the system. For
example may be unnecessarily to suggest for some users to follow a
specific course, since they already followed that course, but for oth-
ers users this can be a valid option. In order to create the module we
use Weka to extract association rules from Moodle activities logs and
Jena Rules to infer additional information.

The paper is organized as follows: (1) in the first part explain the
steps followed to extract association rules from Moodle activities
logs; (2) the second part explain the mapping from association rules
to Jena Rules and discuss an improvement for Moodle activities logs;
(3) finally, we describe the architecture of the module implementa-
tion.

1 Dept. of Computer Science, University of Craiova, Romania, e-mail: mi-
haiug@central.ucv.ro

2 Brandenburg University of Technology, Germany, e-mail:
M.Diaconescu@tu-cottbus.de

2 Mining information from Moodle activities logs
E-Learning systems provides databases where information about
students profile, courses, academic results and performed activities
(reading, writing, taking tests) are stored. A huge quantity of data
is collected and can be very difficult to perform a manually ana-
lyze over it. Data mining provides technics and algorithms useful to
perform an automatically analyze over activities logs databases. In-
structors use available data to improve the courses quality or to build
recommendations for system users.

The process of discovering association rules is an important task in
data mining. An association rule provides a relationship among dif-
ferent attributes. Our Moodle module use algorithms for mining asso-
ciation rules in order to identify possible relations between courses,
resources, student activities. Particularly, a selection process regard-
ing the information we are interested to mine is performed. This al-
lows us to obtain only specific association rules which is relevant for
our needs.

2.1 Basic Knowledge on Association rules
In this subsection we presents a basic introduction of concepts related
to association rules and the mining process.

The initial problem of mining association rules was formulated by
Agrawal in [1] and is called the market-basket problem.

Considering T to be a non-empty data table containing transac-
tions, an association rule is an expression with the following form:
A ⇒ B. Formally speaking, this means that transactions including
A will include B as well, with a high probability. A and B are called
the antecedent, respectively the consequent of the rule.

The quality of an association rule is expressed by several mea-
sures. Two of them, namely the support and the confidence are es-
sential [1]:

• the support of A ⇒ B is defined as the percentage of transactions
in T that contain both A and B.

• the confidence of A ⇒ B is defined as the percentage of transac-
tions in T containing A which also contain B.

Example 1 Table 1 contains courses followed by students. We see
that student having ID 1 followed Web Technologies (WT), Web Ap-
plications (WA) and Web Documents (WD) courses, the student hav-
ing ID 2 followed Web Applications (WA) and E-Business Technolo-
gies (EBT) courses, etc.

An example of association rule is WT ⇒ WD. This express that
some of the students who followed Web Technologies (WT) course,
also followed Web Documents (WD) course. The support of this as-
sociation rule is calculated as:

supp(WT ⇒ WD) =
|{1, 3, 5}|

|T | =
3

6
= 0.50

1

http://moodle.org/
http://sakaiproject.org/
http://www.atutor.ca/
http://www.im-c.de/en/products/clix/clix-enterprise/
http://learning.microsoft.com/Manager/Catalog.aspx
http://learning.microsoft.com/Manager/Catalog.aspx
http://www.blackboard.com
http://www.cs.waikato.ac.nz/ml/weka/
http://jena.sourceforge.net/

StudentID List of courses
1 WT , WA, WD
2 WA, EBT
3 WT , WD, EBT
4 WA, WD, EBT
5 WT , WD
6 WT , EBT

Table 1. The list of courses

expressing that 50% of students followed both the Web Technologies
(WT) course and the Web Documents (WD) course.

The confidence can be calculated as:

conf(WT ⇒ WD) =
|{1, 3, 5}|
|{1, 3, 4, 5}| =

3

4
= 0.75

and it express that: from all students who follow the Web Technolo-
gies (WT) course, 75% of them also followed the Web Documents
(WD) course.

Rules having support and confidence greater than an user-specified
minimum support (minsup) and respectively a minimum confidence
(minconf) are named strong association rules.

In this work the goal is to obtain only strong association rules in-
ferring new information relevant in our context.

To extract strong association rules many algorithms were pro-
posed. The most popular are: Apriori [2], DHP [12], PARTI-
TION [14], DIC [5].

2.2 Mining Logs to extract useful data
The Knowledge Discovery [10] consist in the following steps: col-
lecting data, preprocessing data, applying the data mining algo-
rithms and post-processing. The mining association rule process in
e-Learning systems [9] follows some steps:

• Collecting data. The Moodle database store detailed logs with all
activities that users performs.

• Data pre-processing. Typical tasks are performed in this phase:
data selection, derivation of new attributes and selection of some
attributes (new attributes are created starting from the existing
ones and only a subset of relevant attributes are finally chosen),
transforming the data format (to a format required by the used
data mining algorithms or framework).

• Applying the mining algorithms. In this phase we need:

– to choose specific association rule mining algorithm;

– to configure the parameters of the algorithm (such as support
and confidence threshold, minsup and minconf);

– to identify table(s) or data file are used in the mining process;

– and to specify some other restrictions, such as the maximum
number of items and what specific attributes can be present in
the antecedent or consequent of the discovered rules.

• Data post-processing. Strong association rules which are obtained
are represented in a comprehensible format.

Our interest is to extract association rules such as:

• 82% of the students who followed Web Technologies (WT) course,
also followed Web Application (WA) course.

• 70% of the students that solve home-works from Web Technologies
(WT) course pass the WA exam.

• 74% of the students that read resource A and B from course E-
Business Technologies (EBT) read also resource C.

In order to extract association rules from Moodle logs we use
an existing data mining tool, namely Weka, which implements sev-
eral algorithms for extracting association rules. For our purpose, we
choose to we use Apriori [2], but also other algorithms can be taken
into consideration. The mined models will be exported into PMML3

(Predictive Model Markup Language). The Predictive Model Markup
Language (PMML) is an XML-based language which provides a way
for applications to define statistical and data mining models and to
share models between PMML compliant applications.

Example 2 Let consider the relational data table obtained from
Moodle logs (Table 2) containing courses followed by students. This
data table is obtained after pre-processing step and corresponding
to transactional data table presented in Table 1.

StudentID CourseID
1 WT
1 WA
1 WD
2 WA
2 EBT
3 WT
3 WD
3 EBT

StudentID CourseID
4 WA
4 WD
4 EBT
5 WT
5 WD
6 WT
6 EBT

Table 2. Excerpt from Moodle data

Executing the Apriori algorithm implemented in Weka over the
data depicted below and providing a minimum support value (0.4)
and a minimum confidence value (0.5) as parameters we obtain
two association rules WT ⇒ WD (supp=0.50, conf=0.75) and
WD ⇒ WT (supp=0.50, conf=0.75). Our module translate rules in
the PMML form. By example, association rules obtained after post-
processing step is depicted below:

<?xml version="1.0" encoding="UTF-8"?>
<PMML xmlns="http://www.dmg.org/PMML-3_1">
<DataDictionary numberOfFields="2">
<DataField dataType="integer" name="SudentID"

optype="continuous">
<Extension extender="weka" name="storageType"
value="numeric"/>

</DataField>
<DataField dataType="string" name="CourseID"
optype="categorical">

<Extension extender="weka" name="storageType"
value="string"/>

<Value property="valid" value="EBT"/>
<Value property="valid" value="WA"/>
<Value property="valid" value="WD"/>
<Value property="valid" value="WT"/>

</DataField>
</DataDictionary>
<AssociationModel algorithmName="Apriori"
functionName="associationRules"
minimumConfidence="0.5"
minimumSupport="0.4" modelName="Sudents_Courses"
numberOfItems="2" numberOfItemsets="2"
numberOfRules="2" numberOfTransactions="6">

<MiningSchema>
<MiningField name="SudentID" usageType="group"/>
<MiningField name="CourseID" usageType="active"/>

</MiningSchema>
<Item id="1" value="WD"/>

3 PMML - http://www.dmg.org/pmml-v3-1.html

2

http://www.dmg.org/pmml-v3-1.html
http://www.dmg.org/pmml-v3-1.html
http://www.dmg.org/pmml-v3-1.html

<Item id="2" value="WT"/>
<Itemset id="1" numberOfItems="1" support="0.667">
<ItemRef itemRef="1"/>

</Itemset>
<Itemset id="2" numberOfItems="1" support="0.667">
<ItemRef itemRef="2"/>

</Itemset>
<AssociationRule id="1" antecedent="1"
consequent="2" support="0.5" confidence="0.75"/>

<AssociationRule id="2" antecedent="2"
consequent="1" support="0.5" confidence="0.75"/>

</AssociationModel>
</PMML>

An advantage os using this representation (PMML) is that it is
XML based, it has a schema and it is easy to translate to another
representation types, XML-based or not. Our solution use an XSLT
transformation to map association rules from PMML representation
to Jena rules syntax.

3 Generate Recommendations in Moodle
In this section, we describe a translation from association rules, ex-
tracted from Moodle activities logs based on support and confidence
factors, to Jena rules. Using such rules, complex reports and recom-
mendations on the page of each authenticated user are created.

3.1 Brief introduction to Jena Rules
Jena is a framework which allows reasoning over RDF(S)
([8], [4]). It use a triple based syntax for rules (e.g.
(?x rdf:type moodle:Student)), and built-ins to repre-
sent user defined operations (actions). Atoms are represented by
RDF nodes, and the used syntax for representing URI’s, variables,
blank nodes and literals (plain or typed) is based on SPARQL. In
Jena rules, components of a triple are: (1) the subject - is the first
node, and it can be variable, URI reference or blank node; (2) the
predicate - the second node of the triple, is expressed by using a
variable or an URI reference; (3) the object - the last node of the
triple, can be a variable, an URI reference, a blank node or a literal.

Jena rules offers support for a form of
negation-as-failure, expressed by using the noValue
built-in, who’s parameters are the nodes of the triple (e.g.
noValue(?x moodle:passedExam moodle:WT)). Con-
junction is used by default and disjunction is not supported. Three
types of rules are supported by Jena Rules engines, namely forward,
backward and hybrid (forward rules having backward rules in the
head). This paper describe a Moodle improvement dealing with
forward rules executed by a RETE [7] forward engine.

3.2 Mapping association rules to Jena Rules
In order to generate reports and recommendations, we use Moodle
activities logs as knowledge base and a translation from the ex-
tracted association rules to Jena rules is performed. We consider the
association rule, obtained above in the mining process:

82% of the students who followed Web Technologies (WT) course,
also followed Web Application (WA) course.

Using such rules, we can recommend to some students, who al-
ready followed WT course and do not followed yet the WA course, to
consider follow that course, (e.g. in the next semester). Particularly,
for currently authenticated student Tom Miller, we can recommend

him to consider the WA course for the next semester but this is not an
available information for another authenticated student John Smith
who already followed WA course. Newly obtained data is not stored
into Moodle database. Instead, it is used by the Moodle view module
when the page for this student is generated.

The above association rule translate into the following Jena rule:

[R:
(?x rdf:type moodle:Student)
(?x moodle:username moodle:Tomy)
(?x moodle:takenCourse moodle:WT)
noValue(?x moodle:takenCourse moodle:WA)
->
(?x moodle:followCourse moodle:WA)]

We have to note that the second triple of our rule is
dynamically created when the user access a page, and
isn’t part of the association rule. The subject of the triple
(?x moodle:username moodle:Tomy) is obtained by
using the usernames of the current logged users. Using this tech-
nique, we can express user-based recommendations. We don’t want
to recommend a course for a student which already followed that
course. For the rule expressed in Jena, we use the noValue builtin
to check in the working memory the triple denoted by the built-in
parameters and it fails if the triple is found. Assuming that our rule
is expressed as WT ⇒ WA, and denoting with DWT the set of
all students who followed WT course and with DWA the set of all
students who followed the WA course, then have to analyze four
possible situations:

• x is a positive example - x ∈ DWT ∧x ∈ DWA - for our case, this
express that the student already followed the WT course and also
the WA course. This situation is covered: if the student already
followed both courses, then the rule do not fire.

• x is a non-positive example - x /∈ DWT ∨ x /∈ DWA - for our
case, this express that the student hasn’t followed the WT course
or hasn’t followed the WA course. In our rule, if the student hasn’t
followed the WT course, the rule will do not fire, and if the stu-
dent hasn’t followed the WA course then the rule fire only if he
followed the WT course.

• x is a negative example - x ∈ DWT ∧x /∈ DWA - in this case, the
rule fire and we recommend for that student to consider the WA
course.

• x is a non-negative example - x /∈ DWT ∨ x ∈ DWA - in this
case the rule don’t fire, since the student either hasn’t followed
WT course or already followed WA course.

We can note that in the case of a positive and non-negative exam-
ple, the rule do not fire and in the case of a negative example the
rule always fire. For the case of non-positive example, the rule fire
only if the student followed the WT course but not followed the WA
course. We have this situation because we want to recommend some
actions only to students which cover the conditions of the boolean
association rule but do not cover all conclusions.

The rule from the above example has a simple structure: only one
antecedent atom (translating into a condition) and one precedent
atom (translating into a conclusion). Sometimes, rules are more
complex:

74% of the students who get WT course and passed the test T2
have accessed resource Res1 and solved assignment A1.

A result of applying a reasoning using such a rule, can be to guide
the student to read some resources and to do some specific actions in
order to prepare himself for a specific test.

3

http://www.w3.org/TR/rdf-sparql-query/

There is a need to to make suggestions only for students which ac-
complish all conditions and we need to recommend only those parts
from conclusion which are not accomplished yet. For the student Tom
Miller who follows the WT course, and already accessed resource
Res1, we need only to suggest him to consider solving the assignment
A1. For this case we have also a supplementary condition, expressing
that he hasn’t passed yet the test T2. For the rest of the students, this
recommendation will not be useful. Such statements, from associa-
tion rules, translate into negated conditions in Jena rules.

We translate this rule into two Jena rules:
[R1:
(?x rdf:type moodle:Student)
(?x moodle:username moodle:Tomy)
(?x moodle:takenCourse moodle:WT)
noValue(?x moodle:passTest moodle:T2)
noValue(?x moodle:accessedResource moodle:Res1)
->
(?x moodle:accessedResource moodle:Res1)]

[R2:
(?x rdf:type moodle:Student)
(?x moodle:username moodle:Tomy)
(?x moodle:takenCourse moodle:WT)
noValue(?x moodle:passTest moodle:T2)
noValue(?x moodle:solvedAssignment moodle:A1)
->
(?x moodle:solvedAssignment moodle:A1)]

Consider having the student Tom Miller, with the username Tomy.
It has followed the WT course (but not the WA course), hasn’t passed
the T2 test, hasn’t accessed the Res1 resource and also hasn’t solved
the A1 assignment. According with those statements, Tom Miller ac-
complish conditions from rules R, R1 and R2. Conform with the rule
R, we recommend him to consider follow the WA course, and accord-
ing with R1 and R2 we recommend him to solve the assignment A1
and to read information refereed by Res1. All those information are
inferred and cannot by obtained directly from the activities logs.

For the general case, a boolean association rule:

A1 ∧A2 ∧ ... ∧An ⇒ B1 ∧B2 ∧ ... ∧Bm

translate into many Jena rules:

R1 : A1 ∧A2 ∧ ... ∧An ∧ ¬B1 ⇒ B1

...........
Rm : A1 ∧A2 ∧ ... ∧An ∧ ¬Bm ⇒ Bm.

The general case, for boolean association rules, already implies
extraction of simple rules having the same conditions and each of
them having the conclusion formed by one of the atoms from the
association rule conclusion:

A simple association rule:

A1 ∧A2 ∧ ... ∧An ⇒ B

translate in the Jena rule:

R1 : A1 ∧A2 ∧ ... ∧An ∧ ¬B ⇒ B

In order to obtain Jena rules from association rules, select only as-
sociation rules having good a probability (strong association rules).
For this reason, a minimum value is selected for both support and
confidence measure factors. For different rule sets, different values
for maximum and minimum factors are set.

3.3 Jena Rules inference submodule
After obtaining Jena rules starting from association rules, the next
step is to use those rules, and Moodle activities logs to infer sup-
plementary information. Jena API contains a module capable of

extracting models used in the reasoning process, directly from a
MySQL database. The inference submodule directly link to the Moo-
dle database and extract all necessarily data from tables, creating
RDF triples which are stored in the working memory. Those triples
represents the initial facts base. At the next step, Jena rules obtained
from association rules, are loaded by the engine into a RuleStore ob-
ject. When the inference process in finished, the working memory
contains new facts obtained by applying rules over initial facts base.
New information (facts) are used to create additional information and
recommendations in the user view page. The new information is tem-
porarily stored, and is processed by the view submodule of the ex-
tension.

3.4 Adding strong negation for Moodle data
We saw that in Jena Rules we use noValue built-in for checking
the existence of some specific facts in the working memory (it im-
plements a form of negation-as-failure). Assuming that our goal is to
find out for some accessed resources (from a specific course), which
of them are considered useful by students, it is possible to obtain both
useful not useful resources. Also it is possible to have an overlap. The
meaningful recommendations address useful resources, therefore we
want to suggest only those resources which are considered useful by
the others. This can be naturally expressed, by using negative facts
(e.g. we can have facts expressing that a resource is marked as not
useful by some of the students). This can’t be expressed by using
negation-as-failure, since a student can mark the resource as useful,
other student mark the same resource as not useful and other student
don’t mark at all. Using negation-as-failure, we may conclude that a
resource is not useful just because it was not marked as useful. This
is not always true: not marking as useful, sometimes means that the
student has not marked the resource since it has no opinion about
that resource at the moment of questioning. This is related to Open
World Assumption (OWA) and Closed World Assumption (CWA).
In the case of CWA, not marking the resource means that we have
a not useful resource. In the case of OWA, not marking the resource
means that it’s status is undetermined.

Introduced in [3], and based on Partial Logic[11], ERDF comes
with a solution to allows such facts. It use strong negation in order
to represent negative information, e.g. not-useful resources. In this
way, the property moodle:usefulResource is represented as a
partial property, and it can represent positive information, negative
information, ambiguous resource, or don’t represent information at
all (undetermined). Moreover, ERDF supports closed and open world
assumption. Some predicates are closed (are totally represented in
the knowledge base), and for those we can infer negative information
if positive information can’t be inferred. Other predicates are partial,
and for those we can express multiple truth values (true, false, over-
determined and undetermined).

A prototype of an ERDF engine was developed and is available
for online4 testing. It is based on Jena and supports strong negation
and a form of negation-as-failure.

4 System Architecture and Implementation
Figure 1 illustrates the overall architecture of the system. The system
contains four specific parts (modules):

• Mining Association Rules module - extract association rules using
Weka API;

4 http://oxygen.informatik.tu-cottbus.de/JenaRulesWeb

4

http://oxygen.informatik.tu-cottbus.de/JenaRulesWeb
http://oxygen.informatik.tu-cottbus.de/JenaRulesWeb

Web Browser (client)User

Jena Inference
Engine

Moodle Logs

Data pre-
procesing

Mining
Association Rules

(WEKA)

Data post-
processing

Jena
Rules

Translator

Moodle (on Web Server)

View Module

Figure 1. System Architecture

• Jena Rules Translator module - maps association rules to Jena
rules.

• Inference Engine module - interact with the Jena inference en-
gine. It uses the Jena rules obtained from the previous module,
and Moodle activities logs as initial working memory.

• View module - improve user views, by adding new information
obtained from the inference process and possible obtained recom-
mendations.

The Mining Association Rules module connects to Moodle
database, obtains activities logs, select and prepare data in order to
extract association rules. For the mining process, WEKA is used.

Using the second module, association rules which are obtained
from the mining process are then translated to Jena rules. The infer-
ence engine runs as a servlet and uses Jena API and rules obtained
before in order to obtain new information. Finally, a PHP module im-
prove the final view of the authenticated user with new information
and possible recommendations obtained after the inference process.

Some operations are dynamical (e.g. the reasoning pro-
cess, creating views), and others are created timely by a
cron process (e.g. mining logs to obtain boolean association
rules, translate association rules into Jena rules). Before Jena
rules are passed to the inference engine, for each rule, a
triple expressing the identity of the currently logged user is
added (e.g.(?x moodle:username moodle:Tomy)). Also,
new triples regarding authenticated users are added to memory when
a user login to the Moodle system. Multiple users authentication is
supported by adding a new triple for each new authenticated user.
Those triples allow us to identify relevant information for specific
users.

5 Conclusion and future work

The paper describes a Moodle extension used to create improved
views for users by adding recommendations based on the existing

data about user activities. The view is created by using the user-data
as input for a rule-based learning recommendation processing.

Future work include representation of negative facts in Moodle ac-
tivities and using fuzzy association rules instead of boolean associa-
tion rules. In addition, we intend to develop a rule designer module
which allows (for tutors) to create general/specific interest rule based
on diverse criteria. General rules apply to all users of the system (e.g.
create a message for every student which has not passed an exam).

REFERENCES
[1] Rakesh Agrawal, Tomasz Imielinski, and Arun N. Swami, ‘Mining as-

sociation rules between sets of items in large databases’, in Proceedings
of the 1993 ACM SIGMOD International Conference on Management
of Data, Washington, D.C., May 26-28, 1993, eds., Peter Buneman and
Sushil Jajodia, pp. 207–216. ACM Press, (1993).

[2] Rakesh Agrawal and Ramakrishnan Srikant, ‘Fast algorithms for min-
ing association rules’, in Proc. 20th Int. Conf. Very Large Data Bases,
(VLDB), eds., Jorge B. Bocca, Matthias Jarke, and Carlo Zaniolo, pp.
487–499. Morgan Kaufmann, (12–15 1994).

[3] Anastasia Analyti, Grigoris Antoniou, Carlos Viegas Damasio, and
Gerd Wagner, ‘Negation and Negative Information in the W3C Re-
source Description Framework’, Annals of Mathematics, Computing
and Teleinformatics, 1(2), 25–34, (2004).

[4] D. Brickley and R.V. Guha. RDF Vocabulary Description Lan-
guage 1.0: RDF Schema. W3C Recommendation February 2004.
http://www.w3.org/TR/rdf-schema/.

[5] Sergey Brin, Rajeev Motwani, Jeffrey D. Ullman, and Shalom Tsur,
‘Dynamic itemset counting and implication rules for market basket
data’, in Proceedings ACM SIGMOD International Conference on
Management of Data, pp. 255–264. ACM Press, (May 1997).

[6] Mircea Diaconescu, Sergey Lukichev, and Adrian Giurca, ‘Semantic
Web and Rule Reasoning inside of E-Learning Systems’, in Proceed-
ings of 1st International Symposium on Intelligent and Distributed
Computing, eds., C. Badica and M. Paprzycki, Studies in Computa-
tional Intelligence, Craiova, Romania, (18-20 October 2007). Springer.

[7] C. Forgy, ‘Rete – A Fast Algorithm for the Many Pattern / Many Object
Pattern Match Problem’, Artificial Intelligence, 19, 17–37, (1982).

[8] Klyne G. and Caroll J.J. Resource Description Framework (RDF): Con-
cepts and Abstract Syntax. W3C Recommendation 10 February 2004.
http://www.w3.org/TR/rdf-concepts/.

[9] Enrique Garcia, Cristobal Romero, Sebastian Ventura, and Toon
Calders, ‘Drawbacks and solutions of applying association rule min-
ing in learning management systems’, in Proceedings of the Interna-
tional Workshop on Applying Data Mining in e-Learning (ADML’07),
(September 2007).

[10] Jiawei Han, Data Mining: Concepts and Techniques, Morgan Kauf-
mann Publishers Inc., San Francisco, CA, USA, 2005.

[11] Heinrich Herre, Jan O. M. Jaspars, and Gerd Wagner, ‘Partial Logics
with Two Kinds of Negation as a Foundation for Knowledge-Based
Reasoning’, in What is Negation?, eds., D.M. Gabbay and H. Wansing,
Kluwer Academic Publishers, (1999).

[12] Philip S. Yu Jong Soo Park, Ming-Syan Chen, ‘An effective hash-based
algorithm for mining association rules’, in Proceedings of the 1995
ACM SIGMOD International Conference on Management of Data, pp.
175–186, San Jose, Canada, (1995).

[13] Sergey Lukichev, Adrian Giurca, and Mircea Diaconescu, ‘Empower-
ing moodle with rules and semantics’, in Proceedings of 3rd Workshop
on Scripting for the Semantic Web (SFSW2007), eds., T. Heath S. Auer,
C. Bizer and G. A. Grimnes, Innsbruck, Austria, (6 June 2007).

[14] Ashok Savasere, Edward Omiecinski, and Shamkant B. Navathe, ‘An
efficient algorithm for mining association rules in large databases’,
in Proceedings of 21th International Conference on Very Large Data
Bases (VLDB’95), eds., Umeshwar Dayal, Peter M. D. Gray, and Sho-
jiro Nishio, pp. 432–444. Morgan Kaufmann, (September 1995).

5

http://www.cs.waikato.ac.nz/ml/weka/

Using Rules for the Integration of Heterogeneous and
Autonomous Context-Aware Systems
David Mosén1 and Arantza Illarramendi2 and Mohand-Said Hacid3

Abstract. In this paper we introduce NUBIA, a middleware that
combines, through business rules, information generated by hetero-
geneous and autonomous systems. Communication between NUBIA
and systems is loosely-coupled and highly compatible, as Web Ser-
vices and other standards are used. The main component of NUBIA
is a rule engine, sensible to temporal knowledge and with integrated
functions (e.g. frequencies, percentages). A user friendly interface al-
lows entering, using a script language, customized rules, whose con-
ditions depend on the information sent from the systems. For each
rule, settings such as the maximum firing frequency and the activa-
tion within a group may be defined. Moreover, NUBIA also supports
a rule editor role, which allows a more realistic viewpoint of context-
aware rules customization. Finally, automatic rule translation to the
user’s language and a role-oriented interface facilitate the interaction
with NUBIA.

1 INTRODUCTION
The term context awareness has evolved through time, but has always
maintained a sense of somehow gathering data from the environment.
In the last years, the definition of context by Dey et al. [1] seems to
be the most widely embraced. It states that context is ”any informa-
tion that can be used to characterize the situation of entities that are
considered relevant to the interaction between a user and an appli-
cation, including the user and the application themselves. Context is
typically the location, identity and state of people, groups and com-
putational and physical objects”. Notice that this definition implies
that context is not necessarily physical, so it can be sensed through
virtual sensors (e.g. Web Services).

Nowadays, context-aware systems work in general in an au-
tonomous way and do not interact among them. However, connecting
them can, in many situations, increase the advantages that they pro-
vide separately. Let us take the example of two systems, in charge
of monitoring a house and vital signs of a person, respectively. A
connection between them can boost alertness in a home for elderly
people scenario, where a single unit reacts to information about both
the house and the owner’s health. Of course, each system should still
be able to be in control of its own domain.

For a tight coupling among systems, a complex manual process
may be needed. With this in mind, we present in this paper NUBIA,
a middleware that integrates, through loosely-coupled connections,
any kind of context-aware systems, independently of the domain that
they consider, while preserving the autonomy of each system. Thus,
internal management in each domain remains within the respective

1 University of the Basque Country, Spain, email: david@mosen.es
2 University of the Basque Country, Spain, email: a.illarramendi@ehu.es
3 Univ. Claude Bernard Lyon, France, email: mshacid@liris.univ-lyon1.fr

system, whereas a combined management across domains is handled
through NUBIA.

To test the middleware and demonstrate its usefulness, we
constructed a typical homecare scenario, oriented towards a single
inhabitant (i.e. the user), although visits pose no actual problem.
Abundant previous work about homecare can be found [2] [3], and
we refer to it for a more thorough study on the subject. However,
our aim is to show how an integral homecare system can be build
adding up independent, separately developed, components. Thus,
the personal healthcare application, provided by SaludNova [4], and
the domotics system we integrated were already developed, in order
to test out the integration issue in a real scenario.

Benefits from integration through rules of the mentioned systems
can be seen in several cases. For example, the healthcare system
lacks fall detection, so if domotics determines using its sensors
that the user fell, a warning is sent to NUBIA, which in turn warns
the healthcare system. In the same way, the domotics system can
be commanded to turn off the oven and stove if the user suffers a
heart failure. Further, if a risk situation requires both systems to
detect certain alarms, then a third system, in charge of handling joint
alarms, is notified. As a final example, this additional alarm system
can also be notified of errors in the main systems (see Subsection
3.2.1).

Summing up, the main features of NUBIA are the following
ones:

1. Because sensed context is information sent from connected sys-
tems through Web Services, it is a context-aware application too.

2. It allows combining context-aware systems information through
customized business rules sensible to knowledge extracted from a
stored history.

3. Finally, it provides a user friendly graphical interface, which sup-
ports different user roles (final, rules editors and administrators).

2 RELATED WORK
Concerning related works, we can observe that trends in software
development move toward generic design patterns. In that direction,
there seems to be an agreement on the need for finding a context-
aware standardized architecture [5]. This area has been widely stud-
ied, with several proposals of context-aware frameworks [6] [7]. We
also present a proposal of a standardized architecture; however, our
goal in this paper is to focus on the use of rules for getting the inte-
gration of context-aware systems.

On context integration, the work by Tao Gu et al. on SOCAM [8],
an architecture for developing context-aware services, is the closest

6

to our proposal. We basically differentiate on what is integrated, as
we aim at autonomous context-aware systems integration, while SO-
CAM directly integrates physical context. Anyhow, both proposals
carry out the idea of reasoning with the context to offer some kind of
service to external applications.

Similarly to NUBIA, the system proposed by Agarwal et al. on
electronic medical records [9] uses business rules to combine gath-
ered history information, namely, from RFID sensors and patient
monitoring. Thus, our proposal is similar in the sense that we use
gathered information in business rules. However, in the case of NU-
BIA, information used is context which comes from any kind of
context-aware system, thus not restricted to the medical field.

Finally, our approach towards personalization, based on cus-
tomized rules managed by a rule editor, can be situated among those
that appear on the existing literature, neatly explained by Henrick-
sen & Indulska [10]. They classify personalization approaches on
context-aware systems into three categories: end user programming,
machine learning and preference-based. The one used in NUBIA is
similar to the end user programming, but it provides as a novelty a
scheme where the user relies on a rule editor to make the adjustments
he/she requires.

3 NUBIA ARCHITECTURE

The middleware core is divided into three main units. First, the
context handling module, which transforms context to a standardized
representation and deals with history knowledge. The rule engine
module, which manages the combined information using business
rules. Finally, the communication module, which provides the
context handling module with the context coming from systems,
and allows the rule engine to communicate about actions to execute
in the systems. Hence, notice that communication flows both ways
between NUBIA and systems.

In this section, we briefly explain the main features of the
mentioned modules, which can be seen in Figure 1.

Figure 1. NUBIA’s architecture

3.1 Context handling module
Taking into account that systems can communicate heterogeneous
context, there is a need for its classification into predefined groups.
This process is called categorization.

3.1.1 Categorization

Two categorization viewpoints exist [11]: conceptual, based on what
the context symbolizes (e.g. person, network, physical environment),
and measurement, based on how the context is represented (e.g. a
value, a predicate). There exists a bigger tendency to follow the con-
ceptual categorization [12] [13]. However, we chose a measurement
categorization in order to explore its possibilities in relation to the
management of history knowledge. Hence, context is classified into
the following four categories:

1. Single. Simple events, which happen at a very precise moment.
Alerts and punctual detections fit into this context category.

2. Discrete. The context can only take one value once at a time from
a finite set of values, each of which represents a state. Examples
in this category are device’s power state, which toggle between
on and off, and generally any context whose possible states are
well-defined.

3. Continuous. In this case, the value representing the context is a
real number, so we can make comparisons to see whether it is
within a certain range. Uncountable data belong to this category.

4. Descriptive. Compound content cannot be represented by any of
the three categories above. This category is based on the descrip-
tion statement and uses the notion of predicate. A person’s loca-
tion, for example, is represented as location(person,place).

Furthermore, context reported by systems may correspond to dif-
ferent levels of reasoning, ranging from raw data to thoroughly rea-
soned knowledge. Figure 2 shows a layered scheme [14] where con-
text information flows to the middleware from any of the two first
layers of a context-aware system.

Nevertheless, the category to which context belongs is the only
relevant distinction and context is manipulated based on it. For ex-
ample, a light switch, the energy level of an electron and a storm
emergency level are all considered as discrete context, regardless the
complexity of the process to obtain them.

Figure 2. Information flow in a layered scheme

3.1.2 The summarizing log

NUBIA manages a special type of history, called a summarizing
log, which gets updated every time some context information is
received from a system. A typical history logs everything, for an

7

eventual use, without any further modification than the addition
of new records. In a summarizing log, instead, a logging action
causes a modification that updates key information about the current
situation. This logging method helps to extract knowledge from the
history, that we refer as temporal knowledge.

Stored information such as number of times in a state or elapsed time
within a range, together with interesting timestamps, are enough to
infer the above mentioned temporal knowledge (e.g. frequencies,
time since last state shift).

Let us suppose that we want to know the frequency of a given
simple event. Two fields are required in the summarizing log: the first
time the event is registered, and the times count. Thus, the frequency
can be calculated:

frequency = (now − first time)/times count
There is also information directly extracted from the summarizing

log, as it is useful without any further operation. Examples are:
within which ranges from a defined set is some continuous value;
and the number of times in a certain state. For these two cases, the
following information could be part of the log:

(name:corporalTemp(at)temp(at)biometrics, currentValue:36.6)
(range:[36.0,36.9], lastBegan:12060000004, lastEnded:-)
(range:[36.0,36.6],

lastBegan:1206000800, lastEnded:1206000900)
(range:[36.8,max], lastBegan:1206001000, lastEnded:-)

(name:faintRisk(at)alarms(at)biometrics, currentState:low,
lastShift:1206010000, shifts:7)

(state:low, times:5, last:1206010000)
(state:average, times:2, last:12060000300)
(state:high, times:0, last:-)

Conditions in the rules (see Section 3.2) are checked against
all this knowledge, temporal and non-temporal.

Finally, notice that summarizing logs are not aimed at applica-
tions with infrequent or full history reasoning [16] [17], as they
are not powerful enough. Context-aware systems, however, have
a strong requirement on time, and a summarizing log helps to get
quick response times. Moreover, it is compatible with a full-fledged
history, so that the best of both worlds is available.

3.2 Rule engine module

This module evaluates rules that trigger depending on the context
knowledge extracted from the summarizing log. The rule engine is
independent from the communication process. As a result, systems
can continue to report context information even if the rule engine is
not active.

3.2.1 Rule structure

Two classes of business rule engines exist. First, and the one used
in our proposal, a production rule engine deals with rules with ”IF
condition THEN action” semantics. Usually, an external agent in-
vokes the engine, so in the scenario of a context-aware system with
production rules, the system typically invokes the engine whenever

4 Timestamps are described in Unix time [15] (seconds elapsed since 01 Jan
1970, 00:00:00 UTC).

some context is sensed. If, given the new situation, the conditions of
a rule are true, it fires.

Second, reactive rule engines. In this case rules fire when their
conditions are true as well, but they need some event to happen in
order to get evaluated. Hence their name, Event Condition Action
(ECA). This class of rule engine is suited for most context-aware
systems, because sensed context adjusts well to the concept of event.
Thus, the system does not need to explicitly invoke the rule engine,
as it is already aware of generated (context) events.

In NUBIA, many defined conditions depend on time, so they can-
not be evaluated only when some context information arrives, be-
cause temporal knowledge must also be taken into consideration.
There are two possible mechanisms to deal with this situation. Let
us take the following as an example condition:

The light has been in state off for 5 minutes
The first option (continuous evaluation) is to constantly check

whether 5 minutes have elapsed since the last shift to off. The
alternative (evaluation scheduling) is to schedule the system to
invoke the rule engine 5 minutes after each time the light changes to
the off state. This alternative is more efficient, as it uses processing
resources more wisely. However, it is also non-trivial, because
depending on the condition semantics, evaluations should be sched-
uled in different ways (e.g. with a certain frequency for a limited
time, when the event is detected). In either case (continuous or
scheduled evaluation), the middleware is in charge of telling its rule
engine when to evaluate the rules (i.e. events do not directly trigger
the rules) so we chose to implement them as production rules. In
particular, rules are implemented using JBoss Rules [19], following
a forward-chaining production structure.

The right hand side of the rules comprises two kinds of actions:
internal and external.

External actions are not executed by the middleware, but in a con-
nected system. In addition to sending context information, systems
may expose actions to NUBIA through Web Services, so that they
can be ordered to execute the actions.

Internal actions control NUBIA itself and gathered information.
This includes error count resetting. NUBIA detects both incoming
communication errors (i.e. context reported by a system is invalid or
the message is corrupt) and outgoing communication errors (i.e. the
system to which to connect is unreachable). Data can also be reset
if, for example, the information about a certain context should be
initialized. Finally, a system may refuse to execute an ordered action,
so this can be used in the condition part too.

3.2.2 Settings

Some of the incorporated settings in the rule engine include:
Maximum firing frequency. Controls repetition of rule firing. Even

if a rule is evaluated to true, it will not be fired unless the defined time
has elapsed. In that case, it will only fire if it is still true. For example,
the user may want to be notified of new mail after at least 2 hours
since the last notification, even if mail arrives in the meanwhile.

Activation group. This setting has been extended from the JBoss
Rules option with the same name. The rule within an activation group
with the highest priority is executed; the rest, albeit evaluated as true,
do not get a chance to be executed until the time defined by the
group’s maximum firing frequency goes by (all rules in a group have
the same maximum firing frequency). For example, if the user has a
tumble, the system should call a relative, but if, additionally, the user
suffers a heart-attack, this action may be overridden by a call to the

8

emergency number.
Other settings, such as firing count limit and expiry dates, may

eventually be included as well. The existance of some of these set-
tings in JBoss Rules might facilitate their implementation.

3.2.3 NIRE language

As a final point concerning the rule engine module, we designed a
script language to facilitate the definition of rules and check their va-
lidity, so that they do not cause errors during execution. The NUBIA
Input Rule Editing (NIRE) language provides the following benefits:

1. Transparency and independence from the underlying rule imple-
mentation engine.

2. A compact syntax, with no unneeded verbosity.
3. Translation extensibility through XML, allowing the definition of

new rule translations to other user languages without recompiling
the application.

The following is an example of a rule in NIRE. Notice that settings
are not defined in the language, as they are introduced through the
graphical interface.

if
is-true
presence@locator@wear $somebody

last-time-in-range
temperature@temp01@domotics 15 27 > 3600

time > 18:00:00
then

turn-heater (using heater@domotics) "on"
display (phone(at)aux-phone)
"$somebody is home, turning heater on."

The rule has a typical ”IF condition THEN action” structure. Each
of the first two conditions are stated over a certain context, while the
third is an internal NUBIA condition which controls the time of the
day. Each action is defined by a name and its corresponding device
and system. In this rule, both actions require one parameter each, de-
limited by double quotation marks. Concerning symbols, ”@” (i.e.
at) denotes in which device and system a context is sensed or an ac-
tion is executed, whereas the dollar symbol, denotes variables. Thus,
the first condition states that somebody must be detected, and saves
his/her name in the ”somebody” variable.

If the chosen translation language is English, the user would see
this resulting text:

If presence is true for a certain person ’somebody’, temperature
has not been between 15 and 27 ◦C in the last hour and it is more
than 6 in the afternoon, then turn heater on and display in the phone
”’somebody’ is home, turning heater on.”.

3.3 Communication
Information flows between systems and NUBIA in both ways: con-
text information is reported to the middleware and orders to execute
actions are sent back. In either case, Web Services are used. Thus,
to make communication possible, developers who wish to have their
systems integrated need to: make methods to be used by NUBIA
available through a Web Service; and report desired context to NU-
BIA’s Service.

Usually, applications use a fixed set of Web Services, but some-
times they may require to call beforehand unknown Web Services.

Dynamic invocation allows client applications to invoke Web Ser-
vices whose descriptions are unknown until the application is used.
As an example implementation, the Dynamic Invocation Interface
(DII) [18] for CORBA supports this functionality. NUBIA needs the
dynamic invocation, given that it is aimed at working with before-
hand unknown systems.

For a higher decoupling from inner operation, serialized XML are
sent, so if more communication-related functionalities are added to
the middleware, only the XML representation would change, whilst
Web Services in connected systems and the middleware would
remain the same. The following XMLs are examples of incoming
and outgoing messages, respectively:

<event time=”1206000000” xmlns=”http://www.tempuri.org”>
<signal name=”smoke” device=”smk” system=”domotics”/>
<continuousInfo>0.32</continuousInfo>
</event>

<request time=’1206000000’ xmlns=’http://www.tempuri.org’>
<action name=’switch’ device=’light01’ system=’domotics’/>
<parameter>off</parameter>
</request>

Despite Web Services are the best communication option because
of its wide de facto standardization, there are systems that do not
fully accept them, such as smartphones, most of which cannot host a
web server. To cope with this difficulty, socket communication stands
in NUBIA as an alternative to Web Services.

4 INTERFACE

The task of integrating autonomous context-aware systems is not
easy, so NUBIA provides a graphical interface that focuses on the
separation of the different types of users (i.e. roles) for a more spe-
cific interaction with each of them. Therefore, before we show the
main features of the GUI, we present the user roles considered by
NUBIA.

Figure 3. Some windows from NUBIA’s interface

9

4.1 Roles

Relation with end users is a thoroughly studied issue in context-
aware systems. Giving users control over a system they use implies
they need to learn, in some degree, how to interact with it. Different
approaches towards this interaction exist [10], but they lack either
power of control or simplicity, so we define a role that fills the gap
between the end user and the administrator, to keep the user some-
how in control and yet increase simplicity in their interaction with
the system. Thus, for our middleware NUBIA, we establish a three
tiered role division to better focus on each role requirements:

1. Administrator. There only exists one, and defines which systems
to connect to NUBIA and their specifications, probably handed
by other administrators or developers. Also, he/she configures set-
tings such as working mode (dedicated server or shared machine)
and application defaults. Finally, the administrator is in charge of
account management.

2. Rule editor. Manages rules without the need to know about appli-
cation programming or technical details. A user with a little bit
of technical knowledge may manage rules and act as a rule editor
too.

3. End user. Can only see the defined rules and decide whether to
start or stop NUBIA.

In this scheme, roles are incremental, with the administrator having
privileges as a rule editor and user as well.

4.2 Ease of interaction

A configuration wizard à la MySQL [20] (see figure 3) guides the
administrator to easily configure, for example, system defaults and
working mode.

Systems specifications are defined in XML, so they can be
checked through an XML-schema and translated to internal rep-
resentation through an XSL transformation. This way, portability,
independence and easy handling are achieved and hence, the
administrator selects the file with the definitions and NUBIA does
the rest.

Maximum firing frequency, validity expiration or activation
policies within a group are settings that allow a more refined exe-
cution control. Nevertheless, defined defaults (by the administrator
or NUBIA itself) make simple rule creation an easier task. A rule
preview, an auxiliary panel with available data and syntax documen-
tation, and an accurate error checking facilitate rule creation even
more.

Automatic translation of rules to the user’s language allows less
technical users to easily understand them, whilst not giving extra
work to the rule editor.

5 CONCLUSIONS

We have presented a middleware that successfully connects, with
loosely coupled Web Services, autonomous context-aware systems,
combining and making use of their information to trigger business
rules. Interaction is made through an easy to use interface, designed
taking roles into account.

Using the implemented prototype, we observed the following be-
havior: a rule may be triggered by incoming context information or
because some defined time has elapsed. Taking both possible cases

into account, the average response time starts at 10 milliseconds with
a few defined rules, each of which adds a 4 microseconds overhead.

This last fact confers the middleware scalability concerning rules.
Finally, the fast processing of Web Service messages supports heavy
communication between NUBIA and the context-aware systems, so a
great scalability is also achieved in the amount of integrated systems
and communication with them.

ACKNOWLEDGEMENTS
This work is supported by the Spanish Ministry of Education and
Science (TIN2007-68091-C02-01) and the Basque Government (IT-
427-07).

REFERENCES
[1] A. Dey, D. Salber, and G. Abowd, A conceptual framework and a

toolkit for supporting the rapid prototyping of context-aware applica-
tions, Human-Computer Interaction, vol. 16, pp. 97-166, 2001.

[2] A. Cesta & F. Pecora, Integrating Intelligent Systems for Elder Care in
RoboCare, W.C. Mann & A. Helal (Eds): Promoting Independence for
Older Persons with Disabilities, IOS Press, pp. 65-73, 2006.

[3] G. Virone et al., An Advanced Wireless Sensor Network for Health Mon-
itoring, D2H2, Arlington, Virginia, 2006.

[4] SaludNova Sociedad Cooperativa, website: http://www.saludnova.com/
(as of April 2008).

[5] M. Baldauf & S. Dustdar, A Survey on Context-Aware Systems, Techni-
cal Report Number TUV-1841-2004-24, November 2004.

[6] J.E. Bardram, The Java Context Awareness Framework (JCAF), Tech.
Report CfPC 2004-PB-61, Centre for Pervasive Computing, Aarhus,
Denmark, 2003.

[7] K. Henricksen & J. Indulska, A Software Engineering Framework for
Context-Aware Pervasive Computing, Second IEEE International Con-
ference on Pervasive Computing and Comms. (PERCOM 2004), March
2004.

[8] T. Gu, H. Pung , D. Zhang A service-oriented middleware for building
context-aware services, Journal of Network and Computer Applications
28(1): 1-18, 2005.

[9] S. Agarwal, Context-Aware System to Create Electronic Medical En-
counter Records, Technical Report Number TR-CS-06-05, 2006.

[10] K. Henricksen & J. Indulska, Personalising Context-Aware Applica-
tions, in OTM Workshop on Context-Aware Mobile Systems, Springer-
Verlag, pages 122–131, 2005.

[11] M.A. Razzaque, Categorization and Modeling of Quality in Context
Information, in Proceedings of the IJCAI Workshop on AI and Auto-
nomic Communications, 2005.

[12] Eleftheria Katsiri & Alan Mycroft, A first-order logic model for context-
awareness in distributed sensor-driven systems, RSPSI Workshop,
2006.

[13] Anjum Shehzad, Hung Q. Ngo, Kim Anh Pham and Sungyoung Lee,
”Formal Modeling in Context Aware Systems”, KI-Workshop Model-
ing and Retrieval of Context (MRC2004), 2004.

[14] S.W. Loke, Context aware pervasive systems : the architecture of a new
breed of applications (ISBN: 0849372550), Abstract layered architec-
ture (page 25) . Boca Raton, FL : Auerbach Publications, 2006.

[15] Unix time article from Wikipedia, available at
http://en.wikipedia.org/wiki/Unix time.

[16] G.M. Youngblood et al., Automation Intelligence for the Smart Envi-
ronment, IJCAI-05, page 1513, 2005.

[17] V. Jakkula & D. Cook, Anomaly detection using temporal data mining
in a smart home environment, Methods of Information in Medicine,
2008.

[18] BEA Documentation on the Dynamic Invocation Interface, available at
http://e-docs.bea.com/tuxedo/tux80/creclien/dii.htm (as of April 2008).

[19] JBoss Rules, http://www.jboss.com/products/rules (as of April 2008).
[20] MySQL 5.0 Server Configuration Wizard, documentation available at

http://dev.mysql.com/doc/refman/5.0/en/mysql-config-wizard.html.

10

XTT+ Rule Design Using the ALSV(FD)
Grzegorz J. Nalepa and Antoni Ligęza 1

Abstract. This paper presents advances in Set Attributive Logic
and its application to develop tabular rule-based systems within the
XTT framework. The primary goal is to extend the expressive power
of simple attributive languages so that it becomes satisfactory for
complex applications, including the business rules support. A formal
framework of extended Attributive Logic with Set Values over Finite
Domains (ALSV(FD)) is presented and specific inference rules are
provided with their corresponding prototype in PROLOG.

1 INTRODUCTION

Rule-based systems (RBS) are one of the most efficient paradigms
for knowledge representation and automated inference. This is an
intuitive and well-established language [5]. However, when it comes
to the engineering practice, as well as its scientific aspect, the formal
approach to the rule language specification has to be considered. In
fact, there are number of specific rule languages based on different
formal calculi, from simple propositional logic, through subsets of
predicate calculus, to specific higher-order logics [9].

This paper presents advances in Set Attributive Logic and its appli-
cation to develop tabular rule-based systems within the XTT frame-
work. The primary goal is to extend the expressive power of sim-
ple attributive languages so that it becomes satisfactory for complex
monitoring, control, decision support and business rules applications.
A formal framework of extended Set Attributive Logic is presented
and specific inference rules are provided. The practical representa-
tion and inference issues both at the logical and implementation level
are tackled.

2 HEKATE RULE LANGUAGE

In the HEKATE project (hekate.ia.agh.edu.pl) an extended
rule language is proposed. It is based on the XTT language described
in [11]. The version used in the project is currently called XTT+.

The XTT+ rule language is based on the classic concepts of rule
languages for rule-based systems [8], with certain important exten-
sions and features, such as:

• strong formal foundation based on attributive logic,
• explicit rulebase structurization,
• extended rule semantics.

In this paper the XTT+ language will be simply referred to as XTT.
In XTT there is a strong assumption, that the rule base is explicitly

structured. The rules with same sets of attributes are grouped within
decision tables. On the rule level explicit inference control is allowed.

1 Institute of Automatics, AGH – University of Science and Technology,
Al. Mickiewicza 30, 30-059 Kraków, Poland email: gjn@agh.edu.pl
ligeza@agh.edu.pl

In this way, a set of tables is interconnected using links, correspond-
ing to inference control. This makes up a decision-tree like structure,
with tables in the tree nodes. In a general case, the XTT is a directed
graph, with cycles optionally allowed.

In RBS, a rule has a general format:

IF condition THEN decision

This format can be used in both forward and backward chaining sys-
tems. However, here we focus on the production rule systems, based
on the forward chaining paradigm. The power of a rule language
stems from the syntax and semantics of the conditional and decision
expressions. Number of systems implicitly assume, that this rule for-
mat can be extended to the conjunctive normal form (CNF), that is:

IF cond1 AND cond2 AND ... AND condN
THEN decision

which in fact corresponds to a Horn clause ϕ [1, 9], that is:

ϕ = ¬p1 ∨ ¬p2 ∨ . . .¬pk ∨ q,

Such a clause can be represented as an implication of the form:

ϕ = p1 ∧ p2 ∧ . . . ∧ pk ⇒ q.

which can be regarded as a rule in the above format, where ps cor-
respond to conditions and q corresponds to the decision. In fact the
PROLOG language uses a subset of predicate calculus, restricted to
Horn clauses [3].

The decision expression can also be a compound one in the CNF.
Now the question is what are the conditional and decision expres-
sions. In number of systems these correspond to expressions in the
propositional calculus, which makes the semantics somehow limited.
Some systems try to use some subsets of predicate logic, which gives
much more flexibility, but may complicate a RBS design and the in-
ference process. This is the case of the PROLOG language [2]. In XTT
these expressions are in the the attributive logic [9] described in more
detail in Sect. 4. This gives much more power than the propositional
logic, but does not introduce problems of the predicate logic-based
inference. In XTT an extended rule semantics is used. These exten-
sions were introduced in [13], and refined in [12].

Let us now move to attributive logic that provides a formal foun-
dation for the rule language.

3 A MOTIVATIONAL EXAMPLE
Consider a simple piece of knowledge expressed with natural lan-
guage as follows.

The regular class hours are from 8:00 to 18:00. If all the teach-
ing hours are located within regular class hours then the salary
is regular. If the teaching hours goes beyond the regular class
hours then the salary is special.

11

The problem is to formalize these two rules with attributive logic.
Let RCH stays for regular class hours, and TH for teaching hours.
We can define a fact like:

RCH = {8, 9, 10, 11, 12, 13, 14, 15, 16, 17},

and
TH = {10, 11, 12, 16, 19, 20}

to specify a case of teaching hours. Note that teaching hours may
form any subset of {0, 1, 2, 3, . . . , 23} (not necessarily a convex in-
terval).

Now, to express the rules we need an extended attributive logic
employing set values of attributes and some powerful relational sym-
bols. For example, we can have:

R1 : TH ⊆ RCH −→ Salary =′ regular ′

and
R2 : TH ∼ NRCH −→ Salary =′ special ′

where

NRCH = {0, 1, 2, 3, 4, 5, 6, 7, 18, 19, 20, 21, 22, 23}

is a specifications of non-regular class hours, and sim means a non-
empty intersection. Note that an attempt to specify the rules with
attribute logic based on atomic values (even if relational symbols
such as <,≤, > and≥ are allowed) would lead to a very long and at
least clumsy set of hardly readable rules.

4 ATTRIBUTIVE LOGIC
Attributive logics constitute a simple but widely-used tool for knowl-
edge specification and inference. In fact in a large variety of ap-
plications in various areas of Artificial Intelligence (AI) [14] and
Knowledge Engineering (KE) attributive languages constitute the
core knowledge representation formalism. The most typical areas of
applications include rule-based systems [8, 9], expert systems (ones
based on rule formalism) [6, 15] and advanced database and data
warehouse systems with knowledge discovery applications [7] and
contemporary business rules and business intelligence components
(e.g. Jess, Drools).

However, it is symptomatic that although Propositional Logic and
Predicate Logic (in the form of First-Order Predicate Calculus) have
well-elaborated syntax and semantics, presented in details in numer-
ous books covering logic for knowledge engineering [4, 6, 15], logic
for computer science or Artificial Intelligence [1, 8], the discussion
of syntax and semantics of attribute-based logic is omitted in such
positions.

In a recent book [9] the discussion of attributive logic is much
more thorough. The added value consist in allowing that attributes
can take set values and providing formal syntax of the Set Attribu-
tive Logic (SAL) with respect to its syntax, semantics and selected
inference rules.

The very basic idea is that attributes can take atomic or set values.
After [9] it is assumed that an attribute Ai is a function (or partial
function) of the form Ai: O → Di. A generalized attribute Ai is a
function (or partial function) of the form Ai: O → 2Di , where 2Di

is the family of all the subsets of Di. The atomic formulae of SAL
can have the following three forms: Ai = d, Ai = t or Ai ∈ t,

where d ∈ D is an atomic value from the domain D of the at-
tribute and t = {d1, d2, . . . , tk}, t ⊆ D is a set of such values. The

semantics of Ai = d is straightforward – the attribute takes a single
value. The semantics of Ai = t is that the attribute takes all the val-
ues of t (the so-called internal conjunction) while the semantics of
Ai ∈ t is that it takes some of the values of t (the so-called internal
disjunction).

The SAL as introduced in [9] seems to be an important step to-
wards the study and extension of attributive logics towards practical
applications. On the other hand it still suffers from lack of expressive
power and the provided semantics of the atomic formulae is poor.

In this paper an improved and extended version of SAL is pre-
sented in brief. For simplicity no object notation is introduced. The
formalism is oriented toward Finite Domains (FD) and its expressive
power is increased through introduction of new relational symbols.
The practical representation and inference issues both at the logi-
cal level and implementation level are tackled. The main extension
consists of a proposal of extended set of relational symbols enabling
definitions of atomic formulae. The values of attributes can take sin-
gular and set values over Finite Domains (FD).

4.1 ALSV(FD)
An extension of SAL was proposed in [10]. Both the syntax and se-
mantics were extended and clarified. Here some further details to
support set values of attributes over finite domains are discussed.

The basic element of the language of Attribute Logic with Set Val-
ues over Finite Domains (ALSV(FD) for short) are attribute names
and attribute values. Let us consider:

A – a finite set of attribute names,
D – a set of possible attribute values (the domains).

Let A = {A1, A2, . . . , An} be all the attributes such that their val-
ues define the state of the system under consideration. It is assumed
that the overall domain D is divided into n sets (disjoint or not),
D = D1 ∪ D2 ∪ . . . ∪ Dn, where Di is the domain related to at-
tribute Ai, i = 1, 2, . . . , n. Any domain Di is assumed to be a finite
(discrete) set.

As we consider dynamic systems, the values of attributes can
change over time (or state of the system). We consider both simple
attributes of the form Ai: T → Di (i.e. taking a single value at any
instant of time) and generalized ones of the form Ai: T → 2Di (i.e.
taking a set of values at a time); here T denotes the time domain of
discourse.

Let Ai be an attribute of A and Di the sub-domain related to it.
Let Vi denote an arbitrary subset of Di and let d ∈ Di be a single el-
ement of the domain. The atomic formulae of ALSV(FD) are defined
as follows.

Definition 1 The legal atomic formulae of ALSV for simple at-
tributes are:

Ai = d, (1)

Ai 6= d, (2)

Ai ∈ Vi, (3)

Ai 6∈ Vi. (4)

Definition 2 The legal atomic formulae of ALSV for generalized at-
tributes are:

Ai = Vi, (5)

Ai 6= Vi, (6)

12

Ai ⊆ Vi, (7)

Ai ⊇ Vi (8)

A ∼ V, (9)

Ai 6∼ Vi. (10)

In case Vi is an empty set (the attribute takes in fact no value) we
shall write Ai = {}. In case the value of Ai is unspecified we shall
write Ai = NULL (a database convention). If we do not care about
the current value of the attribute we shall write A = _ (a PROLOG

convention).
The semantics of the atomic formulae as above is straightforward

and intuitive. In case of the first three possibilities given by (1), (2),
(3) and (4) we consider Ai to be a simple attribute taking exactly one
value. In case of (1) the value is precisely defined, while in case of
(3) any of the values d ∈ Vi satisfies the formula. In other words,
Ai ∈ Vi is equivalent to (Ai = d1)⊗ (Ai = d2)⊗ . . .⊗ (Ai = dk),
where Vi = {d1, d2, . . . , dk} and ⊗ stays for exclusive-or. Here (2)
is a shorthand for Ai ∈ Di \ {d}. Similarly, (4) is a shorthand for
Ai ∈ Di \ Vi.

The semantics of (5), (2) (7),(8), (9), and (10) is that Ai is a gener-
alized attribute taking a set of values equal to Vi (and nothing more),
different from Vi (at at least one element), being a subset of Vi, being
a superset of Vi, having a non-empty intersection with Vi or disjoint
to Vi, respectively.

More complex formulae can be constructed with conjunction (∧)
and disjunction (∨); both the symbols have classical meaning and
interpretation.

There is no explicit use of negation. The proposed set of re-
lations is selected for convenience and as such is not completely
independent. For example, Ai = Vi can perhaps be defined as
Ai ⊆ Vi ∧ Ai ⊇ Vi; but it is much more concise and convenient to
use “=” directly. Various notational conventions extending the basic
notation can be used. For example, in case of domains being ordered
sets symbols such as >, >=, <, =< can be used.

4.2 BASIC INFERENCE RULES FOR ALSV(FD)
Since the presented language is an extension of the SAL (Set At-
tributive Logic) presented in [9], its simple and intuitive semantics
is consistent with SAL and clears up some points of it. For example,
the upward and downward consistency rules do hold and can be for-
mulated in a more elegant way. Let V and W be two sets of values
such that V ⊆ W . We have the following straightforward inference
rules for atomic formulae:

A ⊇ W

A ⊇ V
(11)

i.e. if an attribute takes all the values of a certain set it must take all
the values of any subset of it (downward consistency). Similarly

A ⊆ V

A ⊆ W
(12)

i.e. if the values of an attribute takes values located within a certain
set they must also belong to any superset of it (upward consistency).
These rules seem a bit trivial, but they must be implemented for en-
abling inference, e.g they are used in the rule precondition checking.

The summary of the inference rules for atomic formulae with sim-
ple attributes (where an atomic formula is the logical consequence
of another atomic formula) is presented in Table. 1. In Table 1 and

Table 1. Inference rules for atomic formulae for simple attributes

|= A = dj A 6= dj A ∈ Vj A 6∈ Vj

A = di di = dj di 6= dj di ∈ Vj di 6∈ Vj

A 6= di _ di = dj Vj = D \
{di}

Vj = {di}

A ∈ Vi Vi = {dj} dj 6∈ Vi Vi ⊆ Vj Vi ∩ Vj =
∅

A 6∈ Vi D \ Vi =
{dj}

Vi =
{dj}

Vj = D \
Vi

Vj ⊆ Vi

Table 2 the conditions are satisfactory ones. However, it is impor-
tant to note that in case of the first rows of the tables (the cases of
A = di and A = V , respectively) all the conditions are also nec-
essary ones. The interpretation of the tables is straightforward: if an
atomic formula in the leftmost column in some row i is true, then the
atomic formula in the topmost row in some column j is also true, pro-
vided that the relation indicated on intersection of row i and column
j is true. The rules of Table 1 and Table 2 can be used for checking
if preconditions of a formula hold or verifying subsumption among
rules.

4.3 RULES IN ALSV(FD)
ALSV(FD) has been introduced with practical applications for rule
languages in mind. In fact, the primary aim of the presented language
is to extend the notational possibilities and expressive power of the
XTT-based tabular rule-based systems [9]. An important extension
consist in allowing for explicit specification of one of the symbols
=, 6=,∈, 6∈, ⊆, ⊇, sim and 6∼ with an argument in the table.

Consider a set of n attributes A = {A1, A2, . . . , An}. Any rule
is assumed to be of the form:

(A1 ∝1 V1) ∧ (A2 ∝2 V2) ∧ . . . (An ∝n Vn) −→ RHS

where ∝i is one of the admissible relational symbols in ALSV(FD),
and RHS is the right-hand side of the rule covering conclusion and
perhaps the retract and assert definitions if necessary; for details see
[9].

Knowledge representation with eXtended Tabular Trees (XTT) in-
corporates extended attributive table format. Further, similar rules
are grouped within separated tables, and the whole system is split
into such tables linked by arrows representing the control strat-
egy. Consider a set of m rules incorporating the same attributes
A1, A2, . . . , An. In such a case the preconditions can be grouped to-
gether and form a regular matrix. Together with the conclusion part
this can be expressed as in Tab. 3

Table 3. A general scheme of an XTT table

Rule A1 A2 . . . An H

1 ∝11 t11 ∝12 t12 . . . ∝1n t1n h1

2 ∝21 t21 ∝22 t22 . . . ∝2n t2n h2

...
...

...
. . .

...
...

m ∝m1 tm1 ∝m2 tm2 . . . ∝mn tmn hm

In Table 3 the symbol ∝ij∈ {=, 6=,∈, 6∈} for simple attributes
and ∝ij∈ {=, 6=,⊆,⊇,∼, 6∼} for the generalized ones. In practical

13

Table 2. Inference rules for atomic formulae for generalized attributes

|= A = W A 6= W A ⊆ W A ⊇ W A ∼ W A 6∼ W

A = V V = W V 6= W V ⊆ W V ⊇ W V ∩W 6= ∅ V ∩W = ∅
A 6= V _ V = W W = D _ W = D _
A ⊆ V _ V ⊂ W V ⊆ W _ W = D V ∩W = ∅
A ⊇ V _ W ⊂ V W = D V ⊇ W V ∩W 6= ∅ _
A ∼ V _ V ∩W = ∅ W = D _ V = W _
A 6∼ V _ V ∩W 6= ∅ W = D _ W = D V = W

applications, however, the most frequent relation are =, ∈, and ⊆,
i.e. the current values of attributes are restricted to belong to some
specific subsets of the domain. If this is the case, the relation symbol
can be omitted (i.e. it constitutes the default relation which can be
identified by type of the attribute and the value).

The current values of all the attributes are specified with the con-
tents of the knowledge-base (including current sensor readings, mea-
surements, inputs examination, etc.). From logical point of view it is
a formula of the form:

(A1 = S1) ∧ (A2 = S2) ∧ . . . ∧ (An = Sn), (13)

where Si = di (di ∈ Di) for simple attributes and Si = Vi, (Vi ⊆
Di) for complex.

Having a table with defined rules the execution mechanism
searches for ones with satisfied preconditions. The satisfaction of
preconditions is verified in an algebraic mode, using the dependen-
cies specified in the first row of Table 1 for simple attributes and the
first row of Table 2 for the complex ones.

The rules having all the preconditions satisfied can be fired. In
general, rules can be fired in parallel (at least in theory) or sequen-
tially. For the following analysis we assume the classical, sequential
model, i.e. the rules are examined in turn in the top-down order and
fired if the preconditions are satisfied. Various mechanisms can be
used to provide a finer inference control mechanism [9].

4.4 ATTRIBUTE DOMAINS
It is assumed that for each XTT attribute a type has to be stated. A
type is named and it specifies: the base type and the domain. In the
design of the XTT+ attributive language the set of base types was in-
troduced in a way that simplifies the low-level interpreter integration
with Prolog, Java, and RDBMS.

An example definition could be as follows:

• suppose we have a natural language specification: “some temper-
ature”,

• create attribute type,

– pick a attribute type name, e.g. “Temperature”

– decide what base type to use, in this case it could be a float,

– define the domain by specifying constraints, e.g. -100, 100 de-
pending on the conditions,

– decide whether the domain is ordered – in case of symbolic
base type, in this case numbers are ordered,

• create new attribute, with given,

– attribute type, in this case of “Temperature”,

– name, e.g. sensor_temperature,

– decide whether the attribute can take only single values, or also
multiple values.

Generalized attributes are unordered or ordered sets (lists). This
means attributes are in fact multi-valued. Some applications for this
features are e.g.: a set of languages a person speaks, or storing sub-
sequent values (changing in time).

4.5 RULE FIRING
The XTT+ rule firing process is coherent with the regular RBS se-
mantics. It involves: condition checking and decision execution.

The condition checking can be described as a pattern matching
process, where the condition evaluates true or false. The condition is
an expression in the CNF build of expressions in the ALSV(FD).

The decision execution is where actions are possible. In a general
case, the XTT+ rule decision involves: attribute value change context
switching through inference control links event triggering. In XTT it
is assumed, that the whole system state is described by the means of
attributes.

5 PROTOTYPE IMPLEMENTATION EXAMPLE
In the prototype implementation of the knowledge base, rules and
the interpreter are developed in PROLOG. A meta-programming ap-
proach is followed. This allows for encoding virtually any structured
information. Note that in such a case the built-in PROLOG inference
facilities cannot be used directly, there is a need for a meta-interpreter
(however, this gives more flexibility in terms of rule processing).

Example domains and attributes specification in PROLOG follows:

domain(d7,[1,2,3,4,5,6,7]).
attribute(aDN,atomic,d7).
attribute(sDN,set,d7).

The atomic formulae (facts) are represented as terms of the type
fact/4 with four arguments; here are some examples:

%%% fact(<attribute-type>,<attribute-name>,
% <relation>,<attribute-domain>)
fact(atomic,aDN,eq,7).
fact(atomic,aDD,in,[monday,wednesday,friday]).
fact(set,sDD,sim,[monday,wednesday,friday]).
fact(set,sSE,subseteq,[spring,summer,autumn]).

Facts are used mostly in rule preconditions. The mean-
ing of the above facts is as follows: f1: sDN=7,
f2: aDD∈[monday,wednesday,friday], f3:
sDD∼[monday, wednesday,friday], and f4:
sSE⊆[spring,summer,autumn]. PROLOG list are used
to represent set values.

14

The state of the system is represented by all the facts true in that
state. Recall that the form A = d and A = V are allowed for state
specification.

%%% state(<state-identifier>,
% <attribute>,<value>,<type>).
state(s17,aDD,atomic,friday).
state(s17,aSE,atomic,spring).
state(s17,sDN,set,[1,3,5,7]).

Note that using set values in state specification increases dras-
tically the expressive power. This is a bit similar to the Cartesian
Product: in state s17 the attribute sDN takes all the values from
[1,3,5,7].

Inference, i.e. checking logical consequence defined by first rows
of Table 1 and Table 2 is performed with the valid/s predicate
defined as follows:

valid(f(atomic,A,eq,Value),State):-
state(State,A,atomic,StateValue),
Value == StateValue,!.

valid(f(atomic,A,neq,Value),State):-
state(State,A,atomic,StateValue),
Value =\= StateValue,!.

valid(f(atomic,A,in,SetValue),State):-
state(State,A,atomic,StateValue),
member(StateValue,SetValue),!.

valid(f(atomic,A,notin,SetValue),State):-
state(State,A,atomic,StateValue),
\+member(StateValue,SetValue),!.

valid(f(set,A,eq,SetValue),State):-
state(State,A,set,StateValue),
eqset(SetValue,StateValue),!.

valid(f(set,A,neq,SetValue),State):-
state(State,A,set,StateValue),
neqset(SetValue,StateValue),!.

valid(f(set,A,subseteq,SetValue),State):-
state(State,A,set,StateValue),
subset(SetValue,StateValue),!.

valid(f(set,A,supseteq,SetValue),State):-
state(State,A,set,StateValue),
subset(StateValue,SetValue),!.

valid(f(set,A,sim,SetValue),State):-
state(State,A,set,StateValue),
intersect(SetValue,StateValue,[_|_]),!.

valid(f(set,A,notsim,SetValue),State):-
state(State,A,set,StateValue),
intersect(SetValue,StateValue,[]),!.

The excerpt of the implementation code presented above includes
only symbolic domains. The definitions for the remaining domains
are similar to the ones presented here. Currently the use of CLP
(Constraint Logic Programming) PROLOG extensions are being in-
vestigated.

6 CONCLUDING REMARKS
Providing an expressive yet formally described rule language is of a
high importance for practical rule design and implementation. This
paper presents extensions of Set Attributive Logic as presented in
[9]. In the proposed logic both atomic and set values are allowed
and various relational symbols are used to form atomic formulae.
The proposed language provides a concise and elegant tool of sig-
nificantly higher expressive power than in case of classical attribute
logic. It can be applied for design, implementation and verification
of rule-based systems.

In the paper new inference rules specific for the introduced logic
are presented and examined. New inference possibilities constitute
a challenge for efficient precondition matching algorithm. Algebraic
solutions are proposed. Knowledge representation and some excerpt
from inference engine implemented in PROLOG is described. Com-
ponents of a rule-based system in form of extended attributive de-
cision tables (the so-called XTT paradigm) are presented and their
characteristics and applications are outlined.

Future work includes a more robust implementation of the type
system, tighter integration with a Java-based runtime, as well as an
interface do RDBMS.

ACKNOWLEDGEMENTS
The paper is supported by the Hekate Project funded from 2007–
2009 resources for science as a research project.

References
[1] Mordechai Ben-Ari, Mathematical Logic for Computer Science,

Springer-Verlag, London, 2001.
[2] Ivan Bratko, Prolog Programming for Artificial Intelligence, Addison

Wesley, 3rd edn., 2000.
[3] Michael A. Covington, Donald Nute, and André Vellino, Prolog pro-

gramming in depth, Prentice-Hall, 1996.
[4] Michael R. Genesereth and Nils J. Nilsson, Logical Foundations for

Artificial Intelligence, Morgan Kaufmann Publishers, Inc., Los Altos,
California, 1987.

[5] Adrain A. Hopgood, Intelligent Systems for Engineers and Scientists,
CRC Press, Boca Raton London New York Washington, D.C., 2nd edn.,
2001.

[6] Peter Jackson, Introduction to Expert Systems, Addison–Wesley, 3rd
edn., 1999. ISBN 0-201-87686-8.

[7] Handbook of Data Mining and Knowledge Discovery, eds., Willi Klös-
gen and Jan M. Żytkow, Oxford University Press, New York, 2002.

[8] The Handbook of Applied Expert Systems, ed., Jay Liebowitz, CRC
Press, Boca Raton, 1998.

[9] Antoni Ligęza, Logical Foundations for Rule-Based Systems, Springer-
Verlag, Berlin, Heidelberg, 2006.

[10] Antoni Ligęza and Grzegorz J. Nalepa, ‘Knowledge representation with
granular attributive logic for XTT-based expert systems’, in FLAIRS-20
: Proceedings of the 20th International Florida Artificial Intelligence
Research Society Conference : Key West, Florida, May 7-9, 2007, eds.,
David C. Wilson, Geoffrey C. J. Sutcliffe, and FLAIRS, pp. 530–535,
Menlo Park, California, (may 2007). Florida Artificial Intelligence Re-
search Society, AAAI Press.

[11] Grzegorz J. Nalepa and Antoni Ligęza, ‘A graphical tabular model
for rule-based logic programming and verification’, Systems Science,
31(2), 89–95, (2005).

[12] Grzegorz J. Nalepa and Igor Wojnicki, ‘Proposal of visual generalized
rule programming model for Prolog’, in 17th International conference
on Applications of declarative programming and knowledge manage-
ment (INAP 2007) and 21st Workshop on (Constraint) Logic Program-
ming (WLP 2007) : Wurzburg, Germany, October 4–6, 2007 : pro-
ceedings : Technical Report 434, eds., Dietmar Seipel and et al., pp.
195–204, Wurzburg : Bayerische Julius-Maximilians-Universitat. Insti-
tut für Informatik, (september 2007). Bayerische Julius-Maximilians-
Universitat Wurzburg. Institut für Informatik.

[13] Grzegorz J. Nalepa and Igor Wojnicki, ‘Visual software modelling with
extended rule-based model : a knowledge-based programming solution
for general software design’, in ENASE 2007 : proceedings of the sec-
ond international conference on Evaluation of Novel Approaches to
Software Engineering : Barcelona, Spain, July 23–25, 2007, eds., Cesar
Gonzalez-Perez and Leszek A. Maciaszek, pp. 41–47. INSTICC Press,
(july 2007).

[14] Stuart Russell and Peter Norvig, Artificial Intelligence: A Modern Ap-
proach, Prentice-Hall, 2nd edn., 2003.

[15] I. S. Torsun, Foundations of Intelligent Knowledge-Based Systems,
Academic Press, London, San Diego, New York, Boston, Sydney,
Tokyo, Toronto, 1995.

15

Defining a subset of OCL for expressing SWRL rules
Sergey Lukichev 1

Abstract. OCL is a rich-syntax language for expressing integrity
rules and many business rules can be expressed using OCL. On the
other hand, UML/OCL is a mainstream modeling technology and
adopting it for expressing rules in the upcoming Semantic Web is a
good practical issue: rules can be initially expressed in UML/OCL
and then mapped into OWL/SWRL. Since UML/OCL is more ex-
pressive than OWL/SWRL it is good to define a subset of OCL,
which can easily be mapped into the SWRL. In this paper we de-
fine this subset of OCL, called OCL-Lite, by building a mapping
from SWRL into OCL. In addition, we briefly sketch the correctness
problem of this mapping in terms of language interpretations.

1 Introduction

There are two issues we have to motivate: i). Why the subset of OCL,
which can be mapped into SWRL is needed? ii). Why we build the
mapping from SWRL to OCL in order to define this subset?

UML/OCL [1] is widely used among software engineers, while
the area of the Semantic Web lacks for modeling methodologies
and tools, comparable in popularity and maturity with UML/OCL.
Therefore, it is natural to reuse existing UML/OCL methodologies
and tools for modeling Semantic Web rules, which are expressed
in the Semantic Web Rule Language (SWRL) [3]. The first arising
problem with mapping OCL constraints into SWRL rules is a rich
OCL syntax. It allows variety of expressions and not all of them can
be mapped into SWRL. There are a number of works on sharing
rules between OWL/SWRL and UML/OCL [7], [5], [6]. However,
these works are mainly focused on the technical side of the mapping,
in particular on the implementation of the metamodel transforma-
tions using Query View Transformations (QWT). The main question,
which remains open in these works is what is exact subset of OCL,
which can be mapped into SWRL? In this work we bridge this gap
by defining a subset of OCL, called OCL-Lite, which can be mapped
into SWRL.

In order to define OCL-Lite, we build a mapping from SWRL to
OCL. The expressivity of OCL is higher than the first order logic
since closures over object relations can be expressed in OCL but not
in FOL [4]. Moreover, the syntax of SWRL is simpler than OCL,
therefore we build the mapping from the less expressive language to
the more expressive one, which is a natural method in determining
the mappable subset of OCL.

The paper is structured as follows: section 2 contains the mapping
from SWRL to OCL, in section 3 the syntax of OCL-Lite is specified
and section 4 defines the problem of the semantical correctness of
SWRL to OCL mapping and lists open issues for the further research.

1 Institute of Informatics, Brandenburg University of Technology at Cottbus,
Email: Lukichev@tu-cottbus.de

2 Translating SWRL rules into OCL invariants
First, we remind the SWRL abstract syntax, which is originally
defined in [3]. By I = Imp(Antec(A), Conseq(C)) we de-
note a SWRL rule where A and C are conjunctions of SWRL
atoms. By classAtom(CD, t) we denote a SWRL class atom,
where CD is a class description, as defined in [2] (Section
2.3.2.3. OWL DL Restrictions) and t is an object variable or
an individual. By individualPropertyAtom(p, o1, o2) we
denote a SWRL individual property atom, where p is a ref-
erence to a property, and o1 and o2 are object variables.
By A = datavaluedPropertyAtom(p, obj, val) we denote a
SWRL datatype property atom, where p is a reference to an datatype
property, obj is an object variable and val is a data value or a data
variable.

According to the semantics of SWRL [3], SWRL rules are in-
tegrity constraints in the form of logical implications.

Let I = Imp(Antec(A), Conseq(C)) be a SWRL rule, then
the mapping T transforms it into an OCL invariant as follows:

T(I) := context class(X) inv:
T(A) implies T(C)

The context class X of the resulting OCL invariant is class of a
universally quantified variable in the rule. This variable then is re-
named to self. If the rule has more than one universally quantified
variable, then X.allInstances()->forAll(y|e(y)) expression
is used recursively, where X is a class of the universally quantified
variable and e(y) is the OCL boolean expression, resulted from the
SWRL rule.

In fact, using the SWRL syntax, it is possible to express
a rule, which cannot be mapped into a syntactically cor-
rect OCL invariant. In particular, this is because SWRL
supports data variables, which are not explicitly supported
in OCL. For instance, if we have a conjunction of two
SWRL atoms: individualPropertyAtom(age, o, x) and
builtinAtom(>, x, 18), where x is a data variable, then this
corresponds to the OCL expression o.age>18, i.e. we have one
OCL expression from the conjunction of two SWRL atoms. If
the built-in atom is dropped, then the SWRL rule still remains
syntactically correct, while the resulting OCL expression will have
unknown symbol x. We do not define such possible mappings in this
paper and focus on the direct mappings of SWRL atoms.

We do not describe how URIs are mapped into names of UML
classifiers since this task is about the mapping from OWL to UML
while we define the mapping of SWRL rules into OCL invariants.

The body and the head of a SWRL rule is a conjunction of SWRL
atoms, therefore if A = A1, ..., An, then

T(A) := T(A1) and ... and T(An)

Let us consider the mapping of SWRL atoms.

• If A = classAtom(id, t) is a SWRL class atom, where id is
an URI reference of the class and t is an object variable, then

16

T(A) := t.oclIsKindOf(id)

• If A = individualPropertyAtom(p, o1, o2) where p is a
reference to an individual property, o1 and o2 are object vari-
ables, then

T(A) := o1.p=o2

• If
A = datavaluedPropertyAtom(p, obj, val) where p is a
reference to an individual property, obj is an object variable and
val is a data value or a data variable, then

T(A) := obj.p=val

• If A = builtinAtom(builtin, {obj}) where builtin is
a SWRL builtin and {obj} is a list of datatype terms, then
the resulting OCL expression is of type Boolean and de-
pends on the built-in, for instance, if builtin is ’+’ then
A = builtinAtom(’+’, a,b,c) and T(A) := a=b+c.

If A = classAtom(CD, t) is a SWRL class atom with an OWL
description CD, then we define the mapping function case wise for
each possible OWL class description CD (the syntax of OWL class
descriptions is defined in [2]):

• If CD = UnionOf(CD1, CD2) where CD1 and CD2 are OWL
class descriptions, then

T(classAtom(UnionOf(CD1, CD2), t)) :=
T(classAtom(CD1, t)) or T(classAtom(CD2,
t))

For instance, if CD = UnionOf(Winery, Brewery) then
T(classAtom(CD, t)) := t.oclIsKindOf(Winery)
or t.oclIsKindOf(Brewery)

• If CD = IntersectionOf(CD1, CD2) where CD1 and CD2 are
OWL class descriptions, then

T(classAtom(CD, t)) := T(classAtom(CD1, t))
and T(classAtom(CD2, t))

• If CD = ComplementOf(CD1) where CD1 is an OWL class de-
scriptions, then

T(classAtom(CD, t)) := not T(classAtom(CD1,
t))

• If CD = Restriction(oProp, allValuesFrom(CD1))
where oProp is a property and CD1 is a class description, then

T(classAtom(CD, t)) :=
t.oProp->forAll(x|T(classAtom(CD1, x)))

The variable x is unified with instances of the property collection
oProp . For instance, if

CD = Restriction(hasMaker,
allValuesFrom(Winery))

then
T(classAtom(CD, t)) :=
t.hasMaker->forAll(x|

T(classAtom(Winery, x))) :=
t.hasMaker->forAll(x|

x.oclIsKindOf(Winery))

• If CD is
Restriction(oProp,

someValuesFrom(CD1))

where oProp is a property and CD1 is a class description, then
T(classAtom(CD, t)) :=

t.oProp->exists(x|
T(classAtom(CD1, x)))

• If CD is
Restriction(dProp, value(d))

where dProp is a datatype property and d is data value, then
T(classAtom(CD, t)) := t.dProp=d

• If CD is

Restriction(objProp, mincardinality(n))

where objProp is a property and n is minimal cardinality, then

T(classAtom(CD, t)) := t.objProp->size()>=n

The mapping of restrictions with min- and max- cardinalities is
similar.

• If CD = OneOf({obj1,...,objn}) where obj1,...,objn
are object URIs, then

T(classAtom(CD, t)) := t=obj1 or ... or
t=objn

An example of the class atom with oneOf description

CA := classAtom(oneOf(White, Red), t)

Then

T(CA) := t=White or t=Red

An OWL enumerated class, which is specified by the direct enu-
meration of its instances, can be represented in UML by means of
a UML enumeration class. Some additional mapping from OWL
enumerated classes into UML enumeration classes may be needed
in order to produce a syntactically correct OCL expression. How-
ever, this is the problem of UML to OWL mapping, which is be-
yond our rules mapping problem.

In order to show how the mapping works, let us consider a rule ”If
the maker of a liquid is a winery, then the liquid is either a wine or a
cognac”. The rule in SWRL is:

R=Implies(Antec(classAtom(Liquid, t)
classAtom(Restriction(hasMaker,

allValuesFrom(Winery)), t))
Conseq(classAtom(

UnionOf(Wine, Cognac), t)))

The mapping of R into OCL:
T(R):= context Liquid inv:

T(classAtom(Restriction(hasMaker,
allValuesFrom(Winery)), t))

implies
T(classAtom(UnionOf(Wine, Cognac), t)))

Which is finally:
context Liquid inv:
self.hasMaker->forAll(x|

x.oclIsKindOf(Winery))
implies
self.oclIsKindOf(Wine) or
self.oclIsKindOf(Congnac)

3 The syntax of OCL-Lite

The syntax of OCL-Lite expressions is defined recursively so that
more complex expressions are built from simple ones. The definition
below is based on the result of the mapping, defined in the previous
section. In the syntax definition below we refer to OCL expressions,
which are based on navigation operations, as navigation expressions.
For instance, self.father.brothers is a navigation expres-
sion, which is not a new concept on top of OCL, but just a denotation
of the existing OCL expression, also used in the OCL specification
[1]. A navigation expression may result into a collection of instances.
We introduce this denotation in order to simplify the OCL-Lite syn-
tax by eliminating various OCL operations, which are not supported
in SWRL.

1. self is a special variable, which type is given by the invariant con-
text;

2. For every OCL model type t there is an unlimited number of vari-
ables vi

t, which are OCL expressions of type t;

17

3. If f is an OCL operation symbol with argument types t1, ..., tn

and result type tr , e1, ..., en are OCL expressions and type of ei

is ti for all 1 ≤ i ≤ n then f(e1, ..., en) is OCL expression of
type tr . The set of operation symbols includes:

• some of predefined data operations: +,−, ∗;

• attribute operations, for instance, self.age, e.salary;

• side-effect free operations defined by a class, for instance,
b.rentalDiscount();

• navigation by role names, for instance,
self.pickupBranch.

4. If e1 and e2 are OCL expressions of an appropriate type (which
provides an order relation, for instance, integer) then e1 > e2,
e1 < e2, e1 >= e2, and e1 <= e2 are Boolean OCL expres-
sions. Note, that symbols >, <, >=, and <= are OCL operations
in the OCL metamodel, however here we define OCL expressions
with these symbols separately since logically they are predicate
symbols, while expressions, defined in the previous item are dif-
ferent types of terms;

5. If e is an object variable, then e.oclIsKindOf(C), where C is a
class name, is a Boolean expression;

6. If e1, e2 are Boolean expressions then e1 and e2, e1 or e2, not e1,
e1 implies e2 are Boolean expressions;

7. If e1, e2 are OCL expressions of the same type, then e1 = e2,
e1 <> e2 are Boolean expressions.

8. If e(x) is a navigation expression, where variable x is bound
by the quantifier, for instance, self.employee, then e(x) →
size() op n is Boolean expression, where op is either >, <, =,
>=, <=, or <>. We do not define an expression of the form
e(x).size(), where e is of any OCL collection type, for instance,
resulted from some operation on collections like includesAll()
since they are not defined in SWRL. The defined expression of
the form e(x) → size() op n is obtained via the mapping from
the SWRL class atom with cardinality restriction.

9. If e is a navigation expression, for instance, self.employee,
then e → forAll(x|e1(x)) and e → exists(x|e1(x)) are
Boolean expressions, where e1(x) is a Boolean OCL expression
from variable x, which is bound by universal quantifier or existen-
tial quantifier.

4 Conclusion and future work
In this paper we described the syntactic mapping from SWRL to
OCL and on the result of this mapping defined the syntax of OCL-
Lite, a simplified subset of the OCL syntax. OCL-Lite can be used for
expressing rules, which later can be mapped into the SWRL. Some
practical experiments with the implementation of this mapping are
available at the REWERSE I1 website2.

The main open issue in this work is the semantic correctness of
the defined mapping. Having such mapping it is important to make
sure that the set of models of a SWRL rule f coincides with the set of
models of the OCL invariant t(f). We describe the problem formally.

Let I be an interpretation of SWRL rules and |= is a satisfaction
relation between interpretations and SWRL rules and there are the
following mappings:

• t : S → O, which maps SWRL rules into OCL invariants. It is a
syntactic transformation, which we have defined in this paper.

2 REWERSE I1 Rule Translators: http://oxygen.informatik.tu-
cottbus.de/rewerse-i1/?q=node/15

• T : SI → OI , which maps SWRL interpretations into OCL inter-
pretations.

The task is to prove that for any SWRL interpretation J and SWRL
rule G if

J |= G

then
T (J) |= t(G)

The solution to this task is currently in our agenda and results will
be published soon.

REFERENCES
[1] Object Constraint Language (OCL), v2.0. OMG Final Adopted Specifi-

cation.
[2] OWL Web Ontology Language Semantic and Abstract Syntax. W3C

Recommendation 10 February 2004. http://www.w3.org/2004/OWL.
[3] SWRL: A Semantic Web Rule Language Combining OWL

and RuleML. W3C Member Submission 21 May 2004.
http://www.w3.org/Submission/SWRL/.

[4] Luis Mandel and Maria Victoria Cengarle. On the expressive power of
ocl. In FM ’99: Proceedings of the Wold Congress on Formal Methods in
the Development of Computing Systems-Volume I, pages 854–874, Lon-
don, UK, 1999. Springer-Verlag.

[5] Milan Milanovic, Dragan Gasevic, Adrian Giurca, Gerd Wagner, and
Vladan Devedzic. On interchanging between owl/swrl and uml/ocl. In
Proceedings of the OCLApps Workshop, pages 81–95, Genova, Italy, 2
October 2006.

[6] Milan Milanovic, Dragan Gasevic, Adrian Giurca, Gerd Wagner, and
Vladan Devedzic. Sharing owl/swrl and uml/ocl rules. In Proceedings of
ACM/IEEE 9th International Conference on Model-Driven Engineering
Languages and Systems (MODELS 2006), Genova, Italy, 1-6 October
2006.

[7] Milan Milanovic, Dragan Gasevic, Adrian Giurca, Gerd Wagner, and
Vladan Devedzic. Towards sharing rules between owl/swrl and uml/ocl.
In Electronic Communications of European Association of Software Sci-
ence and Technology, 2007.

18

Can URML model successfully Drools rules?
Emilian Pascalau and Adrian Giurca 1

Abstract. The use of rules in business modeling is becoming more
and more important, in applications requiring dynamic change of be-
havior. A number of rule languages and tools have been proposed
to the software engineering community. However, there are not too
many visual languages for rule modeling. The goal of this paper is to
investigate the modeling capabilities of UML-based Rule Modeling
Language (URML) with respect of Drools rules. We choose Drools
because is the most important and well known open source rule plat-
form. It is friendly to both developers and business users, offers a lot
of functionality but does not provide a visual modeling environment
for rules. The Single Item English Electronic Auction Use Case is
used to illustrate the modeling capabilities. The paper concludes that
URML rules can model the large part of Drools rules but improve-
ments of the modeling language are necessary.

1 Introduction
Nowadays global information networks like Internet are the envi-
ronment were business processes take place in automated way. A
large part of e-commerce activities is devoted to B2B relationships.
The natural way to describe behavior of such businesses is through
business rules. However, actually there is no standard way for busi-
ness rule definitions. Yet there are several rule platforms and rule
languages: Drools [13] (also known as JBossRules), F-Logic, Jess,
SWRL. The most important initiative in the process of developing a
standard for rule interchange is Rule Interchange Format (RIF) [1].
Their main goal is to define a set of requirements and standards to
be followed by any translator performing rule interchange between
existing rules platforms.

A use case very well suited for such an environment and also very
well suited to have his behavior modeled with business rules is auto-
mated negotiation. This is a general problem that comprises auctions
also. In our paper we take as use case the Single Item English Elec-
tronic Auction [3], [9], [10]. We model its behavior using URML,
UML-based rule modeling language (URML) [17, 18], a rule mod-
eling extension of UML([12]).

Opposed to the approach taken by the authors in [15], where the
vocabulary is presented as an ER model, we express the vocabulary
as an UML model. In [5], [8] was argued that UML is a de facto
standard for modeling vocabularies. Moreover, in the software engi-
neering community UML class diagrams are widely used to express
vocabularies. URML, as an extension of UML, it is well suited to
capture rules on top of UML vocabularies.

The goal of the paper is to research the capabilities of URML to
model rules that can be serialized to Drools.

Drools it is the most important and well known open source rule
platform. It is friendly to both developers and business users, offers

1 Brandenburg University of Technology, Germany email: {pascalau,
giurca}@tu-cottbus.de

a lot of functionality but does not provide a visual modeling environ-
ment for rules.

It is well known that visual modeling is easier to be understood
and to be remembered, therefore we claim that a visual language for
rule modeling is necessary.

The authors of [17] argued, that rule modeling language should
provide ways for representing rule expressions, in a manner easy to
be understood by domain experts or by software engineers, who are
usually used with UML modeling. URML extends UML meta-model
with the concept of rule.

2 UML-based rule modeling language - URML
URML is developed by the REWERSE Working Group I1. Its main
goal is to provide visual constructs for modeling rules and business
processes. URML is close related to R2ML [16], [17] - a rule lan-
guage for rule interchange.

URML is wanted to be a general approach for modeling rules
in comparison with work introduced in [4]. According to [18],
URML supports derivation rules, production rules and reaction
rules. URML uses concepts such as rule condition, rule conclusion,
filters, actions and events.

A rule condition is either a ClassificationCondition, a RoleCondi-
tion or AssociationCondition. The rule condition may contain a filter
expression. For example the condition depicted in Figure 1 models
the following logical conjunction:
Proposal($bProposal) ∧ Proposal($sProposal)∧
∧product($bProposal) = product($sProposal)∧
∧price($bProposal) > 0

price : Integer
dateTime : Date
type : ProposalType
isValid : Boolean

Proposal

VR

$sProposal, $bProposal $bProposal.product=$sProposal.product

and $bProposal.price>0

Figure 1. A rule condition

A filter is either an OCLFilter or an OpaqueFilter. Classification-
Condition refers to a UML Class, which is a condition classifier, and
consists of an ObjectVariable, which is an instance of the Class; For
example the expression

$bProposal.product == $sProposal.product
and $bProposal.price > 0

from Figure 1 is an OCL filter.
A rule conclusion is either a RoleConclusion, ClassificationCon-

clusion, or AttributionConclusion, or AssociationConclusion or an

19

ftp://ftp.cs.sunysb.edu/pub/TechReports/kifer/flogic.pdf
http://www.jessrules.com/
http://www.w3.org/Submission/SWRL/
http://www.w3.org/2005/rules/wiki/RIF_Working_Group
http://oxygen.informatik.tu-cottbus.de/rewerse-i1/?q=node/7
http://oxygen.informatik.tu-cottbus.de/rewerse-i1/

Action. A more detailed description of these concepts is not possible
because of the lack of space. The Figure 2 depicts an action corre-
sponding to the following state change expression

isV alid($bProposal)

i.e. the object property isValid is set to true.

price : Integer
dateTime : Date
type : ProposalType
isValid : Boolean

Proposal

VR
$bProposal.isValid=true

U

Figure 2. A rule action

Actions are used in production rules and in reaction rules. URML
supports the following actions: AssertAction, RetractAction, Update-
Action and InvokeAction. They correspond to the OMG Production
Rule Representation (PRR) [11].

The main advantage of URML is that it extends UML with only
a few visual elements (see Table 1): circles for rules, conditions ar-
rows, conclusion arrows, action arrows. Since Drools deals only with
production rules, only production rules visual elements of URML are
depicted in Table 1. A condition arrow can be negated and is repre-
sented as a crossed arrow at origin. Conclusion arrows refer to a class
or an association. Action arrows are double-headed arrows referring
either to a class (in the case of create, delete, assign or invoke ac-
tion) or to an activity. Rule action arrow is annotated with an action
type (A for Assert Action, R for Retract Action, U for Update Ac-
tion, and I for Invoke Action). Variables are denoted in bold (such as
$bProposal).

Table 1. URML Production Rule visual elements

Rule

Rule condition arrow
A

Negated rule condition arrow
A

Rule action arrow
attr

A
attr = 10

U

3 Drools basics
Drools is an object oriented business rule management system
(BRMS) and also a Rule Engine based on Charles Forgy’s Rete al-
gorithm [13].

The Drools architecture is based on three main components: pro-
duction memory that stores the rules, working memory that stores the
facts and the inference engine.

Drools development platform comes in two flavors: as an Eclipse
plug-in Drools IDE and as web application Drools BRMS. The
Drools IDE provides developers with an environment to edit and test
rules in various formats, and integrate it deeply with their applica-
tions from within Eclipse. The IDE has a textual/graphical rule edi-
tor, a RuleFlow graphical editor, a domain specific language editor.

Our claim is that a visual rule editor is necessary and will enrich
the Drools IDE with an important and more easy to use ”feature”.
In opposition with the already built in rule text editor of the Drools
IDE this will provide a visual way to model rules. Since Drools rules

are written on top of Java Beans, visual modeling with URML is
appropriate. The actual Drools IDE functionality and configuration
is targeted mainly to developers and very technical users as authors
argue in [13](Chapter 5 - The (Eclipse based) Rule IDE). The new
feature will overcome this inconvenient and will allow software ar-
chitects and engineers to easily describe the business rules in a visual
way.

Rules are expressed in Drools Rule Language (DRL). It contains
package declaration, imports, globals, functions and rules. Package
declaration and usage are similar to those from Java. A DRL pack-
age defines a collection of rules and other related constructs. It rep-
resents a namespace, for the contained rules. Opposed to Java, the
DRL package name is not related to files or folders in any way. DRL
import statements work and have the same meaning as in Java. Glob-
als as the name specifies are global variables used mainly to make
application objects available to rules, for services or to provide data.
According with [13], DRL functions provides a way to put semantic
code in rule source file and are some how equivalent to helper classes
from Java. A DRL query is simply a way to query the working mem-
ory for facts that match the conditions stated.

Drools manual [13] provides the following example:

rule "Approve if not rejected"
salience -100
agenda-group "approval"

when
not Rejection()
p : Policy(approved == false,
policyState:status)
exists Driver(age > 25)
Process(status == policyState)

then
log("APPROVED: due to no objections.");
p.setApproved(true);

end

The above rule has an unique name
("Approve if not rejected"), optional attributes (such
as salience -100), conditions identified by when (such as
exists Driver(age > 25)) and actions introduced with then
(such as p.setApproved(true);). The conditional part of a
rule corresponds to a logical formula comprising zero or more Con-
ditional Elements. The concept of Pattern is the main conditional
element. eval is a Boolean expression evaluator. The action part
contains a list of actions that are to be executed. Drools provides
predefined logical actions such as: insert, update, insertLogical,
retract but any valid Java code is also allowed.

4 Modeling Rules with URML
Automated negotiations e.g. electronic auctions are well suited to be
modeled with rules. The past research was focused on defining and
development of protocols and strategies to be used in multi agent sys-
tems that are to perform negotiations [10, 9, 3]. Auctions, a form of
negotiation mechanism for electronic commerce, are also discussed
in a number of papers such as [19, 20, 14].

English Auction is an important type of auction discussed in a wide
range of papers such as [6, 7, 2], and we consider that the subject is
far from being finished. The principles of Single Item English Auc-
tion are: (1) only one item is sold at a time; (2) bidding is open; (3)
all participants bid against each other openly; (4)each successive bid
must be higher than the old one; (5) the seller begins the auction;

20

http://blog.athico.com/
http://www.eclipse.org
http://download.jboss.org/drools/release/4.0.5.19064.GA/drools-4.0.5-eclipse3.2.zip
http://download.jboss.org/drools/release/4.0.5.19064.GA/drools-4.0.5-brms.zip

(6) buyers bid against each other by raising the price, until only one
willing buyer remains.

4.1 The Vocabulary
Our work will use a fragment of the vocabulary (see Figure 3) for
automated negotiation similar with the one from [2].

Buyer

id
isAllowToPostBid : Boolean

Party

Seller

id
quantity
type : ProductType

Product

price : Integer
dateTime : Date
type : ProposalType
isValid : Boolean

Proposal

1 1

BID = Bid
AGR = Agreement

«enumeration»
ProposalType

1..*

{disjoint, complete}

Figure 3. Negotiation Vocabulary

Proposals encapsulate data about price, date and time, and product
in auction. They are exchanged between parties. A proposal is either
a Bid or an Agreement. A bid is a commitment from a buyer to pay
that price if the bid is declared to be a winning bid (proposal). An
agreement is a proposal upon which all parties were agreed.

4.2 The Rules
The aim of this section is to model rules that automate the negotiation
in Single Item English Auction.

VR

$buyer

$buyer.proposal=$bProposal

$seller

$seller.proposal=$sProposal

$sProposal, $bProposal

$bProposal.product=$sProposal.product

$bProposal.isValid=true

Buyer

Seller

price : Integer
dateTime : Date
type : ProposalType
isValid : Boolean

ProposalU

and $bProposal.price>0

Figure 4. Validation Rule: ”A valid proposal is a proposal that is about the
product from seller proposal and the submitted proposal price is greater than
0.”

Buyer
id
isAllowToPostBid : Boolean

Party

PostR

$party

$party instanceOf Buyer

$buyer.isAllowToPostBid=true

U

Figure 5. Posting Rule: ”Only buyers parties are allowed to post bids.”

In [3] rules are classified in taxonomies such as: proposal valid-
ity, protocol enforcement, updating status and information of par-
ticipants, agreement formation, termination. These rules taxonomy

price : Integer
dateTime : Date
type : ProposalType
isValid : Boolean

Proposal

IR

Buyer

$buyer

$buyer.proposal=$newProposal

$newProposal, $oldProposal

$newProposal.type==ProposalType.BID

$newProposal.dateTime=system.dateTime

U

$oldProposal

R

recordSubmisionTime($newProposal) serialize($oldProposal)

I I

and
$oldProposal.type==ProposalType.BID

and
$oldProposal.price<$newProposal.price

Figure 6. Bid Improvement Rule: ”Each new bid must be an improvement
over the last one. If the submitted bid is an improvement, then update the bid
time.”

price : Integer
dateTime : Date
type : ProposalType
isValid : Boolean

Proposal

Buyer

1 1

WR

$buyer
$buyer.proposal=$proposal $proposal

$proposal.dateTime==null

$proposal

R

Figure 7. Withdraw Proposal Rule: ”Buyers proposals that are not best pro-
posal have to be withdrawn.”

introduces a packaging model for the rules. Actually URML does
not provide a package modeling therefore actually we consider rule
diagrams in the same folder to be part of the same package.

To illustrate URML capabilities we model one rule from each
package obtained from the ontology.

The URML representation of a validation rule is depicted in
Figure 4. The rule uses the following vocabulary beans: Buyer,
Seller, Proposal and Product.

We have a buyer ($buyer), a seller ($seller), two proposals
($bProposal and $sProposal): one for the buyer and one for
the seller.

The arrow condition comes with variables (e.g. $bProposal) and
filter expressions $bProposal is buyer’s proposal and is bound to
the buyer’s proposal. For this we use a condition arrow going from
buyer to rule that says $buyer.proposal=$bProposal. The
same works for the seller.

The action performs a setter call on the isValid property of the
$bProposal.

The posting rule (Figure 5) determines when a party can post a
proposal.

Improvement rules define the way bids are posted. In a Single Item
English Auction each successive bid must be an improvement, there-
fore its price must be greater than the $oldProposal price. This
is exactly what the rule from Figure 6 does.

Another protocol enforcement rule is shown in Figure 7. If the
proposal $proposal belongs to a $buyer and it is not the best pro-
posal(i.e. dateT ime is null) then withdraw $proposal.

The Figure 8 depicts the model of a display rule. This rule refers
to the package updating status and information of participants and
specifies which party can see a new proposal. In Single Item English
Auction every new proposal is known to all parties involved in auc-
tion.

21

Termination rules define conditions when an auction is terminated.
The Figure 9 depicts an URML model of such rule.

price : Integer
dateTime : Date
type : ProposalType
isValid : Boolean

Proposal

DispR

Buyer

$buyer

$buyer.proposal=$proposal

$proposal

$proposal.dateTime!=null

informParty()

and $proposal.type==ProposalType.BID

I

Figure 8. Display Proposal Rule: ”If a new proposal has been posted into
the system then all parties must be informed about this.”

price : Integer
dateTime : Date
type : ProposalType
isValid : Boolean

Proposal

TR

$proposal

$proposal.type==ProposalType.AGREEMENT

terminate()

and $proposal.dateTime!=null

I

Figure 9. Termination Rule: ”If type of the current proposal from working
memory is AGREEMENT and dateT ime of proposal is not null then the
auction can be terminated.”

5 URML Rules as Drools Rules
This Section presents how a rule modeled with URML can be seri-
alized to Drools. Consider the improvement rule (see Figure 6). The
below code is the Drools DRL:

package org.ruleapp.rules.improvement;

import org.ruleapp.vocabulary.Proposal;
import org.ruleapp.vocabulary.Buyer;
import org.ruleapp.vocabulary.ProposalType;

rule "IR"
when
$oldProposal:Proposal(
type == ProposalType.BID,
$oPrice:price
)
$newProposal:Proposal(
type == ProposalType.BID,
$nPrice:price,
$nPrice > $oPrice
)

then
recordSubmisionTime($newProposal);
update($newProposal);
serialize($oldProposal);
retract($oldProposal);

end

function recordSubmisionTime(Proposal $p){

//...
}

function serialize(Proposal $p){
//...

}

The rule is part of a specific package i.e.
org.ruleapp.rules.improvement encoded in the cor-
responding DRL package declaration.

The rule (as seen in the URML model) uses the classes Proposal,
Buyer and ProposalType therefore all of them should be available to
the engine (as Java Beans). We make them available by generating
the appropriate import commands.

The name of the Drools rule (IR) is the same with the name from
the visual model.

The filter condition

$newProposal.type==ProposalType.BID and
$oldProposal.type==ProposalType.BID and
$oldProposal.price < $newProposal.price

generates the conditions (i.e. the when
part) in the Drools rule. While parts such as
$newProposal.type==ProposalType.BID
have immediate translation, the part
$oldProposal.price < $newProposal.price re-
quires the generation of new variables ($nPrice and $oPrice)
before the condition evaluation. Readers may notice that this filter
can be also implemented by means of an eval() call but then the
rule become less declarative.

Our actions are:

1. an invoke action (I) corresponding to the function call
recordSubmisionTime($newProposal);

2. an update action which normally translates into a Drools standard
action update

3. another invoke action (i.e. serialize($oldProposal);)
and

4. a retract action (R) generating the code
retract($oldProposal);

6 Future Work
While the translation of all of these actions to Drools code is straight-
forward by using DRL functions one major disadvantage of the ac-
tual URML language is that it does not offer a way to specify the
order of actions in the rule action part. For example, looking to the
rule diagram from Figure 6 it is not clear both for a human expert and
a machine in which order the depicted actions have to be performed.

The translation, presented in this paper was done manually and is
intended as example for a potential implementation, that would have
to perform it automatically.

Our proposal is to extend the URML metamodel by allowing se-
quence actions i.e an ordered sequence of standard actions as in the
Figure 10 .

Other open issues are: (1) Drools provides DRL queries while
URML does not provide any visual construct modeling that; (2)
URML does not provide any annotations to encode various DRL
rules attributes.

Drools complex constructs offering integration with databases
such as collect and accumulate are not yet supported by the
visual language.

22

price : Integer
dateTime : Date
type : ProposalType
isValid : Boolean

Proposal

Buyer

IR

$buyer

$buyer.proposal=$newProposal

$newProposal, $oldProposal

$newProposal.type==ProposalType.BID
and

$oldProposal.type==ProposalType.BID
and

$oldProposal.price<$newProposal.price

recordSubmisionTime($newProposal)

serialize($oldProposal)

U

R

I

$newProposal

I

$oldProposal

Figure 10. ”The New Bid Improvement Rule”

Finally user-defined actions encoded by plain Java code are not
yet supported. Our future work will investigate the need of an exten-
sion of the visual language that allows UML opaque expressions to
encode these actions.

A potential URML implementation for Drools rules must extends
the actual Eclipse IDE by allowing at least UML class diagrams, rule
diagrams and rule packages.

REFERENCES

[1] RIF Basic Logic Dialect. http://www.w3.org/2005/rules/
wiki/BLD, October 2007.

[2] Costin Badica, Adrian Giurca, and Gerd Wagner, ‘Using Rules and
R2ML for Modeling Negotiation Mechanisms in E-Commerce Agent
Systems’, in Proceedings of the 2nd International Conference on
Trends in Enterprise Application Architecture, TEAA2006, eds., Dirk
Draheim and Gerald Weber, volume 4473 of Lecture Notes in Com-
puter Science, pp. 84 – 99. Springer, (November 2006). http:
//dx.doi.org/10.1007/978-3-540-75912-6_7.

[3] Claudio Bartolini, Chris Preist, and Nicholas R. Jennings, ‘A Generic
Framework for Automated Negotiation’, Technical report, HP Labs,
(January 2002). http://www.hpl.hp.com/techreports/
2002/HPL-2002-2.pdf.

[4] Saartje Brockmans, Peter Haase, Pascal Hitzler, and Rudi Studer, ‘A
Metamodel and UML Profile for Rule-Extended OWL DL Ontologies’,
in Proceedings of 3rd European Semantic Web Conference, ESWC
2006, Budva, Montenegro, volume 4011 of Lecture Notes in Computer
Science, pp. 303 – 316. Springer Berlin / Heidelberg, (June 2006).
http://dx.doi.org/10.1007/11762256_24.

[5] Stephen Cranefield and Martin Purvis, ‘UML as an Ontol-
ogy Modelling Language’, in Proceedings IJCAI-99 Work-
shop on Intelligent Information Integration, (1999). http:
//hcs.science.uva.nl/usr/richard/workshops/
ijcai99/UML_Ontology_Modelling.pdf.

[6] Esther David, Rina Azoulay-Schwartz, and Sarit Kraus, ‘An English
Auction Protocol for Multi-attribute Items’, in Proceedings of the Work-
shop on Agent Mediated Electronic Commerce on Agent-Mediated
Electronic Commerce IV, Designing Mechanisms and Systems, volume
2531 of Lecture Notes in Computer Science, pp. 361 – 378. Springer
Berlin / Heidelberg, (2002). http://dx.doi.org/10.1007/
3-540-36378-5_4.

[7] Esther David, Alex Rogers, Jeremy Schiff, Sarit Kraus, and Nicholas R.
Jennings, ‘Optimal Design Of English Auctions With Discrete Bid Lev-
els’, in Proceedings of the 6th ACM conference on Electronic com-
merce, Vancouver, BC, Canada, pp. 98 – 107. ACM New York, NY,
USA, (2005).

[8] Giancarlo Guizzardi, Gerd Wagner, and Heinrich Herre, ‘On the Foun-
dations of UML as an Ontology Representation Language’, in Proceed-
ings of 14th International Conference on Engineering Knowledgein
the Age of the Semantic Web EKAW 2004, eds., Enrico Motta, Nigel
Shadbolt, Arthur Stutt, and Nicholas Gibbins, volume 3257 of Lecture
Notes in Computer Science, pp. 47 – 62. Springer Berlin / Heidelberg,
(5-8 October 2004). http://www.loa-cnr.it/Guizzardi/
EKAW.pdf.

[9] Nicholas R. Jennings, Peyman Faratin, A. R. Lomuscio, Simon Par-
sons, Michael Wooldridge, and Carles Sierra, ‘Automated Negotiation:
Prospects, Methods and Challenges’, Group Decision and Negotia-
tion, 10(2), 199 – 215, (March 2001). http://dx.doi.org/10.
1023/A:1008746126376.

[10] Sarit Kraus, ‘Negotiation and cooperation in multi-agent environ-
ments’, Special issue on economic principles of multi-agent systems,
94(1-2), 79 – 98, (1997). http://iskp.csd.auth.gr/mtpx/
agents/material/kraus97negotiation.pdf.

[11] OMG. Production rule representation (prr), beta 1. http://www.
omg.org/docs/dtc/07-11-04.pdf, November 2007.

[12] Object Management Group (OMG). UML 2.0 Superstructure
Specification. http://www.omg.org/cgi-bin/doc?ptc/
2003-08-02, August 2002.

[13] Mark Proctor, Michael Neale, Michael Frandsen, Sam Griffith Jr.,
Edson Tirelli, Fernando Meyer, and Kris Verlaenen. Drools
4.0.5. http://downloads.jboss.com/drools/docs/4.0.
5.19064.GA/html_single/index.html, January 2008.

[14] Daniel Rolli and Andreas Eberhart, ‘An Auction Reference Model
for Describing and Running Auctions’, Wirtschaftsinformatik
2005, 289 – 308, (2005). http://dx.doi.org/10.1007/
3-7908-1624-8_16.

[15] Valentina Tamma, Michael Wooldridge, Ian Blacoe, and Ian Dickinson,
‘An Ontology Based Approach to Automated Negotiation.’, in Pro-
ceedings of the Workshop on Ontologies in Agent Systems, Bologna,
Italy, AMEC02, volume 2531 of Lecture Notes in Computer Science,
pp. 317 – 334. Springer Berlin / Heidelberg, (2002). http://dx.
doi.org/10.1007/3-540-36378-5_14.

[16] Gerd Wagner, Adrian Giurca, and Sergey Lukichev, ‘A Gen-
eral Markup Framework for Integrity and Derivation Rules’,
in Principles and Practices of Semantic Web Reasoning, eds.,
François Bry, François Fages, Massimo Marchiori, and Hans-
Jürgen Ohlbach, number 05371 in Dagstuhl Seminar Proceed-
ings, Dagstuhl, Germany, (2005). Internationales Begegnungs- und
Forschungszentrum für Informatik (IBFI), Schloss Dagstuhl, Ger-
many. http://drops.dagstuhl.de/opus/volltexte/
2006/479/pdf/05371.GiurcaAdrian.Paper.479.pdf.

[17] Gerd Wagner, Adrian Giurca, and Sergey Lukichev, ‘A Usable Inter-
change Format for Rich Syntax Rules. Integrating OCL, RuleML and
SWRL’, in Proceedings of Reasoning on the Web 2006, Edinburgh,
Scotland, (May 2006). http://www.aifb.uni-karlsruhe.
de/WBS/phi/RoW06/procs/wagner.pdf.

[18] Gerd Wagner, Adrian Giurca, Sergey Lukichev, Grigoris An-
toniou, Carlos Viegas Damasio, and Norbert E. Fuchs, ‘Lan-
guage Improvements and Extensions’, Technical Report I1-
D8, REWERSE, (April 2006). http://rewerse.net/
deliverables-restricted/i1-d8.pdf.

[19] Peter R. Wurman, Michael P. Wellman, and William E. Walsh, ‘A
Parametrization of the Auction Design Space’, Games and Economic
Behavior, 35, 304 – 338, (2001). http://www4.ncsu.edu/

˜wurman/Papers/Wurman-GEB-00.pdf.
[20] Peter R. Wurman, Michael P. Wellman, and William E. Walsh, ‘Speci-

fying Rules for Electronic Auctions’, AI Magazine, 23, (2002). http:
//www4.ncsu.edu/˜wurman/Papers/AI-Mag-WWW.pdf.

23

http://www.w3.org/2005/rules/wiki/BLD
http://www.w3.org/2005/rules/wiki/BLD
http://dx.doi.org/10.1007/978-3-540-75912-6_7
http://dx.doi.org/10.1007/978-3-540-75912-6_7
http://www.hpl.hp.com/techreports/2002/HPL-2002-2.pdf
http://www.hpl.hp.com/techreports/2002/HPL-2002-2.pdf
http://dx.doi.org/10.1007/11762256_24
http://hcs.science.uva.nl/usr/richard/workshops/ijcai99/UML_Ontology_Modelling.pdf
http://hcs.science.uva.nl/usr/richard/workshops/ijcai99/UML_Ontology_Modelling.pdf
http://hcs.science.uva.nl/usr/richard/workshops/ijcai99/UML_Ontology_Modelling.pdf
http://dx.doi.org/10.1007/3-540-36378-5_4
http://dx.doi.org/10.1007/3-540-36378-5_4
http://www.loa-cnr.it/Guizzardi/EKAW.pdf
http://www.loa-cnr.it/Guizzardi/EKAW.pdf
http://dx.doi.org/10.1023/A:1008746126376
http://dx.doi.org/10.1023/A:1008746126376
http://iskp.csd.auth.gr/mtpx/agents/material/kraus97negotiation.pdf
http://iskp.csd.auth.gr/mtpx/agents/material/kraus97negotiation.pdf
http://www.omg.org/docs/dtc/07-11-04.pdf
http://www.omg.org/docs/dtc/07-11-04.pdf
http://www.omg.org/cgi-bin/doc?ptc/2003-08-02
http://www.omg.org/cgi-bin/doc?ptc/2003-08-02
http://downloads.jboss.com/drools/docs/4.0.5.19064.GA/html_single/index.html
http://downloads.jboss.com/drools/docs/4.0.5.19064.GA/html_single/index.html
http://dx.doi.org/10.1007/3-7908-1624-8_16
http://dx.doi.org/10.1007/3-7908-1624-8_16
http://dx.doi.org/10.1007/3-540-36378-5_14
http://dx.doi.org/10.1007/3-540-36378-5_14
http://drops.dagstuhl.de/opus/volltexte/2006/479/pdf/05371.GiurcaAdrian.Paper.479.pdf
http://drops.dagstuhl.de/opus/volltexte/2006/479/pdf/05371.GiurcaAdrian.Paper.479.pdf
http://www.aifb.uni-karlsruhe.de/WBS/phi/RoW06/procs/wagner.pdf
http://www.aifb.uni-karlsruhe.de/WBS/phi/RoW06/procs/wagner.pdf
http://rewerse.net/deliverables-restricted/i1-d8.pdf
http://rewerse.net/deliverables-restricted/i1-d8.pdf
http://www4.ncsu.edu/~wurman/Papers/Wurman-GEB-00.pdf
http://www4.ncsu.edu/~wurman/Papers/Wurman-GEB-00.pdf
http://www4.ncsu.edu/~wurman/Papers/AI-Mag-WWW.pdf
http://www4.ncsu.edu/~wurman/Papers/AI-Mag-WWW.pdf

	Preface
	Conference Organization
	Table of Contents
	Extracting Semantic Annotations from Moodle Data
	Using Rules for the Integration of Heterogeneous and
	XTT+ Rule Design Using the ALSV(FD)
	Defining a subset of OCL for expressing SWRL rules
	Can URML model successfully Drools rules?

