
POQLMM: A Query Language for Structured

Multimedia Documents

Andreas Henrich
Department for Databases
and Information Retrieval
University of Bamberg

D-96045 Bamberg, Germany

Günter Robbert
Department for Databases
and Information Retrieval
University of Bamberg

D-96045 Bamberg, Germany

Abstract An important research issue with mul-
timedia databases is the formulation of queries to
the database. Here the search for structured multi-
media documents or relevant parts of it gains more
and more significance. Unfortunately text retrieval
on its own is not sufficient for the realization of ca-
pable search services in this respect. Therefore, an
efficient combination of automatic text retrieval, re-
trieval in meta data and content based retrieval on
structured multimedia documents is needed.
In the present paper we propose POQLMM as

a general purpose query language for an object ori-
ented multimedia database, which supports the com-
bination of text retrieval, content-based retrieval for
other media types and traditional fact retrieval on
structured multimedia documents. To this end, we
describe the significant features of POQLMM and
point out the applicability of POQLMM by means
of some query examples.

Keywords: structured multimedia documents,
query language

1 Motivation

Up to now text retrieval dominates the search
for documents in many application areas. But
the relevance of other media types such as im-
age, audio or video increases steadily. Today
multimedia databases usually maintain a large
collection of structured multimedia documents.
As a consequence, it is not sufficient for a query
language for multimedia databases to provide
traditional fact retrieval facilities augmented
by basic text retrieval techniques. Instead

a query language for multimedia databases
should permit the exploitation of available
meta data as well as content based retrieval
facilities on structured multimedia documents
considering the structure and the content of
the diverse media objects.

In addition to the usual requirements for
query languages, such as descriptiveness, or-
thogonality and extensibility, in our opinion
a general purpose query language for multi-
media data has to fulfill seven important re-
quirements (cf. [13]). (1) The query language
(QL) must allow to search for arbitrary gran-
ules ranging from whole documents over inter-
mediate chunks to single media objects. (2)
With multimedia data the semantics is usually
given implicitly in the media objects, therefore
the QL should allow to extract features from
the media objects potentially describing their
semantics. (3) Because of the vagueness in the
interpretation of the media objects and in the
expression of the users information need partial
match and similarity queries should be facili-
tated. (4) Multimedia documents usually con-
tain substantial textual parts. Hence a QL for
multimedia data should admit the use of ma-
ture text retrieval techniques and especially the
combination of text retrieval techniques with
retrieval techniques for other media types. (5)
Due to the heterogeneous nature of multime-
dia applications there is no single combination
of different similarity measures fitting well in
all application areas. Thus, the QL must fa-
cilitate a flexible combination of different sim-

ilarity measures trimmed well for application
specific needs. (6) For a general applicability
the QL must not rely on a specific schema or
a specific type of data modeling. (7) Last but
not least a good performance for all types of
queries has to be assured.

In this paper we describe POQLMM as an
approach for such a general purpose query lan-
guage for multimedia databases. POQLMM

is an extension of the query language POQL
[10, 11] based on the semantically rich data
model of PCTE – the ISO and ECMA stan-
dard for a public tool interface for an open
repository [19]. POQLMM fulfills the require-
ments mentioned above by means of powerful
regular path expressions, several text retrieval
techniques including advanced pattern match-
ing and the vector space model, a broad variety
of feature extracting operators and similarity
measures for similarity searches on multimedia
data.

The rest of the paper is organized as fol-
lows: In the section 2 we will present an ex-
ample schema to clarify the requirements for a
QL for multimedia data and as a basis for the
examples in the following sections. Thereafter,
section 3 describes the distinguishing features
of POQLMM. In section 4 we will discuss, how
POQLMM differs from related approaches. Fi-
nally, section 5 concludes the paper.

2 Conceptual Schema

As pointed out in the introduction, POQLMM

is designed as a general purpose query language
for multimedia data. Therefore the applica-
tion of POQLMM does not rely on the use of
a specific schema. Nevertheless we will need
an example schema in the following sections to
describe POQLMM as precisely as possible. To
this end, we employ a conceptual schema based
on the PCTE data model. It is consciously gen-
eral, to cover the whole variety of multimedia
data. A concrete multimedia application will
usually apply a more concise schema.

In order to describe our example schema,
we have to give a short introduction into the

PCTE data model: The object base contains
objects and relationships. Relationships are
normally bidirectional. Each relationship is re-
alized by a pair of directed links, which are re-
verse links of each other. A link type is given
by a name, an ordered set of key attributes, a
set of non-key attributes, a set of allowed des-
tination object types and a category. For our
example schema only two link categories are
needed: composition (defining the destination
object as a component of the origin object) and
reference (assuring referential integrity).

Now that we have sketched the PCTE data
model, we are in the position to describe our
example schema, which is shown in figure 1.
The attribute types applied to each object type
are given in the ovals at the upper left corner
of the rectangles representing the object types.
The link types representing the relationships
between the object types are indicated by ar-
rows. A double arrowhead at the end of a link
indicates that the link has cardinality many.
Links with cardinality many must have a key
attribute. In the example the attribute id is
used for this purpose as long as a numerical
key attribute is used. In case of a string at-
tribute we use an attribute named name. A
’C’ or ’R’ in the triangles at the center of the
line representing a pair of links, indicates that
the link in the corresponding direction has cat-
egory composition or reference.

The upper right corner of figure 1 represents
the model for the document structure. We as-
sume that a multimedia document is made up
of one or more substructures called “chunks”,
which in turn consist of media objects or lower
level “chunks”.

In the lower right corner you can see the
representation of the different types of me-
dia objects. There are four subtypes (image,
video, audio, and text) for the object type me-
dia object with specific attributes for registra-
tion data. The object type raw data is used to
store the raw data of a media object in one or
more formats.

The part of our schema, depicted in the
lower left corner, represents the potential seg-
mentation of media objects. For example an

id.described_by

id.described_by

id.data

R C

C R

id
.s

ub
_s

eg
m

en
t

R C

.s
up

er
_s

eg
m

en
t

temporal_seg

start_time
duration

text

data
format

raw_data

spatial_seg

y_extension
x_extension

x_location
y_location

R C

word

colordepth

segment

height

keyword

.part_of

resolution

C R

framerate
channels

height
width

colordepth

C

video

name

R C
R

audio

soundsystem

chunk_type

chunk

name

width

quantisation
channels

length

description

feature

id.contains_seg

R C

R Cinterp_object

description
name

R C

image

R

length

R

name
description

id.describes

name.has_feature

description
value

id.describes name.has_feature

C R
.refers_to

description

media_object

object
real_world_

samplerate

.refers_to

.associated

id.has_interpretation

language

.is_part_of id.contains

id
.s

up
er

_c
hu

nk

id.sub_chunk

.is_used_by

document

description
doc_type
title

.used_by

id.contains_object

id.has_keyword

.c
la

ss
if

ie
s

Figure 1: Example schema

image might be segmented into regions con-
taining certain conceptual objects – we call
this a spatial segmentation – or a video or
an audio might be segmented into shots or
songs – we call this a temporal segmentation.
The assumption is that the data is segmented
manually or automatically (see e.g [14] for an
overview on automatic image segmentation al-
gorithms) when it is inserted into the database.
The segments are stored in the database as a
spatial or temporal “reference” to the original
media object. Moreover, segments themselves
can contain further subsegments.

As suggested in [1] a “multimedia interpreta-
tion model” is added to the schema. This part

is given in the upper left corner. It describes
the content of media objects and segments by
interpretation objects (interp object). For ex-
ample an image showing Steffi Graf and Andre
Agassi might be associated with two interpre-
tation objects, representing their appearance
in the image. Note that the interpretation ob-
jects can be further linked to conceptual real
world objects representing Steffi Graf and An-
dre Agassi themselves. In addition, features of
interpretation objects and real world objects
can be maintained by the object type feature.
Finally the object type keyword allows the as-
signment of keywords to media objects in order
to classify them further.

3 POQLMM

In the following subsections we will focus on
the distinguishing features of POQLMM. In
general POQLMM can be used similar to OQL
or even SQL. A query in POQLMM is either a
select-statement, or the application of an oper-
ator like count, sort+, sort–, or union.

3.1 Structured Documents

To deal with structured documents suitably,
a query language must allow to address sub-
components, super-components and – in gen-
eral – related components of an entity under
consideration in a query in a compact and nev-
ertheless powerful way. In our opinion regular
path expressions are extremely useful in this
respect, because regular path expressions are a
flexible means to define the traversal of links in
a query. With POQLMM the basis for regular
path expressions are so-called link definitions.
A link definition can be based either on the link
type and the link key attribute values or on the
link category. To define the matching key at-
tribute values for string attributes ‘*’ and ‘?’
can be used as wildcards (‘*’ = zero or more ar-
bitrary characters; ‘?’ = exactly one arbitrary
character). For natural key attribute values ‘ ’
matches an arbitrary value and in addition ex-
act values, sets and intervals can be defined.
For example _.contains matches all links of
type contains irrespective of the actual key at-
tribute value.

When a link definition shall be based on
link categories the allowed categories – rep-
resented by their first character – have to
be given in curly brackets. For example the
link definition {c} matches all composition
links. To allow for more flexibility a shield-
clause can be used to prohibit certain link
types or destination object types. For example
{c shield media_object} matches all com-
position links except those for which the desti-
nation object is of type media object .

Link definitions can be concatenated with
slashes (‘/’). Furthermore POQLMM provides
iteration facilities for path expressions. For ex-

ample [{c shield media_object}]* means
that zero or more links matching the link def-
inition {c shield media_object} have to be
traversed. In fact, not only link definitions can
be used in the [. . .]* construction but arbi-
trary path definitions (e.g. consisting of a se-
quence of link definitions separated by slashes).
Moreover POQLMM knows [path definition]+
to indicate that a path matching path definition
has to be traversed at least once and [path def-
inition] to indicate that a path matching path
definition is optional 1.

As an example for the application of reg-
ular path expressions let us consider a query
searching for the name and the keywords of
all media objects in the document titled “Leg-
ends” which have an associated interpretation
object referring to the real world object named
“Elvis Presley”. Note that the corresponding
interpretation object can be attached either di-
rectly to the media object itself or to a segment
of the media object. This might be expressed
in POQLMM as follows:

select MO:name, MO:_.has_keyword/->word
from D in document,

MO in D:[{c}]+/_.contains_object/->.
where D:title = "Legends"

and "Elvis Presley"
in MO:[{c}]+/.associated/->name

In this query the document with the title
“Legends” is addressed in base set D . Base set
MO consists of all media objects which can
be reached from the document under concern
via a path matching the regular path expres-
sion [{c}]+/_.contains_object/->. . This
path expression starts traversing one or more
composition links. Thereafter a contains object
link is traversed pointing to an object of type
media object . At the end of the path expres-
sion the notation /-> defines that the destina-
tion object is addressed and the final dot means

1The semantics of these constructs is as follows: If
an object is reached via the same link definition (which
may be the last link definition in a [path definition],
[path definition]+ or [path definition]* for the sec-
ond time, the investigation of the path under concern
is stopped without any further action. This assures ter-
mination and brings up the expected result.

that the object itself has to be included into the
calculated set. Note that we would use -> in-
stead of /-> to address the last link of the path.
Summarizing, the regular path expression cal-
culates the set containing all objects which can
be reached from the actual object in base set
D via a path consisting of one or more compo-
sition links and a final contains object link.

In the where-clause the regular path expres-
sion MO:[{c}]+/ .associated/->name is used
to calculate a set (resp. bag) containing the
names of all real world objects connected ei-
ther to the media object itself or to one of its
segments.

Finally the select-clause in the example de-
fines that the name of the media object and the
associated keywords are requested. To calcu-
late the keywords, the word attribute values of
all keyword objects which can be reached via
a has keyword link are collected via a regular
path expression.

3.2 Text Based Retrieval Facilities

Usually structured multimedia documents con-
tain significant textual data like text objects or
meta data. Thus POQLMM has integrated text
retrieval facilities inherited from POQL com-
prising pattern matching facilities analogous to
the grep command in UNIX and operators im-
plementing the vector space model. Due to
space limitations we will only sketch the inte-
gration of the vector space model here. For
a description of the pattern matching facilities
the reader is referred to [11].

The vector space model [21] assumes that
an available term set is used to identify both,
maintained documents and information re-
quests. Queries and documents are repre-
sented as term vectors of the form Di =
(ai1, ai2, . . . , ait) and Qj = (qj1, qj2, . . . , qjt)
where t is the number of terms in the term
set and where the coefficients aik and qjk rep-
resent the relevance of document Di or query
Qj , respectively, with respect to term k. In
the literature various term-weighting formulas
have been proposed to calculate the aik and
qjk. In POQL we employ the formulas pre-

sented in [22] which have been proved to be
competitive e.g. in [8].

To integrate these formulas into POQL, we
use three operators. First there are the unary
operators D_vector and Q_vector which de-
termine a document or query description vec-
tor, respectively. Roughly spoken these oper-
ators calculate the vector components for the
terms based (1) on the term frequency of the
terms in the document under concern and (2)
on the inverse collection frequency which is
high for terms occurring in only a few doc-
uments and low for terms occurring in many
documents (see [11] for the details). The third
operator is the binary operator sim calculat-
ing the conventional vector product of a doc-
ument and a query description vector. This
yields high values for “similar” documents and
low values for “unrelated” documents.

An example for the use of the vector space
model in a multimedia context might be to
search for a GIF image dealing with sorting al-
gorithms and especially quicksort . In this case
we search for an image object for which there is
a raw data object with format “GIF”. To rank
the images fulfilling this condition, we can ad-
dress the text attributes of the image object
itself and of all objects which can be reached
from this object via composition links – accord-
ing to our schema these objects comprise the
associated interpretation information. This is
done in the following POQLMM query applying
the D_vector operator to the “components”
of the image object determined by the regu-
lar path expression “[{c}]*/->.”. The query
determines the 25 image objects with the high-
est relevance for the query text “sorting quick-
sort”:

head[25](
sort-(
select (Q_vector "sorting quicksort"

sim D_vector I:[{c}]*/->.),
D:data

from I in image, D in I:_.data/->.
where D:format = "GIF"))

In this query the query text – which should
be longer than two words in practical appli-

cations – is given as a string constant. The
Q_vector operator is applied to this query text
to create the query description vector. The
document description vectors are determined
applying the D_vector operator to the text in
the “components” of the image object (recall
that image is a subtype of media object in our
schema) defined by the regular path expression
“[{c}]*/->.”. This means that the union of
all string attributes of all objects contained in
the set determined by this regular path expres-
sion is considered as the text of the image un-
der concern.

The select-statement yields a multiset of
pairs, where the first component contains the
similarity value for the actual “image” and the
second component contains the image in GIF
format. The sort- operator is applied to the
result of the select-statement yielding a list
with the pairs sorted in descending order ac-
cording to their similarity values. Then the
head operator is used to extract the 25 ele-
ments at the beginning of this list.

3.3 Feature Extraction

The features of POQLMM presented so far can
be used to retrieve media objects either ad-
dressing the interpretation objects directly or
addressing the textual parts of the data by in-
formation retrieval techniques. To address the
maintained audio, video and image objects re-
spective operators are needed.

We can distinguish three principal types of
operators (cf. table 1):
Conversion operators accomplish a conver-

sion from one media type to another. For ex-
ample an OCR operator might yield a text
from an image object and a key frame extrac-
tion operator might extract a small set of im-
ages from a video.
Segmentation operators divide a media ob-

ject into sub-objects of the same type. Ex-
amples range from a shot detection operator
for videos to region-based or edge-based image
segmentation operators. Segmentation is im-
portant from the query language point of view,
because the resulting sub-objects are usually

more specific – and therefore less ambiguous
for the specification of query conditions 2.
Feature extraction operators represent cer-

tain characteristics of media objects in a con-
venient representation. For example an oper-
ator could derive a set of musical instruments
from an audio depicting the instruments used
in the song production. Other examples are op-
erators for the derivation of a color histogram
and the texture of an image.

As an example for feature extraction let us
search for images with a “mood” similar to an
image which is stored in the file “sunrise.gif”.
Furthermore “sun” should be among the key-
words of the image:

head[25](
sort+(
select (col_hist +.data/->data

E_dist
col_hist "FILE:sunrise.gif"), .

from image
where "sun" in _.has_keyword/->word))

In this query the base set contains all im-
ages which are restricted to images with an
associated keyword “sun” in the where-clause.
The select-statement yields a multiset of pairs,
where the first component contains the similar-
ity value for the actual “image” and the second
component contains an object reference for the
corresponding image object. The unary oper-
ator col_hist calculates the color histogram
feature vectors from the image data indicated
in the operand. Afterwards the similarity of
the image histograms is measured with the help
of the binary operator E_dist, which simply
determines the Euclidean distance between two
feature vectors. The sort+ operator is applied
to the result of the select-statement yielding a
list with the pairs sorted in ascending order ac-
cording to their distance values. Then the head
operator is used to extract the 25 elements at
the beginning of this list.

2Please note that in our opinion segmentation should
be better represented in the schema — as with our ex-
ample schema. Nevertheless, a general purpose QL for
multimedia data has to provide corresponding facilities
because of the requirement for schema independence.

feature extraction segmentation conversion
audio musical instrument detection interrupt detection speech recognition

speaker recognition
video motion detection shot detection key frame extraction

caption recognition
image color histogram region based segmentation OCR

texture edge based segmentation

Table 1: Example operators for feature extraction, segmentation, and conversion

3.4 Similarity Queries

In conjunction with operators for feature ex-
traction a QL has to provide similarity mea-
sures for the extracted feature values, to allow
for similarity queries. Examples are the Eu-
clidean distance used in the previous section
and the conventional vector product used with
the vector space model. However, for the com-
bination of feature extraction and similarity
calculation in a QL, two different approaches
are conceivable: (1) We could integrate the fea-
ture extraction and the similarity calculation
in one operator receiving two media objects as
operands and calculating a similarity value as
its return value. (2) We could use separate
operators for feature extraction and similarity
calculation — as with the example in the pre-
vious section. We prefer the second approach,
because it has the advantage of more freedom
with the application of similarity measures. In
the above query example we might e.g. replace
the Euclidean distance with an operator calcu-
lating the histogram intersection.

3.5 Combining Similarity Measures

The integration of retrieval facilities for differ-
ent media types into a closed descriptive query
language allows to combine the facilities in a
flexible way. For example we can combine sim-
ilarity searches with fact conditions as in the
above examples. Furthermore we can combine
different sources of evidence for the relevance
of an object. E.g. we can combine a similarity
search based on text with a similarity search on
image features. This can be done in a rather
straightforward way multiplying or adding sim-

ilarity values calculated for the text similarity
and the image similarity using the arithmeti-
cal operators of POQLMM. Another approach
is to merge ranking lists of different sources
into a combined ranking list. This problem is
known in the literature as “data fusion” [6, 7].
For the merging of the individual lists different
strategies are conceivable. In general the prob-
lem can be interpreted as a selection problem
for which all corresponding techniques from the
area of decision theory can be applied. For ex-
ample we could use one similarity criterion as
the dominant one and consider the remaining
criteria only when the first criterion yields the
same value for a set of objects. An advantage
of this approach is that it relieves us from the
burden of performing some type of normaliza-
tion among the different criteria. Nevertheless,
the approach seems to be too extreme, because
of the dominance of one criterion.

A more flexible approach, which does nev-
ertheless not require a normalization among
the criteria, is to use the ranks of the objects
with respect to the single criteria. Let ri,j be
the rank of object i with respect to criterion j
(j ∈ {1, . . . , m} and ri,j ∈ {1, 2, . . .}) and let
wj be the weight of criterion j representing its
relative importance amongst the criteria. Then
we can use the sum

∑m
j=1 wj · 1

ri,j
to derive the

combined ranking. Let us consider an example
with three criteria and w1 = 60, w2 = 20, and
w3 = 20. In this case an object k with rk,1 = 1,
rk,2 = 6, and rk,3 = 8 would yield a value of
60 · 1

1 +20 · 1
6 +20 · 1

8 = 65, 83. For object l with
rl,1 = 2 the only chance to be ranked ahead of
object k in the combined criterion would be to
have rk,2 = 1, and rk,3 = 1 which yields a com-

bined value of 70. The combination method
sketched above is integrated in POQLMM by
the combine-operator. This operator can be
interpreted as a generalized sort-operator.
The combine-operator is applied to tuples. Af-
ter the combine keyword we have to define
how the components of the tuples shall influ-
ence the sorting. For example combine[(60,
’-’), (20, ’+’), (20, ’+’)] defines, that
the sorting with respect to the first compo-
nent has to be done in descending order (’-’),
whereas the sorting with respect to the second
and the third component has to be done in as-
cending order (’+’). Furthermore the given
numbers represent the values wj .

The following example searches for GIF
images dealing with searching and quicksort
which are similar to a sketch given by the user
with respect to color usage and texture.

head[25](
combine[(60,’-’), (20,’+’), (20,’+’)](
select
(Q_vector "searching quicksort"
sim D_vector I:.is_used_by/[{c}]*/->.),

(col_hist "FILE:sketch.gif"
E_dist col_hist D:data),

(texture "FILE:sketch.gif"
E_dist texture D:data)),

D:data
from I in image, D in I:_.data/->.
where D:format = "GIF"))

In the example the similarity with respect to
the vector space model is given a weight of 60
whereas the color and the texture similarity are
each given a weight of 20. The select-statement
yields quadruples where the first component
represents the textual similarity, the second
component represents the color similarity, the
third component represents the texture simi-
larity and the fourth component contains the
image in GIF format. The combine-operator
sorts the result based on the first three compo-
nents as described above.

3.6 Schema Independence

It might be a matter of discussion, whether fea-
ture extraction, segmentation and conversion

should be incorporated into the query language
or into the schema. In fact there are good rea-
sons to represent the segmentation of media
objects in the schema. For example this al-
lows to link interpretation objects — and in
consequence real world objects — to segments
instead of complete media objects. However,
since POQLMM is designed as a general pur-
pose QL which should not rely on a specific
schema or a specific type of modeling of the
data, an integration of corresponding facilities
into the query language is indispensable. Fur-
thermore an integration of such facilities into
the query language allows for more flexibility.

3.7 Performance

Last but not least the performance of a QL
should not be neglected. In order to achieve
a satisfactory performance for complex queries
combining fact conditions and similarity based
retrieval, specialized index structures are ap-
plied with our implementation of POQLMM.
To this end, we employ an adapted version of
our LSDh-tree [12]. When multiple similarity
criteria are combined applying the combine-
operator described in section 3.5, a variant of
the algorithm presented by Pfeifer and Pen-
nekamp [20] is used. Roughly spoken this al-
gorithm performs parallel similarity searches
on different access structures until the top po-
sitions in the resulting list are stable. The
next considered element in the performed loop
is always taken from the structure for which
the next element can contribute the highest
amount to the overall similarity. In order not
to calculate the feature vectors at query time,
the feature vectors of media objects are deter-
mined and stored in the index structure when
a document is inserted into the database.

4 Related Work

The work done in four related research areas
has stimulated our work, namely (1) query lan-
guages for multimedia data (2) path expres-
sions to simplify navigation in object-oriented
queries (3) multimedia database systems and

multimedia information retrieval and (4) the
treatment of structured documents.

Within the research area of multimedia
query languages a lot of papers have been pub-
lished in the last years. The approach most
similar to our query language is MOQL (Mul-
timedia Object Query Language) [17]. MOQL
is a general multimedia query language based
on ODMG’s Object Query Language (OQL).
Furthermore a visual front end for MOQL ex-
ists. However, MOQL mainly addresses the
complex spatial and temporal relationships in-
herent in a wide range of multimedia data
types. In contrast, our language aims mainly
for structural and feature-based best-match
and similarity queries.

As described in section 3.1 POQLMM em-
ploys regular path expressions to compute sets
of objects or sets of attribute values which can
be reached via links in a query. In recent years
many papers dealing with path expressions in
object oriented databases have been published
(see e.g. [9, 15]). In contrast to POQLMM most
of these papers use path expressions as some
kind of abbreviation to specify a desired con-
nection between two objects. Hence, some of
them discuss several strategies which can be
used when the connections are ambiguous. In-
stead, we use path expressions to define a set
of objects.

The research area of multimedia database
systems and multimedia information retrieval
has been rather active in recent years (see e.g.
[2, 23] for an overview on the work done in
these areas). However, various of these ap-
proaches are either dedicated to a single media
type like images [18, 5], strongly application
specific [24], or high level approaches [1]. Nev-
ertheless many ideas from this area influenced
our approach.

Another related area is the management of
structured documents. In [3] for example a
mapping from SGML documents into OODBs
and an extension of an SQL-like OODB query
language is given in order to deal with SGML
document retrieval. Another example is W3QS
described in [16]. W3QS is a query system
for the World-Wide Web and includes an SQL-

like query language providing pattern match-
ing facilities and graph patterns which can be
used to address the structure of WWW docu-
ments. In [4] HyperFile is presented as a data
and query model for hypertext documents. Hy-
perFile can be seen as an add-on system that
enhances a DBMS for hypertext management.
However, these approaches hardly address sim-
ilarity based queries for text and other media
types.

5 Conclusion

In this paper we have proposed POQLMM as a
general purpose query language for multimedia
databases. Although POQLMM is based on the
data model of PCTE most of the presented fa-
cilities are by no means restricted to this data
model. The main distinguishing features of
POQLMM are (1) the incorporation of power-
ful regular path expressions to deal with struc-
tured documents, (2) the integration of various
feature extraction operators for the conceivable
media types and (3) the combine-operator al-
lowing for a flexible combination of different
similarity criteria. Future research directions
for POQLMM include the development of ap-
plication specific end-user interfaces on top of
POQLMM to validate our approach. Further-
more, a sophisticated query optimizer taking
into account the regular path expressions – and
their potential invertability – as well as com-
bined similarity searches is an interesting is-
sue.

References

[1] A. Analyti and S. Christodoulakis. Content-
Based Querying, chapter 8, pages 145–180. In
Apers et al. [2], 1997.

[2] P. M. G. Apers, H. M. Blanken, and M. A.
Houtsma, editors. Multimedia Databases in
Perspective. Springer, London, 1997.

[3] V. Christophides, S. Abiteboul, S. Cluet, and
M. Scholl. From structured documents to
novel query facilities. In Proc. ACM SIGMOD
Intl. Conf. on Management of Data, pages
313–324, Minneapolis, Minn., 1994.

[4] C. Clifton, H. Garcia-Molina, and D. Bloom.
Hyperfile: A data and query model for docu-
ments. VLDB Journal, 4(1):45–86, 1995.

[5] I. J. Cox, M. L. Miller, S. M. Omohundro,
and P. N. Yianilos. Target testing and the
pichunter bayesian multimedia retrieval sys-
tem. In Proc. 3rd Forum on Research and
Technology Advances in Digital Library, pages
66–75, Washington, D.C. USA, 1996. IEEE.

[6] R. Fagin. Combining fuzzy information
from multiple systems. In Proc. 15th ACM
SIGACT-SIGMOD-SIGART Symposium on
Principles of Database Systems, June, 1996,
Montreal, Canada, pages 216–226, 1996.

[7] U. Güntzer, W.-T. Balke, and W. Kießling.
Optimizing multi-feature queries for image
databases. In VLDB 2000, Proc. 26th Intl.
Conf. on Very Large Data Bases, pages 419–
428, Cairo, Egypt, Sept. 2000.

[8] D. Harman. Overview of the second text re-
trieval conf. (TREC-2). Information Process-
ing and Management, 31(3):271–289, 1995.

[9] C. Harrison. An Adaptive Query Language
for Object-Oriented Databases: Automatic
Navigation Through Partially Specified Data
Structures. Technical Report NU-CCS-94-19,
Northeastern University College of Computer
Science, 1994.

[10] A. Henrich. P-OQL: an OQL-oriented
query language for PCTE. In Proc. 7th
Conf. on Software Engineering Environments
(SEE ’95), pages 48–60, Noordwijkerhout,
Niederlande, 1995. IEEE.

[11] A. Henrich. Document retrieval facilities for
repository-based system development environ-
ments. In Proc. 19th Annual Intl. ACM SIGIR
Conf. on Research and Development in Infor-
mation Retrieval, pages 101–109, Zürich, 1996.

[12] A. Henrich. The LSDh-tree: An access struc-
ture for feature vectors. In Proc. 14th Intl.
Conf. on Data Engineering, February, 1998,
Orlando, Florida, pages 362–369. IEEE Com-
puter Society, 1998.

[13] A. Henrich and G. Robbert. Combining mul-
timedia retrieval and text retrieval to search
structured documents in digital libraries. In
Proc. 1st DELOS Workshop on Information
Seeking, Searching and Querying in Digital Li-
braries, Zurich, Switzerland, December 2000.

[14] B. Jähne. Digital Image Processing. Con-
cepts, Algorithms, and Scientific Applications.
Springer-Verlag, Berlin, 1997.

[15] M. Kifer, W. Kim, and Y. Sagiv. Querying
Object-Oriented Databases. In Proc. ACM
SIGMOD Annual Conf. on Management of
Data, pages 393–402, San Diego, Cal., 1992.

[16] D. Konopnicki and O. Shmueli. W3QS: A
query system for the world-wide web. In Proc.
21th Intl. Conf. on Very Large Data Bases
(VLDB ’95), pages 54–65, Zürich, 1995.

[17] J. Z. Li, M. T. Özsu, D. Szafron, and V. Oria.
Moql: A multimedia object query language. In
The Third Intl. Workshop on Multimedia In-
formation Systems, pages 19–28, Como, Italy,
1997.

[18] W. Niblack, R. Barber, W. Equitz, M. Flick-
ner, E. H. Glasman, D. Petkovic, P. Yanker,
C. Faloutsos, and G. Taubin. The QBIC
project: Querying images by content, using
color, texture, and shape. In SPIE Proc. Vol.
1908, pages 173–187, San Jose, 1993.

[19] Portable Common Tool Environment - Ab-
stract Specification / C Bindings / Ada Bind-
ings. ISO IS 13719-1/-2/-3, 1994.

[20] U. Pfeifer and S. Pennekamp. Incremental
Processing of Vague Queries in Interactive Re-
trieval Systems. In Hypertext - Information
Retrieval - Multimedia ’97: Theorien, Modelle
und Implementierungen integrierter elektron-
ischer Informationssysteme, pages 223–235,
Dortmund, 1997. Univ.-Verlag Konstanz.

[21] G. Salton. Automatic Text Processing: the
Transformation, Analysis, and Retrieval of
Information by Computer. Addison-Wesley,
Reading, Mass., 1989.

[22] G. Salton and C. Buckley. Term-weighting ap-
proaches in automatic text retrieval. Infor-
mation Processing & Management, 24(5):513–
523, 1988.

[23] V. S. Subrahmanian and S. Jajodia, editors.
Multimedia Database Systems – Issues and
Reasearch Directions. Springer, Berlin, Hei-
delberg, 1996.

[24] J.-K. Wu, B. M. Mehtre, Y. J. Gao, C.-P. Lam,
and A. D. Narasimhalu. STAR—A multimedia
database system for trademark registration. In
Applications of Databases, 1st Intl. Conf., vol-
ume 819 of LNiCS, pages 109–122, Vadstena,
Sweden, 1994. Springer.

