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Abstract. The paper contributes to factor analysis of relational data.
We study the problem of decomposition of object-attribute matrices with
grades, i.e. matrices whose entries contain degrees to which objects have
attributes. The degrees are taken from a bounded partially ordered scale.
Examples of such matrices are binary matrices, matrices with entries
from a finite chain, or matrices with entries from the unit interval [0, 1].
We study the problem of decomposition of a given object-attribute ma-
trix I with grades into an object-factor matrix A and a binary factor-
attribute matrix B, with the number of factors as small as possible.
We present a theorem describing optimal decompositions. The theorem
shows that decompositions which use as factors particular formal con-
cepts associated to I are optimal in that the number of factors involved
is the smallest possible. Furthermore, we present an approximation al-
gorithm for finding those decompositions and illustrative examples.

1 Introduction and Problem Setting

Problem description in brief This paper presents results on optimal decomposi-
tions of matrices with grades. Examples of such matrices are binary (or Boolean)
matrices, i.e. matrices which entries are 0 or 1. Other examples are matrices
which contain numbers from the unit interval [0, 1] as their entries. In general we
consider non-numerical matrices with entries from particular complete lattices
L (binary matrices and matrices with entries from [0, 1] are particular examples
with L = {0, 1} and L = [0, 1], respectively).

We consider the following problem. Let L be a partially ordered scale bounded
from below and above by 0 and 1 (details specified later). Given an n×m matrix
I with entries from L (i.e. Iij ∈ L), we want to decompose I into a product

I = A ◦B
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of an n×k matrix A with entries from L (i.e. Ail ∈ L) and a k×m binary matrix
B (i.e. Blj ∈ {0, 1}) with k as small as possible. The composition operation ◦
which we consider is defined by

(A ◦B)ij =
k∨

l=1

Ail ⊗Blj , (1)

where ⊗ is defined by a⊗1 = a and a⊗0 = 0. Note that if L = {0, 1} then A◦B
is the well-known Boolean product of binary matrices. Note also that if we allow
Ail ∈ L and Blj ∈ L and if ⊗ is a t-norm then ◦ is the product of graded matrices
well-known in fuzzy set theory, see e.g. [15], and that such decompositions were
considered in [4, 7].

Factor analysis model For a decomposition I = A ◦ B given by (1), Iij can be
interpreted as a degree to which there is a factor l such that l applies to object i
and l is associated to attribute j (j is a particular manifestation of l). This way,
a decomposition I = A ◦ B provides us with a factor analysis model (see [1, 13,
16] for references on factor analysis): A relationship between objects and original
attributes given by I is described using a relationship between the objects and
new variables, called factors, which is given by A, and a relationship between
factors and the original attributes, which is given by B. Note that we assume
that B is binary, i.e. that the relationship between factors and attributes is a
yes-or-no relationship. This feature distinguishes our approach from those which
we considered earlier.

Needless to say, one can consider decompositions I = A ◦ B given by (1),
in which A is binary and B arbitrary. Obviously, using IT = BT ◦ AT , one
can reduce this type of decomposition to the first type (A arbitrary, B binary).
Therefore, we do not consider such case.

Contribution of the paper We present a theorem regarding optimal decomposi-
tions of a given matrix I which shows that decompositions which use as factors
particular formal concepts, called crisply generated concepts, are optimal in that
they involve the least number of factors among all decompositions of I. Further-
more, we present an approximation algorithm for finding those decompositions
and provide illustrative examples.

Related and previous work The paper is a continuation of our previous work [4,
6, 7]. In particular, in [4, 7] we considered decompositions I = A ◦ B given by
(1), in which both A and B were arbitrary, i.e. none of them was required to be
binary.

Preliminaries from fuzzy logic We use standard notions of fuzzy logic and fuzzy
sets, see e.g. [2, 12, 15]. In particular, we use complete residuated lattices as
structures of truth degrees. Recall that a complete residuated lattice is an algebra
L = 〈L,∧,∨,⊗,→, 0, 1〉 such that 〈L,∧,∨, 0, 1〉 is a complete lattice, 〈L,⊗, 1〉
is a commutative monoid, and ⊗ and → satisfy so-called adjointness condition,
i.e. a⊗ b ≤ c if and only if a ≤ b → c. We assume familiarity with examples and
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basic properties of residuated lattices. As an example, for L = [0, 1], a ⊗ b =
max(0, a+b−1), a → b = min(1, 1−a+b), the algebra L = 〈[0, 1],∧,∨,⊗,→, 0, 1〉
is a complete residuated lattice (so-called standard  Lukasiewicz algebra). An L-
set in a universe set U is a mapping A : U → L.

2 Optimal Decompositions

2.1 Composition as
∨

-superposition of matrices

We first observe that I = A ◦B for n× k and k×m matrices A (graded) and B
(binary) means that I is a

∨
-superposition of particular rectangular matrices.

Definition 1. Let K1,K2 ⊆ L. An n×m matrix J with entries from L is called
(K1,K2)-rectangular iff there exist L-sets C in {1, . . . , n} and D in {1, . . . ,m}
with C(i) ∈ K1 and D(j) ∈ K2 such that J = C ⊗D, i.e.

Jij = C(i)⊗D(j) (2)

for 1 ≤ i ≤ n, 1 ≤ j ≤ m.

In particular, we need (L, {0, 1})-rectangular matrices and call these just
“rectangular”. The term “rectangular” is inspired by the “shape” of such matri-
ces. The following matrices are examples of ({0, 1}, {0, 1})-rectangular (J1) and
([0, 1], {0, 1})-rectangular (J2) matrices:

J1 =


0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 1 1 1 0 0
0 0 1 1 1 0 0
0 0 1 1 1 0 0
0 0 1 1 1 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

, J2 =


0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.5 0.5 0.5 0.0 0.0
0.0 0.0 1.0 1.0 1.0 0.0 0.0
0.0 0.0 0.2 0.2 0.2 0.0 0.0
0.0 0.0 1.0 1.0 1.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0

.

In the above example, J1 = C ⊗D where C and D are characteristic functions
of {3, 4, 5, 6} and {3, 4, 5}, respectively; J2 = C ⊗ D where C(1) = C(2) =
C(7) = C(8) = 0, C(3) = 0.5, C(4) = 1.0, C(5) = 0.2, C(6) = 1.0, and
D(1) = D(2) = D(6) = D(7) = 0, D(3) = D(4) = D(5) = 1.

The role of (L, {0, 1})-rectangular matrices is shown by the following theorem.

Theorem 1. I = A ◦ B for n × k and k × m matrices A and B with Ail ∈ L
and Blj ∈ {0, 1} iff I is a

∨
-superposition of k (L, {0, 1})-rectangular matrices

J1, . . . , Jk, i.e. iff

I = J1 ∨ J2 ∨ · · · ∨ Jk.

Proof. Denote by Jl the ◦-product A l ◦Bl of the l-th column A l of A and the
l-th row Bl of B, i.e. (Jl)ij = Ail ⊗ Blj . I = A ◦ B means Iij = (A ◦ B)ij , i.e.
Iij =

∨k
l=1(Ail ⊗ Blj). Therefore, I = J1 ∨ J2 ∨ · · · ∨ Jk. Since B is a binary

matrix, Jl are (L, {0, 1})-rectangular matrices. �
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Example 1. To illustrate the content of Theorem 1, consider the following de-
composition I = A ◦B:  0.3 1.0 0.0 0.0 0.0 0.3

1.0 1.0 0.0 0.0 1.0 1.0
1.0 0.9 1.0 1.0 0.0 0.8
1.0 0.2 0.0 0.0 1.0 0.2

 =

 0.3 0.0 0.0 1.0
1.0 0.0 1.0 0.7
0.8 1.0 0.0 0.9
0.2 0.0 1.0 0.0

 ◦

 1 1 0 0 0 1
1 0 1 1 0 0
1 0 0 0 1 0
0 1 0 0 0 0

.

In this example L = {0, 0.1, . . . , 0.9, 1} and a ⊗ b = min(a, b). According to
Theorem 1, I is a

∨
-superposition of four matrices, J1, J2, J3, J4 where Jl is a

◦-product of the l-th column of A and the l-th row of B, i.e.(
0.3 1.0 0.0 0.0 0.0 0.3
1.0 1.0 0.0 0.0 1.0 1.0
1.0 0.9 1.0 1.0 0.0 0.8
1.0 0.2 0.0 0.0 1.0 0.2

)
=(

0.3 0.3 0.0 0.0 0.0 0.3
1.0 1.0 0.0 0.0 0.0 1.0
0.8 0.8 0.0 0.0 0.0 0.8
0.2 0.2 0.0 0.0 0.0 0.2

)
∨

(
0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0
1.0 0.0 1.0 1.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0

)
∨(

0.0 0.0 0.0 0.0 0.0 0.0
1.0 0.0 0.0 0.0 1.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0
1.0 0.0 0.0 0.0 1.0 0.0

)
∨

(
0.0 1.0 0.0 0.0 0.0 0.0
0.0 0.7 0.0 0.0 0.0 0.0
0.0 0.9 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0

)
.

2.2 Formal concepts are optimal factors

Theorem 1 says that in order to find a decomposition I = A◦B, we need to find
a suitable set of (L, {0, 1})-rectangular matrices Jl whose

∨
-superposition gives

I. We now describe decompositions of I which are optimal among all possible
decompositions in that the number k of factors is the smallest possible one. The
decompositions use so-called crisply generated formal concepts of I [5].

Preliminaries on crisply generated formal concepts This section presents prelim-
inaries on formal concepts of data with fuzzy attributes, particularly on crisply
generated formal concepts. The reader is referred, e.g., to [3, 5] for details.

Let X = {1, . . . , n} and Y = {1, . . . ,m} be sets (of objects and attributes,
respectively), I be an n × m matrix with entries from a support set L of a
complete residuated lattice L. The degree Ixy ∈ L is interpreted as a degree
to which object x has attribute y. Consider the operators ↑ : LX → LY and
↓ : LY → LX defined by

C↑(y) =
∧

x∈X(C(x) → Ixy), D↓(x) =
∧

y∈Y (D(y) → Ixy),

where → is the residuum of the complete residuated lattice L. That is, ↑ assigns
an L-set C↑ in Y to a given L-set C in X, and ↓ assigns an L-set D↓ in X
to a given L-set D in Y . C↑(y) can verbally be described as a degree to which
“for each object x ∈ X: if x is from C then x has attribute y” (note that
C↑(y) is just the degree of the last statement “for each · · · ” according to basic
principles of first-order fuzzy logic, see [12]). Likewise, D↓(x) is the degree to
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which “for each attribute y ∈ Y : if y is from D then x has attribute y” is true.
If L = {0, 1}, ↑ : LX → LY and ↓ : LY → LX coincide with the well-known
concept-derivation operators of the basic setting of formal concept analysis [8,
11]. ↑ and ↓ form a fuzzy Galois connection [2] and the compound operators ↑↓

and ↓↑ form particular closure operators in X and Y [2]. A pair 〈C,D〉 consisting
of an L-set C in X and an L-set D in Y is called a formal concept of I if C↑ = D
and D↓ = C. C and D are called the extent and intent of 〈C,D〉, respectively.
The set of all formal concepts of I is denoted by B(X, Y, I). With a partial order
≤ defined by

〈C1, D1〉 ≤ 〈C2, D2〉 iff C1 ⊆ C2 (iff D2 ⊆ D1)

for 〈C1, D1〉, 〈C2, D2〉 ∈ B(X, Y, I), B(X, Y, I) happens to be a complete lattice,
so-called concept lattice associated to I [2, 3]. Note that C1 ⊆ C2 means that C1

is contained in C2, i.e. for each x ∈ X, C1(x) ≤ C2(x). For L = {0, 1}, B(X, Y, I)
coincides with the ordinary concept lattice [11]. In [5], the following notion was
introduced. A formal concept 〈C,D〉 ∈ B(X, Y, I) is called crisply generated if
there is a crisp L-set Dc ∈ {0, 1}Y , i.e. for each y ∈ Y : Dc(y) = 0 or Dc(y) = 1,
such that C = D↓

c (and thus D = D↓↑
c ). Let Bc(X, Y, I) denote the collection of

all crisply generated formal concepts of I, i.e.

Bc(X, Y, I) = {〈C,D〉 ∈ B(X, Y, I) | there is Dc ∈ {0, 1}Y : C = D↓
c}.

We need the following characterization of crisply generated formal concepts. For
L-sets C1, C2 ∈ LX and D1, D2 ∈ LY , we put 〈C1, D1〉 E 〈C2, D2〉 if for each
x ∈ X, y ∈ Y we have C1(x) ≤ C2(x) and D1(y) ≤ D2(y).

Lemma 1 ([5]). 〈C,D〉 is a crisply generated formal concept iff 〈C,D〉 is max-
imal (w.r.t. E) such that (1) the rectangular matrix J defined by Jxy = C(x)⊗
D(y) is contained in I (i.e. Jxy ≤ Ixy for all x, y) and (2) C(x) =

∧
D(y)=1 Ixy.

Remark 1. Note that condition (2) of Lemma 1 means that for the crisp L-set
Dc ∈ {0, 1}Y corresponding to the 1-cut of D, which is defined by

Dc(y) =
{

1 if D(y) = 1,
0 if D(y) < 1,

(3)

we have C = D↓
c .

Matrices AF and BF For convenience, we identify 1 × p vectors with entries
from L with L-sets in {1, . . . , p} (the l-th coordinate of the vector = the degree
to which l belongs to the L-set). Given a set

F = {〈C1, D1〉, . . . , 〈Ck, Dk〉}
of L-sets Cl and Dl in {1, . . . , n} and {1, . . . ,m}, respectively, with values from
L, define n× k and k ×m matrices AF and BF by

(AF )il = (Cl)(i) and (BF )lj = (Dl)(j).

That is, the l-th column of AF is the transpose of the vector corresponding to
Cl and the l-th row of BF is the vector corresponding to Dl.
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For F ⊆ B(X, Y, I), denote

Fc = {〈C,Dc〉 | 〈C,D〉 ∈ F}.
Note that Dc is defined by (3). We will show that sets Fc corresponding to sets
F of crisply generated formal concepts are fundamental for decompositions we
are looking for.

The first theorem says that for every I, there is a decomposition AFc
◦ BFc

for some F ⊆ Bc(X, Y, I).

Theorem 2 (universality). For every I with entries from L there is F ⊆
Bc(X, Y, I) such that I = AFc ◦ BFc , i.e. I is a product of A with entries from
L and B with entries from {0, 1}.

Proof. Denote for l ∈ {1, . . . ,m}, 〈Cl, Dl〉 = 〈{1/l}↓, {1/l}↓↑〉. Here, {1/l} is a
singleton in {1, . . . ,m}, i.e. and L-set defined by {1/l}(l) = 1 and {1/l}(j) =
0 for j 6= l. 〈Cl, Dl〉 are particular crisply generated formal concepts from
B(X, Y, I) and we have

Iij =
∨m

l=1 Cl(i)⊗Dl(j),

see [2]. Putting thus F = {〈Cl, Dl〉 | l = 1, . . . ,m}, we get I = AFc
◦BFc

. �

However, Theorem 2 and its proof yield only |F| = m, i.e. the number k = |F|
of factors equals the number m of attributes. In general, better decompositions
may exist, i.e. those with k < m. The next theorem shows that the decompo-
sitions which use crisply generated formal concepts of I as factors are optimal
among all decompositions of I.

Theorem 3 (optimality). Let I = A ◦B for n× k and k×m matrices A and
B with Ail ∈ L, Blj ∈ {0, 1}. Then there exists a set F ⊆ Bc(X, Y, I) of crisply
generated formal concepts of I such that for Fc we have

|Fc| ≤ k

and for the n × |Fc| and |Fc| × m matrices AFc
with entries from L and BFc

with entries from {0, 1} we have

I = AFc
◦BFc

.

Proof. Sketch: Let I = A◦B for an n×k matrix A with entries from L and a k×m
binary matrix B. Consider the corresponding rectangular matrices J1, . . . , Jk of
which I is a

∨
-superposition according to Theorem 1. Denoting now the L-

sets in {1, . . . , n} and {1, . . . ,m} corresponding to the l-th column of A and
the l-th row of B by Gl and Hl, respectively, we have Jl = Gl ⊗ Hl. We have
Gl⊗Hl ⊆ I and one can check that also H↓

l ⊗Hl ⊆ I. The pair 〈H↓
l ,Hl〉 satisfies

condition (2) of Lemma 1 (see also Remark 1). Therefore, 〈H↓
l ,Hl〉 is contained

in a maximal (w.r.t. E defined in the paragraph preceding Lemma 1) 〈Cl, Dl〉
which is then, according to Lemma 1, a crisply generated formal concept of I.
As a result, Cl ⊗ Dl ⊆ I. Therefore, for F = {〈C1, D1〉, . . . , 〈Ck, Dk〉} we have
|F| ≤ k. Because (Hl)j ∈ {0, 1} and because we may assume Hl ⊆ Dl, we get
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Hl ⊆ (Dl)c, cf. (3). So,

I = A ◦B =
k∨

l=1

Gl ⊗Hl ⊆
k∨

l=1

H↓
l ⊗Hl

⊆
k∨

l=1

Cl ⊗ (Dl)c = AFc ◦BFc ⊆
k∨

l=1

Cl ⊗Dl = AF ◦BF ⊆ I,

i.e. AFc ◦BFc = I, finishing the proof. �

Note that using the notation from the proof of Theorem 3, two distinct
〈Gl,Hl〉’s may be contained in a single 〈Cl, Dl〉, i.e. for 〈Gl1 ,Hl1〉 6= 〈Gl2 ,Hl2〉
we can have 〈Cl1 , Dl1〉 = 〈Cl2 , Dl2〉. As a consequence, we may have |F| < k.

3 Algorithm

In this section, we present an approximation algorithm for computing a decom-
position I = A◦B of an n×m matrix I with entries from L into an n×k matrix
A with entries from L and a k×m binary matrix B with k as small as possible.
Note that we do not provide the approximation factor for this algorithm.

Recall that for L = {0, 1} (i.e. the set of grades contains just 0 and 1), our
problem becomes a problem of decomposition of binary matrices. In particular, if
L = {0, 1}, we are given a binary matrix I and our aim is to find a decomposition
I = A ◦ B into an n × k binary matrix A and a k × m binary matrix B with
k as small as possible. This problem is NP-hard and its decision version is NP-
complete, see e.g. [17–19], and also [6].

Due to NP-hardness of a problem of decomposition of binary matrices which
is a particular instance of our problem, we need to look for suitable approxi-
mation algorithms. In the following, we propose a greedy approximation algo-
rithm inspired by the algorithms presented in [6] and [7]. Briefly, starting with
empty Fc, the algorithm selects a crisply generated concept 〈C,D〉 of I that
covers a large part of I which is still uncovered. For each such selected 〈C,D〉,
the corresponding 〈C,Dc〉, see (3), is added to Fc. For determining 〈C,D〉,
we use |D ⊕ j| which denotes the number of pairs 〈i, j′〉 of indices, for which
Iij′ =

(
IFc

∨ (D ∪ { 1/j})↓ ⊗ (D ∪ { 1/j})↓↑
)
ij′ . We refer to this approach as to

Method 1. We also used Method 2 for which |D ⊕ j| takes into account also
entries

(
IFc ∨ (D ∪ { 1/j})↓ ⊗ (D ∪ { 1/j})↓↑

)
ij′ which are close to Iij′ but not

necessarily equal (details will appear in a full version of this paper).
Note that if L = {0, 1}, our algorithm works the same way as the one from

[6]. We performed several experiments with our algorithm. Due to limited scope,
we present the following one. We generated 1,000 matrices I of dimension 15×15
over 5-element chain L with  Lukasiewicz operations. Each matrix was generated
as a product of a 15 × k matrix A and a k × 15 binary matrix B, so we knew
the number of factors (its upper bound, in fact). Table 1 shows the numbers of
factors (average value ± standard deviation) for decompositions of I obtained
by our algorithm (both for Methods 1 and 2).
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Algorithm 1 Find Factors
Input: I (matrix with entries from L)
Output: Fc (set Fc for which I = AFc ◦BFc)

set IFc to empty matrix ((IFc)ij = 0)
while I 6= IFc do

set D to ∅
set V to 0
while there is j such that D(j) < 1 and |D ⊕ j| > V do

select j such that D(j) < 1 which maximizes |D ⊕ j|
set D to (D ∪ { 1/j})↓↑
set V to |D ⊕ j|

end while
set C to D↓

add 〈C, Dc〉 to Fc

set IFc to IFc ∨ C ⊗Dc

end while

Table 1. Number of computed factors

k no. computed factors no. computed factors
Method 1 Method 2

4 5.294 ± 0.660 5.303 ± 0.712
5 7.204 ± 1.113 7.232 ± 1.063
6 8.964 ± 1.770 8.992 ± 1.688
7 10.194 ± 2.066 10.128 ± 1.990
8 11.155 ± 2.209 11.182 ± 2.067
9 11.747 ± 2.247 11.771 ± 1.878
10 12.18 ± 2.035 12.225 ± 2.054

4 Illustrative Example

In this section, we present an illustrative example regarding decompositions of
a matrix with grades into a matrix with grades and a binary matrix.

In our example, we consider n users, m permissions, and a user-to-permission
assignment. The assignment can be represented by an n × m matrix I with
entries from a scale L = {0, r, w, 1}, with 0 representing “no permission”, r and
w representing “permission to read” and “permission to write”, respectively, and
1 representing “full permission”. We define a partial order on L such that 0 is
the least element, 1 is the greatest one, and elements r and w are incomparable,
see Fig. 1.

Furthermore, we need to define operations of multiplication ⊗. We put x⊗y =
x ∧ y, for all x, y ∈ L. The residuum is then determined by ⊗ (due to the
requirement of adjointness, see Section 1) and is defined by x → y = 1 for x ≤ y,
x → y = y for all x > y, and r → w = w, w → r = r.
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0

r w

1

Fig. 1. Partial order on the scale of permissions

We want to decompose I into a product of n× k matrix A and k×m matrix
B where A and B represent a user-to-role and a role-to-permission relationship,
respectively. Therefore, the factors we want to discover are to be interpreted as
roles, such as “system administrator”, “standard user” or the like. Naturally, we
expect A to be a binary matrix (i.e. Ail ∈ {0, 1}), assigning roles to users (a
user has a given role or not), whereas B is graded matrix (i.e. Blj ∈ L). In order
to be consistent with previous chapters, A should be graded and B should be
binary matrix. Therefore, we use well-known fact that I = A ◦ B is equivalent
to I−1 = B−1 ◦A−1. That is, instead of I we decompose I−1.

As a particular example, we consider 9 users (or employees) and 5 file-types
in some computer system (for instance, “documents”, “archive files” or “system
files” could be some of these types). The user-to-permission relationship is de-
scribed in the table thereunder. The data can be visualized using a rectangular
grid, where , , , and represent permissions 0, r, w, and 1, respectively:

type1 type2 type3 type4 type5

Alice 0 r 1 1 1
Bob 0 0 r r w
Charles 0 r 1 1 1
David 0 0 r r w
Eve 1 1 1 1 1
Frank 0 r 1 1 1
George 0 r 1 1 1
Henry 0 0 r r w
Isaac 0 0 r r w

Our aim is thus to decompose the corresponding graded matrix

I−1 =

 0 0 0 0 1 0 0 0 0
r 0 r 0 1 r r 0 0
1 r 1 r 1 1 1 r r
1 r 1 r 1 1 1 r r
1 w 1 w 1 1 1 w w

 .

Algorithm 1 computes the following decomposition:

I−1 =

 0 0 1
r 0 1
1 r 1
1 r 1
1 w 1

 ◦
( 1 0 1 0 1 1 1 0 0

1 1 1 1 1 1 1 1 1
0 0 0 0 1 0 0 0 0

)
,
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i.e.,

I = A ◦B =



1 1 0
0 1 0
1 1 0
0 1 0
1 1 1
1 1 0
1 1 0
0 1 0
0 1 0


◦
( 0 r 1 1 1

0 0 r r w
1 1 1 1 1

)
.

This decomposition can be displayed as:

= ◦

As we obtained a 9× 3 binary matrix A describing a user-to-role assignment
and 3 × 5 matrix B describing a role-to-permission assignment. Therefore, we
obtained 3 factors: role1, role2, role3. The first role (corresponding to the first
row of matrix B) might be interpreted as “standard user”, the second one (the
middle row of B) as “anonymous user” (“guest”), and the third one (the last
row of B) as “system administrator”.

According to matrix A, we assign roles to users by:

Alice - role1, role2,
Bob - role2,
Charles - role1, role2,
David - role2,
Eve - all roles,
Frank - role1, role2,
George - role1, role2,
Henry - role2,
Isaac - role2.

Next, we compute an approximate decomposition of I ≈ A ◦ B. By this we
mean that we want the entries of I to by similar to the corresponding entries of
A◦B to a degree which exceeds a given similarity threshold f . In our example we
set f = 0.9. Details regarding such similarity will be presented in a full version of
this paper. Let us just note that the similarity is based on the number of matrix
entries which have equal values in I and A ◦B. A graphical representation of an
approximation decomposition computed by our algorithm depicted below.

We can see that the approximate decomposition involves the two factors
corresponding to “standard user” and “anonymous user”, which were involved
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≈ = ◦

also in the exact decomposition. However, the factor corresponding to “system
administrator” is no longer involved in the approximate decomposition. This
can be seen as the result of our attempt, due to performing an approximate
decomposition, to discover only a small number of factors (roles) which account
for most of the data and, hence, are common. The role of “system administrator”
is not common since the only user with this role is Eve.

5 Conclusions and Future Research

We presented a theorem regarding optimal decomposition of a matrix with grades
into a matrix with grades and a binary matrix. Furthermore, we proposed a
greedy approximation algorithm for computing such decompositions and exam-
ples illustrating such decompositions.

Further issues and future research include the following items:

– Independence of ⊗ and →. It can be shown that the decompositions of a
graded matrix into a graded and a binary matrix do not depend, in a certain
sense, on the operations ⊗ and → on the scale L of grades. We sticked to
the framework which involves ⊗ and → to show how the problem addressed
in this paper fits into the results developed earlier. Details will be presented
in the full version of this paper.

– Decompositions of matrices with grades into matrices with further con-
straints, different from the requirement of binarity of B.

– Approximation algorithms for approximate and exact decompositions of ma-
trices with grades.

– Applications of the underlying factor analysis model and comparison to other
models of factor analysis.

– Role of decompositions in machine learning and data mining (esp. dimen-
sionality reduction).
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