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Abstract. This paper describes the explanation in OWL landscape. In
recent years there has been huge progress, both in theory and imple-
mentation, in the area of explaining the causes of entailments in OWL
ontologies. This paper charts the course of explanation in OWL and then
looks at ways in which user understanding of ontologies might be further
improved. Specifically, the use of fine-grained justifications, augmenta-
tion of justifications with lemmas, and the provision of browseable models
are discussed as methods of further improving user understanding in the
context of ontologies and entailments.

1 Introduction

In 2003, as the Web Ontology Language OWL [12] was on the verge of becoming
a standard, one of the first OWL ontology editors, Protégé-OWL [8] was re-
leased. This was in addition to OILed [1], which had built in support for saving
DAML+OIL [4] ontologies using the OWL vocabulary, and had been released
a few years earlier. Both of these editors shared the capability of being able to
“connect” to description logic reasoners such as Pellet [14], FaCT++ [15] and
Racer [2], in order to perform standard description logic reasoning services, such
as satisfiability checking and subsumption testing, on the ontologies being edited.
Many users were enticed into using these reasoning services when building their
ontologies, because they saw the use of them as a checking or compilation step
during the course of ontology development. Indeed, it was typically the case that
users found it useful when modelling errors were identified through the use of
reasoning, in particular when unsatisfiable classes were identified and highlighted
in the UIs of these editors.

Both OILed and Protégé had little in the way of support for debugging
ontologies. It was not possible to obtain explanations as to why classes were
unsatisfiable. The best debugging support that was available at the time was the
practice of painting unsatisfiable classes in red, which made them relatively easy
to spot. In turn, this allowed users to manually “trace” through the ontology so as
to spot patterns and locate the part of the ontology that they should concentrate
on when trying to understand the reasons for, and get rid of, the unsatisfiable
classes. If a class was unsatisfiable, users would usually look to see if any of the
super-classes were unsatisfiable and then concentrate on those. Likewise, they
would check to see if the fillers of any existential restrictions were unsatisfiable,
and if so, navigate to these, and then attempt to spot why they were unsatisfiable.



Having narrowed down the axioms on which they should concentrate on, many
users would then start to ‘rip out’ axioms from the ontology. Most notably people
would remove disjoint classes axioms, in an attempt to rid an ontology of any
unsatisfiable classes.

All in all, debugging an ontology that contained unsatisfiable classes was a
wretched and error prone process. So much so that in some cases, users were
afraid to use a reasoner to check their ontologies. At worst, for OWL, users
would switch to a different or legacy knowledge representation language such as
Frames [11], as they perceived these languages as being easier to understand and
use.

Since the early days of OWL, there have been huge advancements in the
debugging facilities provided by ontology development environments. Most no-
tably, the ontology editor Swoop [7], from the MIND lab at the University of
Maryland provided practical implementations of explanation services to sup-
port debugging, making it possible to obtain an explanation for any entailment
that was exposed through the user interface. Since then debugging support was
steadily incorporated into other tools and ontology editors. Indeed, today it is
arguable that no respectable ontology editor should be without the ability to
provide explanations for why entailments hold to end users .

The purpose of this paper is to review work in the area of debugging and
explanation for OWL ontologies, take a look at debugging support in the main-
stream ontology editors, peek at current state of the art work on explanation,
and finally speculate on possible future directions for explanation and debugging
support.

2 Preliminaries

2.1 OWL-DL and OWL 2

OWL-DL is a flavour of OWL that corresponds to the description logic SHOIN (D).
OWL 2, which corresponds to the description logic SROIQ(D), is the latest ver-
sion of OWL that enhances OWL-DL to make it more expressive by adding new
kinds of class constructors and axioms. Herein, OWL is now used to refer to
OWL 2. It is assumed that the reader is familiar with the various OWL class
constructors and axioms. For an in-depth review of OWL the interested reader
is referred to [5]. What follows is a recap on interpretations and models.

The semantics of OWL is given by interpretations. Interpretations explicate
the relationship between syntax and semantics. An interpretation, I = 〈∆I , ·I〉,
is tuple that consists of a non-empty interpretation domain, ∆I , and an inter-
pretation function, ·I . The interpretation function maps each class name A into
a subset AI of the domain, each property name P into a subset RI of a binary
relation over the domain, and each individual name a into to an object aI in
the domain. The interpretation function is extended to deal with complex class
descriptions and axioms. If an interpretation satisfies every axiom in an ontology
O then the interpretation is said to be a model of O.



Example Consider a very small ontology containing a single axiom O = {Car v
V ehicle}. Let ∆I = {x0} (that is, the interpretation domain ∆Icontains one
object x0) and let Car and V ehicle be interpreted as follows: CarI = {x0},
V ehicle = ∅. This particular interpretation is not a model of O because x0

is not in the interpretation of V ehicle and hence the interpretation does not
satisfy the axiom Car v V ehicle. However, the interpretation CarI = {x0},
V ehicle = {x0} is a model of O because it satisfies all axioms in O.

2.2 Terminology

In what follows terminology that is related to the field of explanation and de-
bugging is reviewed. Ontologies that are incoherent, because they contain un-
satisfiable classes, or ontologies that are inconsistent because they do not have
any models, generally arise as the result of modelling errors. Entailments such
as classes being unsatisfiable, or ontologies being inconsistent are usually viewed
as being undesirable entailments.

Signature The signature of an ontology O is the set of class, property and
individual names that are used in axioms in O. For example, consider O = {A v
∃R.C,B v ∀S.D}, where the signature of O is {A,R,C,B, S,D}.

Unsatisfiable Classes A class is unsatisfiable (with respect to an ontology)
if it cannot possibly have any instances in any model of that ontology. More
precisely, a class is unsatisfiable if and only if it is interpreted as the empty set
in all models. Since unsatisfiable classes are always interpreted as the empty
set, and the empty set is a subset of every set, then an unsatisfiable class is a
subclass of every class. In description logic notation, C v ⊥ means that C is
unsatisfiable.

Incoherent Ontologies In the context of debugging and explanation, an in-
coherent ontology is an ontology that contains at least one unsatisfiable class.
More precisely, an ontology O is incoherent if and only if O |= C v ⊥ for at
least one class name C in the signature of O.

Inconsistent Ontologies An ontology O is inconsistent if and only if O does
not have any model. An inconsistent ontology entails > v ⊥. It should be noted
that an ontology that just contains unsatisfiable classes (other than >) is not
inconsistent.

Entailment We write O |= η if all models of O also satisfy η. In this case “O
entails η”, and we also say that η is an entailment in O. A standard description
logic reasoner test each class for (un)satisfiability, each ontology for consistency
and can answer various entailment queries.



Justifications Justifications are a type of explanation for entailments in on-
tologies.

Let O be an ontology and η any arbitrary entailment, such that O |= η (O
entails η). Then J is a justification for η in O if J ⊆ O, J |= η and for any
J ′ ⊂ J J ′ 6|= η. Intuitively, a justification for an entailment in an ontology, is a
minimal subset of the ontology that is sufficient for the entailment in question
to hold. A justification is minimal in the sense that for any proper subset of the
justification, the entailment in question does not hold.

Root and Derived Unsatisfiable classes A class C that is unsatisfiable
with respect to an ontology O is a derived unsatisfiable class if there exists a
justification J for O |= C v ⊥, and a justification J ′ for O |= D v ⊥ such
that J ⊃ J ′. A class that is not a derived unsatisfiable class is known as a
root unsatisfiable class. An unsatisfiable class, all of whose justifications are
supersets of at least one justification for another unsatisfiable class is known as
a pure derived unsatisfiable class.

In a nutshell, derived unsatisfiable classes have justifications that are super-
sets of the justifications for some other unsatisfiable class in the same ontology.
If an unsatisfiable class does not have any justifications that are supersets of
justifications for some other unsatisfiable class then the class is a root unsat-
isfiable class. The significance of this is that a user should aim to repair root
unsatisfiable classes before repairing all other unsatisfiable classes because some
or all derived unsatisfiable classes may also be repaired in the process of doing
this.

3 User facing tools

The first tool to bring sound and complete explanation generation facilities to
end users was Swoop. The comprehensive debugging and repair facilities in this
tool go a long way in addressing many of the issues identified in the previous sec-
tion. Given an incoherent ontology, a user is able to determine the root/derived
unsatisfiable classes so that they know which classes to concentrate on fixing.
They can then browse justifications for these unsatisifable classes in order to at-
tempt to understand why the classes are unsatisfiable. Finally they can use the
repair tool in Swoop to suggest a repair plan for the ontology that will ultimately
result in all unsatisfiable classes turning satisfiable.

An example justification, for DNA ≡ ⊥, as displayed in Swoop, is shown
in Figure 1. As can be seen, Swoop presents justifications as ordered indented
lists of axioms. However, these are only based on heuristics—there hasn’t been
any research into an optimal ordering of axioms. For a given axiom, the right
hand side (RHS) of the axiom is established and then examined so that any
names appearing in the RHS signature are used to indicate which axioms should
immediately follow and be indented.



Fig. 1. An example justification as presented in the ontology editor Swoop

4 User centred tasks

Broadly speaking, explanation tools in ontology development environments should
ideally satisfy the following use cases. Each use case is a task that a user of a
tool that generated explanations might want to accomplish.

1. Understanding entailments—A user browsing an ontology notices an
entailment and opportunistically decides to obtain an explanation for the
entailment in order to get a feel as to why the entailment holds.

2. Debugging and repair—A user is faced with an incoherent ontology, or
an ontology that contains some other kind of undesirable entailment, and
they need to determine the causes of the entailments in order to generate a
repair plan.

3. Ontology comprehension—A user is faced with an ontology that they
haven’t seen before. In order to get a better picture of the ontology they
use various metrics such as the number of entailments, the average number
of justifications for an entailment and so on. This helps them to build up
an image of how complex the ontology is in terms of expressivity. Is also
provides them with more information if they need to decide whether they
like the ontology or not.

4. Understanding justifications—Once a justification for an entailment in
an ontology has been obtained, a user wants to understand the justification
better. For example, they would like to know what entailments arise from
the justification and which axioms within the justification itself cause the
entailments to hold.

Over the past few years, ontology development environments have gone from
no support for these tasks through to respectable support for Tasks 1 and 2.
Indeed, since Swoop set the bar for explanation and repair facilities in ontol-
ogy development environments, other tools have slowly begun to offer similar
facilities. However, taking tools in this area into consideration, there are still
some holes that need to be filled. In particular, it is arguable that the use of



explanations and justifications for ontology comprehension, and the ability to
gain more insight and understanding into the justifications themselves are still
under-supported tasks. The remainder of the paper discusses work in progress
in the field of explanation and understanding of OWL ontologies.

5 Fine-grained Justifications

Due to the typical construction of rich ontologies, and the way in which on-
tology development environments display and make it easy to edit axioms, it
is frequently the case that axioms can be rather long. Hence, justifications can
contain “long” axioms, where only part of the axioms are required for the en-
tailment in question to hold. In many cases, these parts can obfuscate the true
reasons as to why an entailment holds. Justifications that contain long axioms
could also result in information being unnecessarily lost when repairing an on-
tology through deleting axioms, because it isn’t clear which parts of the axioms
contribute to the entailment explained by the justification.

The ontology editor Swoop uses heuristics to strike out class, property and
individual names that are superfluous to an entailment. An example of strikeout
in action is shown in Figure 2, where the names process, contains and isomers
have been struck out. This has the advantage of focusing the users attention on
the relevant parts of the justification.

Fig. 2. An example justification

Justifications that contain axioms that do not contain any redundant parts
have been known as fine-grained justifications [9] or precise justifications [6].
For lack of a formal definition of fine-grained justifications, various implementers
have used different ad-hoc approaches to computing them. As well as the heuris-
tic based strikeout feature used in Swoop [6], other examples of computing these
kinds of justifications include the repair tool developed as part of Lam’s PhD



thesis [10], and some syntactic generalisation techniques proposed by Schlobach
[13]. A problem with prior approaches is that they essentially defined fine-grained
justifications in an operational sense by specifying how to compute them. This
has made it difficult to pin down what a fine-grained justification is. However, re-
cent theoretical work by the authors [3]1 has changed this situation by providing
a formal definition of fine-grained justifications.

We have defined laconic justifications, which informally, are justifications
that only consist of axioms that do not contain any superfluous parts and whose
parts are as small and as weak as possible. Precise justifications can be derived
from laconic justifications, and contain axioms that are as small, flat and as weak
as possible. Laconic justifications are aimed at improving understanding, while
precise justifications are aimed at guiding the construction of a semantically
minimal repair (see [3] for further details).

This work on precise justifications resulted in some surprising results when
experiments were performed on several publicly available ontologies. For exam-
ple, for some ontologies, it was found that for a given entailment, the number
of laconic justifications were fewer in number than the number of regular justi-
fications. Examples were also found where regular justifications masked further
laconic justifications. Full details are available in [3], an example of masking is
shown here:

Example One of the main issues with regular justifications is that for a given
entailment they can mask other justifications. Consider the following ontology
O = {C v B u ¬B u D,C v ¬D} which entails C v ⊥ (C is unsatisfiable).
A justification for C being unsatisfiable would never include C v ¬D. This is
clearly undesirable as it could hamper the possibility of choosing the correct
repair plan to remove this undesirable entailment. A real example of such mask-
ing was found in the DOLCE ontology. The entailment quale v region has
a single justification: {quale ≡ region u ∃ atomic-part-of.region}. How-
ever, computing laconic justifications for this entailment reveals that there are
further justifications that are masked by this regular justification. There are
three laconic justifications, the first being {quale v region}, which is directly
obtained as a weaker form of the regular justification. This first laconic justifi-
cation could be identified in Swoop using the strike out feature (The conjunct
∃ atomic-part-of.region would be struck out). More interestingly, Figure 3
shows two additional laconic justifications.

5.1 Automatic Lemma Generation

While justifications have proved to be incredibly useful for end users when debug-
ging ontologies, preliminary experimental evidence suggests that, in many cases,
even with justifications in hand, users can still find it difficult to understand the
causes of entailments. The exact reasons for this are unknown. However, in the
course of observing users who are tying to understand justifications, it has been

1 Accepted as a paper in the research track at ISWC this year.



quale v ∃atomic-part-of.region
atomic-part-of v part-of

part-of v part
−

region v ∀part.region

quale v atomic-part-of.region

atomic-part-of v atomic-part
−

atomic-part v part

region v ∀part.region

Fig. 3. Masked justifications from the DOLCE ontology

noted that there are certain justifications that seem difficult for most users to un-
derstand. The authors hypothesise that these justifications contain non-obvious
(“hidden”) entailments, and in order to understand the whole justification, a
user must spot these non-obvious entailments.

An example of such a case is shown in Figure 4 which is taken from an
ontology about movies that was posted to the Protégé mailing list 2. In this
example, the justification for Person vMovie also entails that the class Movie
is equivalent to Thing, and hence every class is a subclass of Movie. However,
this isn’t explicit in the justification, and for most people this is far from obvious,
yet it is critical to realise that this entailment holds in order to understand the
explanation.

Person v > (1)

ParentalAdvSuggested ≡ ∀hasV iolenceLevel.Medium (2)

hasV iolenceLevel domain Movie (3)

ParentalAdvSuggested v CertificationCatMovie (4)

CertificationCatMovie vMovie (5)

Fig. 4. A justification for Person vMovie. This is an example of a justification that
seems to be difficult for most users to understand.

One possible solution is to augment justifications with automatically gen-
erated lemmas. These lemmas can help to bridge the gap in understanding,
highlighting the non-obvious entailments that are required in order to under-
stand a justification. What lemmas should be used in what context is presently
unknown. In order to come up with a recipe for augmenting justifications with
lemmas, an investigation is under way to determine the factors that make jus-
tifications difficult to understand. It is hoped that this will result in a model
for the complexity of understanding a justification. With this model in hand,
it should then be possible to start to identify whether or not a justification
is difficult to understand and decide which parts of the justification should be
bridged with lemmas. It is expected that lemmas will be useful for an immediate
2 http://thread.gmane.org/gmane.comp.misc.ontology.protege.owl/22321/focus=22370



overview of a justification and allow a user to “drill down” into the justifi-
cation should they require more understanding of the entailment or the need
to carry out a repair of the ontology. As an example, some of the axioms in
Figure 4 could be replaced as follows: axiom 2 could be rewritten to make it
more laconic and to show a negated existential restriction so that it becomes
¬∃hasV iolenceLevel.> v ParentalAdvisorySuggested, axiom 4 (the property
domain axiom) could be rewritten to make the existential implication explicit
so that it becomes ∃hasV iolenceLevel> vMovie, and axioms 4 and 5 could be
replaced with one axiom ParentalAdvSuggested vMovie.

6 Models—SuperModel

Another possible strategy for users attempting to get a grasp on an ontology and
the kinds of entailments that hold in it is for them to think about models. Many
people find the notion of models very natural, and are perfectly happy to browse
diagrams of blobs connected by lines. Figure 5 shows a screenshot of “Super-
Model”, which is a new prototype tool for browsing models of class descriptions.
The tool allows users to select a class description (from the hierarchy on the
left hand side) and then shows a model of the class description, rooted at the
“rootIndividual” instance, on the right hand side. Arcs labelled with the names
of properties represent relationships to other individuals. Users of tools such as
Protégé tend to be not unfamiliar with such visualisations, because they have
seen components that can display similar diagrams of an ontology. However, this
is where the similarity with other visualisation tools ends. Because SuperModel
displays models generated by description logic reasoners, it is capable of show-
ing entailed relationships between individuals and entailed types of individuals.
By clicking on a node in the graph, a user is able to view the classes that an
individual, which is represented by the node, belongs to.

In the example in Figure 5 the class Margherita has been selected from the
pizza ontology. SuperModel shows an example of a model for Margherita. It is
easy to see that an individual that is a Margherita (pizza) has two hasTopping
relationships and that one of these hasTopping successors has a hasCountryOfOrigin
successor to an individual that is Italy. SuperModel allows the user to gradually
expand the model in order to fully explore it.

One possible use of SuperModel is that it could be used to given an indication
of the reasons for non-subsumption. A frequent question on mailing lists is “Why
isn’t X inferred to be a subclass of Y?”. In such situations, SuperModel is able to
generate example models that are “counter-models” that show how an individual
could be an instance of the subclass (X) and not an instance of the superclass
Y . At this stage, we are investigating whether or not the use of counter-models
as an aid in understanding the reasons for non-subsumption is of benefit to a
typical ontology modeller.



Fig. 5. A screenshot of the SuperModel plugin in Protégé

7 Conclusions

Over the past few years since OWL became a standard, services and tools for gen-
erating explanations of entailments have come from nothing to being more than
respectable. In particular, the ability to generate justifications for entailments
is now seen as a key inference service that is required for the development of
ontologies. However, anecdotal evidence suggests that certain types of justifica-
tions can be very hard if not impossible for a broad range of users to understand.
Work to remedy this situation includes identifying superfluous parts of axioms
using so-called laconic justifications, experimenting with augmenting justifica-
tions with lemmas, and the use of models for improving ontology understanding
and comprehension.
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