Characterizing and Detecting Integrity Issues in
OWL Instance Data

Jiao Tao, Li Ding, Jie Bao, and Deborah L. McGuinness

Tetherless World Constellation, Computer Science Department
Rensselaer Polytechnic Institute
110 8th St., Troy, NY 12180
{taoj2,dingl,baojie,dlm}@cs.rpi.edu

Abstract. We view OWL instance data evaluation as a process in which
instance data is checked for conformance with application requirements.
We previously identified some integrity issues raised by applications de-
manding closed world reasoning. In this paper, we present a formal char-
acterization of those integrity issues using autoepistemic operators, and
a practical SPARQL-based issue checking approach that is a sound ap-
proximation for detecting integrity issues.

Key words: Instance Data, Evaluation, Autoepistemic Description Log-
ics, OWL, SPARQL

1 Introduction

Before using Semantic Web data, it is important to confirm that the instance
data meets the semantic expectations of the ontology and application designers.
Our previous work has recognized this task as Semantic Web instance data eval-
uation and identified some integrity issues beyond conventional syntactic errors
and logical inconsistencies [4]. Some integrity issues depend on whether the ap-
plications include closed world assumptions (CWA) or open world assumptions
(OWA). Our previous work attempts to capture integrity issues in OWL instance
data by adopting global closed world assumptions. In this work, we further ex-
tend the framework to also support local closed world assumptions.

The main contributions of the paper include: (i)using Autoepistemic Descrip-
tion Logics (ADLS) to characterize these integrity issues as integrity constraints.
This formal representation clarifies the semantics of these integrity issues which
were captured by RDF graph patterns in our previous work, and enables local
closed world reasoning which is more flexible than the previous global closed
world reasoning; (ii)we show that issues that are characterized as ADL integrity
constraints can be soundly approximated by SPARQL patterns.

2 Characterizing Integrity Issues in OWL Instance Data

Autoepistemic Description Logics (ADLs)[1] extend DLs with two modal op-
erators K and A from nonmonotonic logic MKNF'. Intuitively, K and A opera-
tors refer to minimal knowledge and assumptions respectively. An autoepistemic
extension of OWL [2] has been proposed to realize closed world reasoning in
the Semantic Web. In this section, we show how to model some typical integrity
issues in OWL instance data using ADLs. In what follows, by default, we use
KB, 7, A, IC, C(D), P to denote a knowledge base, TBox, ABox, integrity
constraint, class, and property respectively.

2.1 Missing Property Value Issues (MPV)

Missing property value issues (MPV) may arise when a property value that
is expected to be specified is not explicitly given in the data set. We identify
three MPV issues M PV3, ICypyv_, and ICypy. corresponding to the OWL
constructs owl:someValuesFrom, owl:cardinality and owl:minCardinality.

Definition 1 (M PV3 Issue) Given a knowledge base KB = {T, A} which is
satisfiable. Let ICypy, = {KC T 3AP.T} for some C,P. If {T, A, ICypv,}
is not satisfiable, then the ABox A has a M PV3 issue.

Example Assume that there exist Individual (W type(Wine)) and Class(Wine
partial restriction(locatedIn someValuesFrom(Region))) in the instance
data and the wine ontology respectively. The application requires that each wine
instance to have a location, thus integrity contraint {KWine C JAlocatedIn.T}
is added. If the constraint is not satisfied, a MPVd issue would occur.

Similarly, the integrity constraints corresponding to owl:cardinality and
owl:minCardinality could be formalized as ICypy. = {KC C (= n)AP. T}
and ICypy. = {KCLC (> n)AP.T} respectively. The MPV_ and MPV > issues
could be defined accordingly. Here, we extend the ALCK y with quantification
constructor Q.

2.2 Unexpected Individual Type Issues (UIT)

Unexpected individual type issues may occur when a given individual in the
instance data is declared to have types that are not expected by the referenced
ontologies, or is missing a type declaration when it is expected. We list three
UIT issues UITy,, UIT,, and UITy corresponding to the RDFS/OWTL constructs
rdfs:domain, rdfs:range and owl:allValuesFrom.

Definition 2 (UIT, Issue) Given a knowledge base KB = {T, A} which is
satisfiable. Let ICyr, = {3KP.T C AC} for some C,P. If {T, A, ICyr,} is
not satisfiable, then the ABox A has a UIT, issue.

Definition 3 (UIT, Issue) Given a knowledge base KB = {T, A} which is sat-
isfiable. Let ICyrr, = {T E VP.AC} for some C,P. If {T,A,ICyr.} is not
satisfiable, then the ABox A has a UIT, issue.

Definition 4 (UITy Issue) Given a knowledge base KB = {T, A} which is sat-
isfiable. Let ICy i, = {KC T VP.AD} for some C,D,P. If {T, A, ICyrm,} is
not satisfiable, then the ABox A has a UITy issue.

2.3 Non-specific Individual Type Issues (NSIT)

Non-specific individual type issues may arise if a given individual in the
instance data is declared to have a general type rather than a more specific type
that is expexcted by the application.

Definition 5 (NSIT Issue) Given a knowledge base KB = {T, A} which is
satisfiable. Let ICnsir = {KC C AC, U ...U AC,}, for some {C,Cy,...,Cy}.
If{T, A, ICNsiT} is not satisfiable, then the ABox A has a NSIT issue.

We propose the extension of ALCK yp to formalize more integrity issues,
such as excessive property value issue (EPV), redundant individual issue (RIT),
and uniqueness issue (UT) [5]. With this approach, users can selectively enforce
integrity constraints on individual classes and properties, thus allows not only
global but also local closed world reasoning with OWL instance data.

3 SPARQL-based Approximation to Integrity Issues
Detection

In general, reasoning in ADLs is a hard problem. To the best of our knowl-
edge, there is still no reasoner that can efficiently handle the reasoning in the
autoepistemic extension of OWL. Our work adopts a practical SPARQL-based
approach. In this section, first we give the definition of integrity violations, then
we use the M PV3 issue as an example to show that the SPARQL-based issue
detection mechanism is a sound solution to the integrity issue detection problem.
We follow the SPARQL syntax and semantics in [3].

Definition 6 (Integrity Violation) Given a knowledge base KB = {T, A},
where T and A denotes TBox and ABox respectively. Let A|; = {a]la € A and
i occurs in o} where i is an individual in A. If {T,Al;,IC} is not satisfiable,
then i is said to violate IC, denoted by i £ IC.

Definition 7 (M PV3 SPARQL Pattern) The SPARQL pattern Pypy is:
?7i rdf:type C
OPT (?7i P 70)
FILTER (!BOUND(?0))

Theorem 1 If an individual i is contained in the evaluation of the graph pattern
Pyrpy, over A, i.e., i € [[Pyupvylla, then i £ ICypys;.

Proof: The proof has two steps:

(1) If an individual ¢ appears in the evaluation of the graph pattern Pyspyy
over A, then C(i) € A and 35.P(i,j) € A.

Proof: Let Py=(7i rdf:type C), P~=(?1 P 70), R = (!BOUND(?0)), Then

[([P1]].a ={z | C(z) € A}

[[Pa]].4 = {(z,9) | P(z,y) € A}

[Pr]]a % [[Po]]a = {(2,y) | C(x) € A and P(z,y) € A}
le]] x)

€ A and By.P(z,y) € A}
([P

Since,

pe{(z,y) | C(x) € Aand P(x,y) € A} —
pe{r|Cx) € Aand y.P(z,y) € A} —
We got,
[[P]la = [[(P1 OPT P) FILTER R]|4
— (i [P OPT Pa)lla | n b R)
={z | O(x) € A and By.P(z,y) € A}

Thus, if 4 appears in [[Pyrpys]]a, then C(i) € A and $5.P(i, j) € A.

(2) Let i be an instance, if C(i) € A and #5.P(i,j) € A, then i £ ICyrpys,
thus A has a M PV3 issue.

Proof: If C(i) € A and #5.P(i,j) € A, we know that C(i) € A|; and 3
such that P(i,j) € A|;. The knowledge base K’ = {7, A|;, ICppys} is not
constant because there is no epistemic model for it. We prove that by con-
tradiction. Suppose K’ has an epistemic model M, then for all Z € M, we
have (Z, M, M) = KC(i), then by ICypvy, (Z, M, M) = FJAP.T(i), there-
fore 3j € AT such that (i,j) € P7MM for all J € M. However, for every
M DM, (Z,M'; M) also satisfies K', thus M is not maximal, therefore M is
not an epistemic model of K’. [

The SPARQL solutions to other typical integrity issues are provided in [4].
An advantage of SPARQL-based solutions is that they are easy to implement
using existing tools. We have implemented instance data evaluation as an online
service (http://onto.rpi.edu/demo/oie/) which can detect typical integrity issues
in instance data, in addition to syntax errors and logical inconsistencies.

4 Conclusions and Future Work

This work investigates the characterization and detection of integrity issues in
OWL instance data. We provide a logical foundation to OWL instance data eval-
uation using autoepistemic operators, and implement a practical SPARQL-based
approach to detect the issues. In future work, we will identify and characterize
more integrity issues with autoepistemic operators, and extend our SPARQL-
based solutions to handle more expressive ontologies.

References

1. Donini, F.M., Nardi, D., Rosati, R.: Autoepistemic Description Logics, IJCAI, pp.
136-141 (1997).

2. Grimm, S., Motik, B.: Closed-World Reasoning in the Semantic Web through Epis-
temic Operators, OWLED (2005).

3. Perez, J., Arenas, M., Gutierrez, C.: Semantics and Complexity of SPARQL, ISWC,
pp. 30-43 (2006).

4. Tao, J., Ding, L., McGuinness, D.L.: Instance Data Evaluation for Semantic Web-
Based Knowledge Management Systems, to appear in HICSS, (2009).

5. Tao, J., Ding, L., Bao, J., McGuinness, D.L.: Characterizing and Detecting Integrity
Issues in OWL Instance Data, TW technical report, (2008).

