
Parallel Recursive Algorithm for FCA?

Petr Krajca, Jan Outrata and Vilem Vychodil

Data Analysis and Modelling Laboratory, SUNY Binghamton
Vestal Parkway E, Binghamton, NY 13902–6000, USA

petr.krajca@binghamton.edu, vychodil@binghamton.edu

Department of Computer Science, Palacky University, Olomouc
Tomkova 40, CZ-779 00 Olomouc, Czech Republic

jan.outrata@upol.cz

Abstract. This paper presents a parallel algorithm for computing for-
mal concepts. Presented is a sequential version upon which we build the
parallel one. We describe the algorithm, its implementation, scalability,
and provide an initial experimental evaluation of its efficiency. The algo-
rithm is fast, memory efficient, and can be optimized so that all critical
operations are reduced to low-level bit-array operations. One of the key
features of the algorithm is that it avoids synchronization which has
positive impacts on its speed and implementation.

1 Introduction

In this paper, we focus on extracting formal concepts, i.e. particular rectangular
patterns, in binary object-attribute relational data. The input data, we are inter-
ested in, takes form of a two-dimensional data table with rows corresponding to
objects, columns corresponding to attributes (features), and table entries being
1’s and 0’s indicating presence/absence of attributes. Tables like these represent
a fundamental form of incidence data. Given a data table, we wish to find all
formal concepts [9, 18] present in the table.

There are several algorithms for computing formal concepts, see [13] for an
overview and comparison. Among the best known algorithms are Ganter’s algo-
rithm [8] and Lindig’s algorithm [14] and their variants. Almost all algorithms
proposed to date are sequential ones. Since parallel computing is recently gain-
ing interests as hardware manufactures are shifting their focus from improving
computing power by increasing clock frequencies to developing processors with
multiple cores, there is a need to have scalable parallel algorithms for formal con-
cept analysis (FCA) which can fully utilize the power of such milticore systems
and deliver results faster than sequential algorithms. In this paper, we propose a
parallel version of an algorithm presented in [16, 17] which is closely related to al-
gorithm Close-by-One [12]. Our algorithm is light weight, fast, memory efficient,
and can be implemented so that it uses just static linear data structures utiliz-
ing only low-level operations present in arithmetic logic units of contemporary
? Supported by grant No. 1ET101370417 of GA AV ČR and by institutional support,

research plan MSM 6198959214.

c© Radim Belohlavek, Sergei O. Kuznetsov (Eds.): CLA 2008, pp. 71–82,
ISBN 978–80–244–2111–7, Palacký University, Olomouc, 2008.



microchips which significantly improves the performance of its implementations.
We describe the algorithm and compare its performance with the other algo-
rithms. We also focus on scalability, i.e. the growth of algorithm’s performance
with respect to the growing number of processors.

Let us note that computing all formal concepts is interesting not only for
FCA itself but has a wide range of applications. For instance, it has been shown
in [3] that formal concepts can be used to find optimal factorization of Boolean
matrices. In fact, formal concepts correspond with optimal solutions to the dis-
crete basis problem discussed by Miettinen et al. [15]. Finding formal concepts
in data tables is therefore an important task.

2 Preliminaries from FCA

In this section we recall basic notions of the formal concept analysis. More details
can be found in monographs [9] and [5].

Let X = {0, 1, . . . ,m} and Y = {0, 1, . . . , n} be our sets of objects and
attributes, respectively. A formal context is a triplet 〈X, Y, I〉 where I ⊆ X ×Y ,
i.e. I is a binary relation between X and Y , 〈x, y〉 ∈ I meaning that object x
has attribute y. As usual, we consider a couple of concept-forming operators [9]
↑ : 2X → 2Y and ↓ : 2Y → 2X defined, for each A ⊆ X and B ⊆ Y , by

A↑ = {y ∈ Y | for each x ∈ A : 〈x, y〉 ∈ I}, (1)

B↓ = {x ∈ X | for each y ∈ B : 〈x, y〉 ∈ I}. (2)

By definition (1), A↑ is the set of all attributes shared by all objects from A
and, by (2), B↓ is the set of all objects sharing all attributes from B. Operators
↑ : 2X → 2Y and ↓ : 2Y → 2X defined by (1) and (2) form the so-called Galois
connection [9]. A formal concept (in 〈X, Y, I〉) is any couple 〈A, B〉 ∈ 2X × 2Y

such that A↑ = B and B↓ = A. If 〈A, B〉 is a formal concept then A and B will
be called the extent and intent of that concept, respectively. The subconcept-
superconcept hierarchy ≤ is defined as 〈A1, B1〉 ≤ 〈A2, B2〉 iff A1 ⊆ A2 (or, iff
B2 ⊆ B1, both the ways are equivalent), see [5, 9] for details.

Remark 1. There is a useful view of formal concepts which is often neglected in
literature. Namely, formal concepts in 〈X, Y, I〉 correspond to maximal rectangles
in 〈X,Y, I〉. In a more detail, any 〈A, B〉 ∈ 2X × 2Y such that A× B ⊆ I shall
be called a rectangle in I. Rectangle 〈A, B〉 in I is a maximal one if, for each
rectangle 〈A′, B′〉 in I such that A×B ⊆ A′×B′, we have A = A′ and B = B′.
Now, it is easily seen that 〈A, B〉 ∈ 2X × 2Y is a maximal rectangle in I iff
A↑ = B and B↓ = A, i.e. maximal rectangles = formal concepts.

3 Computing Closures

Here we describe a procedure common to both the sequential and parallel ver-
sions of our algorithm. It generates a new concept from an existing one by
enlarging its intent and shrinking its extent (at the same time).

72 Petr Krajca, Jan Outrata, Vilem Vychodil



Procedure ComputeClosure(〈A, B〉, y)
for i from 0 upto m do1

set C[i] to 0;2

end3

for j from 0 upto n do4

set D[j] to 1;5

end6

foreach i in A ∩ rows[y] do7

set C[i] to 1;8

for j from 0 upto n do9

if table[i, j] = 0 then10

set D[j] to 0;11

end12

end13

end14

return 〈C, D〉15

Representation of the Input Data For the sake of efficiency, we represent each
〈X, Y, I〉 two ways. First, by a two-dimensional array, denoted table, which cor-
responds with I in the usual sense. That is, the array table is filled with 1s and
0s so that table[i, j] = 1 iff 〈i, j〉 ∈ I and table[i, j] = 0 iff 〈i, j〉 6∈ I.

The second representation of the data is an array of ordered lists of objects.
For each attribute y ∈ Y , we let rows[y] be a list of all objects having the
attribute y. Thus, rows[y] contains x ∈ X iff 〈x, y〉 ∈ I. In addition to that, the
numbers of rows contained in rows[y] will be ordered in the ascending order (this
is for the sake of efficiency). For instance, rows[y] = (2, 4, 7) means that the only
objects from X having y in I are the objects 2, 4, and 7. The two-dimensional
array table and the array of lists rows will be used by the subsequent algorithms.

All the algorithms we are going to describe will use sets of objects and at-
tributes represented by their characteristic arrays. That is, in case of attributes,
a subset B ⊆ Y = {0, 1, . . . , n} will be represented by an (n + 1)-element linear
array b of 1s and 0s such b[k] = 1 iff k ∈ B (and b[k] = 0 iff k 6∈ B). By a slight
abuse of notation, we will identify B with b and write B[k] = 1 to denote k ∈ B.

Description of the Algorithm If 〈A, B〉 is a formal concept then due to the
monotony of ↓↑, all the formal concepts whose intents are strictly greater than
B can be written as

〈
(B ∪ C)↓, (B ∪ C)↓↑

〉
, where C ⊆ Y is a set of attributes

such that there is at least one attribute y ∈ Y such that y ∈ C and y 6∈ B. In
particular, if we consider C = {y} ⊆ Y such that y 6∈ B, then〈

(B ∪ {y})↓, (B ∪ {y})↓↑
〉

(3)

is a formal concept such that (B ∪ {y})↓ ⊂ A and B ⊂ (B ∪ {y})↓↑. This is
important from the computational point of view because if we want to compute

Parallel Recursive Algorithm for FCA 73



(B ∪ {y})↓, it suffices to go exactly through all objects in A having attribute y:

(B ∪ {y})↓ = {x ∈ A | 〈x, y〉 ∈ I} = A ∩ {y}↓. (4)

The common attributes of objects from (4) form the intent of (3). We have just
outlined the idea behind our algorithm which generates formal concept (3) given
formal concept 〈A, B〉 and attribute y ∈ Y which does not belong to B. The
corresponding procedure will be called ComputeClosure. It accepts a formal
concept 〈A, B〉 and an attribute y 6∈ B and produces a new formal concept
〈C, D〉 which equals to (3). We can show that the algorithm is sound, see [16].

Remark 2. We have used two representations of the input data to establish de-
sired efficiency of computing new formal concepts, i.e. the redundancy in repre-
sentation is a trade-off for efficiency. The two-dimensional array representation
is used to determine which attributes are not present in the intent of the newly
computed formal concept (see lines 7–14 of ComputeClosure). The second
representation is used to skip rows in which y does not appear. Such rows do
not contribute to the closure (B ∪ {y})↓↑, i.e. they can be disregarded. Our
representation is most efficient for mid-size data sets (hundreds of attributes +
thousands of objects) stored in RAM.

4 Sequential Algorithm

The previous section described how we can efficiently compute a new formal
concept (3) given an initial formal concept 〈A, B〉. In this section we present a
simplified version of our sequential algorithm for computing formal concepts [16,
17] which is suitable for parallelization. The main idea behind this algorithm is
the same as in case of the algorithm Close-by-One proposed by Kuznetsov in [12].

Listing Formal Concepts in a Unique Order The core of our algorithm is a recur-
sive procedure GenerateFrom which lists all formal concepts using a depth-
first search through the space of all formal concepts. The procedure starts with an
initial formal concept 〈∅↓, ∅↓↑〉. During the search, the procedure first generates
a new formal concept R by adding attributes to the intent of the current formal
concept, i.e. it applies the procedure described in ComputeClosure. Then, it
is checked whether R has already been found. If not, it processes R (e.g., prints
it on the screen), and proceeds with generating further formal concepts resulting
from R by adding attributes to its intent, i.e. here GenerateFrom recursively
calls itself with R being the current formal concept.

The key issue here is to have a quick procedure testing whether a newly
generated formal concept has been generated before. We generate the formal
concepts in a unique order which ensures that each formal concept is processed
exactly once. The principle is the following. Let 〈A, B〉 be a formal concept,
y ∈ Y such that y 6∈ B. Put D = (B ∪ {y})↓↑, i.e. the new formal concept
is 〈(B ∪ {y})↓, D〉, see (3). Once D is computed using ComputeClosure, we
check whether

D ∩ {0, 1, . . . , y − 1} = B ∩ {0, 1, . . . , y − 1} (5)

74 Petr Krajca, Jan Outrata, Vilem Vychodil



Procedure GenerateFrom(〈A, B〉, y)
process B (e.g., print B on screen);1

if B = Y or y > n then2

return3

end4

for j from y upto n do5

if B[j] = 0 then6

set 〈C, D〉 to ComputeClosure(〈A, B〉, j);7

set skip to false;8

for k from 0 upto j − 1 do9

if D[k] 6= B[k] then10

set skip to true;11

break for loop;12

end13

end14

if skip = false then15

GenerateFrom(〈C, D〉, j + 1);16

end17

end18

end19

return20

is true. Note that the “⊇”-part of (5) is trivial. Moreover, (5) is true iff D agrees
with B on the attributes 0, 1, . . . , y − 1. In other words, (5) is true iff, for each
i ∈ {0, 1, . . . , y − 1}: i ∈ D iff i ∈ B. Thus, condition (5) expresses the fact that
the closure D of B ∪ {y} does not contain any new attributes which are “before
y”. Condition (5) will be used to check whether we should process D. If (5) will
be false, we will not process D because due to the depth-first search method, D
has already been processed.

Description of the Algorithm The algorithm is represented by a procedure Gen-
erateFrom that accepts two arguments. First, a formal concept 〈A, B〉 repre-
sented by characteristic vectors of objects A and attributes B covered by the
concept. Second, an attribute y which is the first attribute to be added to B.
〈A, B〉 serves as an initial concept from which we start generating other formal
concepts. After its invocation, GenerateFrom proceeds as follows:

– It processes the formal concept 〈A, B〉 (e.g., it prints A and B on screen).
– Then, the procedure checks whether B contains all the attributes from Y , i.e.

whether B represents the greatest intent, in which case we exit current branch
of recursion (lines 2–4).

– The main loop (lines 5–20) iterates over all remaining attributes, starting with
the attribute y. In the body of the main loop (lines 6–18), j denotes the current
attribute which we are about to add to B. The if-condition at line 6 checks
whether j is already present in B. If so, we proceed with another attribute. If
j is not present in B, we try to generate new intent from B ∪{j} (lines 7–17).

Parallel Recursive Algorithm for FCA 75



– At line 7, we compute a new formal concept denoted 〈C, D〉. The loop between
lines 9–14 checks whether B and D satisfy condition (5) for y being j. A flag
skip is initially set to false (line 8). The flag is reset to true iff there is k < j
such that B and D disagree on k.

– If skip is false, i.e. if D and B agree on all attributes up to j − 1, we make
a recursive call of the procedure GenerateFrom to compute descendant
intents of D, starting with the next attribute j + 1 (line 16).

In order to compute all the formal concepts, we invoke GenerateFrom
with 〈∅↓, ∅↓↑〉 and y = 0 as its arguments. Then, after finitely many steps,
the algorithm produces all formal concepts, each of them exactly once. The
soundness of the algorithm is proved in [16], cf. also [12].

Relationship to Other Sequential Algorithms Conceptually, GenerateFrom is
the same algorithm as Close-by-One proposed by Kuznetsov [12] although there
are some technical differences. GenerateFrom can be seen as simpler version
of Close-by-One since we are not interested in the order of generated concepts.
On the other hand, we utilize ComputeClosure which results to a much better
performance. The algorithm is similar to Lindig’s algorithm [13, 14] in that it
performs a depth-first search through the search space of all formal concepts. The
key difference between our algorithm and that proposed by Lindig [14] and its
variants is the way how we test that new formal concept has already been found.
Lindig’s algorithm and its variants use additional data structures to store intents
of found formal concepts. Thus, after a new formal concept is computed, Lindig’s
algorithm looks up for the concept in a data structure, typically a search tree
or a hashing table. Our algorithm uses similar idea as Ganter’s algorithm [8]
to ensure that no concept is generated multiple times, see (5). Compared to
Ganter’s algorithm, the number of concepts which are computed multiple times
and “dropped” is much lower, see [16].

5 Parallel Algorithm

The sequential version of our algorithm, described in previous section, lists all
formal concepts using a depth-first search through the space of all formal con-
cepts. Consider a calling tree of the recursive procedure GenerateFrom. The
parallel version consists in modification of GenerateFrom so that subtrees of
the calling tree are executed simultaneously by independent processes. The prob-
lem to solve is, given a process, which subtree(s) will be executed in the process,
or, put in other words, how to distribute computed formal concepts among the
processes.

Computing Formal Concepts in More Processes In the following we describe our
approach for computing formal concepts in a given fixed number P of separate
processes running in parallel. In the approach, processes are executing subtrees
(of the calling tree of GenerateFrom) containing, in the root node, a call
of GenerateFrom for a formal concept generated by a predefined number of

76 Petr Krajca, Jan Outrata, Vilem Vychodil



attributes. The number of attributes, denoted by L, is a second parameter of the
parallel algorithm. The parameter has an impact on the distribution of computed
formal concepts among the processes, see Remark 3 on page 9.

The algorithm, consisting in modification of GenerateFrom, first simulates
original sequential GenerateFrom until it reaches the recursion level at which
formal concepts generated by 0 < L ≤ n attributes are to be processed. The
initial recursion halts at level which equals L, counting recursion levels from 0
upwards. The formal concepts generated by L attributes, i.e. formal concepts
〈C, D〉 = 〈{y0, . . . , yL−1}↓, {y0, . . . , yL−1}↓↑〉 such that yi ∈ Y , are stored in a
queue instead of being processed. For each of the P processes there is exactly
one queue and the selection of the queue to which we store 〈C, D〉 is the key
point of the algorithm. In fact, by selecting a queue we select a process which
will list all formal concepts descendant to 〈C, D〉. The optimal selection method
should distribute all formal concepts to processes equally. This is, however, very
hard to achieve since we do not know the distribution of formal concepts in the
search space of all formal concepts until we actually compute them all. In the
present version of the algorithm we select process r, where r is the total number
of stored formal concepts so far modulo the number P of processes.

After filling up the queues, the modified procedure then forks itself into P
processes (or, alternatively, runs the following in P − 1 new processes too), and
in each process the original sequential GenerateFrom is called for each formal
concept in the queue of the respective process. This will list all the remaining
descendant formal concepts, in parallel.

Description of the Algorithm The algorithm is represented by a procedure Par-
allelGenerateFrom, the modification of GenerateFrom which accepts one
additional argument: the recursion level counter l, which is used to recognize the
recursion level L at which formal concepts generated by L attributes are to be
stored in a queue rather than processed. After its invocation, ParallelGen-
erateFrom proceeds as follows:

– Until it reaches the recursion level L > 0, the procedure simulates original
GenerateFrom (lines 6–24). The code is identical, with two exceptions: first,
instead of exiting at line 8 it skips to the point where original GenerateFrom
ends and, second, upon each recursive call of itself it increases the recursion
level counter l (line 21). In this step it (sequentially) processes all formal
concepts generated by up to L− 1 attributes.

– When recursion level counter l is equal to L, i.e. the procedure is about to
process formal concept 〈A, B〉 generated by L attributes, it (instead of pro-
cessing 〈A, B〉) stores 〈A, B〉 and y (the attribute to be added to B) to queue
queue[r] of selected process r and exits current branch of recursion (lines 2–4).
In this step, all formal concepts generated by L attributes are stored in the
queues.

– Notice that when ParallelGenerateFrom exits a branch of recursion at
line 4, the execution continues at line 22 because line 21 is the only place where
ParallelGenerateFrom is recursively called. Therefore, it continues at line

Parallel Recursive Algorithm for FCA 77



Procedure ParallelGenerateFrom(〈A, B〉, y, l)
if l = L then1

select r from 0 to P − 1 (e.g. r = (
PP−1

s=0 queue[s]) mod P );2

store (〈A, B〉, y) to queue[r];3

return4

end5

process B (e.g., print B on screen);6

if B = Y or y > n then7

goto line 25;8

end9

for j from y upto n do10

if B[j] = 0 then11

set 〈C, D〉 to ComputeClosure(〈A, B〉, j);12

set skip to false;13

for k from 0 upto j − 1 do14

if D[k] 6= B[k] then15

set skip to true;16

break for loop;17

end18

end19

if skip = false then20

ParallelGenerateFrom(〈C, D〉, j + 1, l + 1);21

end22

end23

end24

if l = 0 then25

for r from 1 upto P − 1 do26

new process27

while set (〈C, D〉, j) to load from queue[r] do28

GenerateFrom(〈C, D〉, j);29

end30

end31

end32

while set (〈C, D〉, j) to load from queue[0] do33

GenerateFrom(〈C, D〉, j);34

end35

end36

return37

25 after exiting the loop between line 10–24. Here, it either exits the current
branch of recursion (if l 6= 0) or continues if the top recursion level (l = 0) has
been reached (i.e., no more branches of recursion are on the call stack).

– On the top recursion level (l = 0), it runs new P − 1 processes running in
parallel (lines 26, 27) and the last step is performed by the new processes too.

– Finally, still on the top recursion level only, in each process, it calls original
GenerateFrom for each formal concept 〈C, D〉 and attribute j in the queue

78 Petr Krajca, Jan Outrata, Vilem Vychodil



of the respective process (lines 28–30 and 33–35). That means, all formal
concepts generated by L or more attributes are processed in separate processes
running in parallel.

In order to compute all the formal concepts, we invoke ParallelGener-
ateFrom with 〈∅↓, ∅↓↑〉, y = 0 and l = 0 as its arguments. Then, after finitely
many steps, the algorithm produces all formal concepts, each of them exactly
once. The soundness of the algorithm follows directly from the soundness of the
sequential version [12, 16] and the fact that processes compute predefined dis-
joint sub-collections of all formal concepts. This also means that the processes do
not interfere with each other and hence the algorithm needs no synchronization.
We postpone the proof to the full version of the paper. The parallelization also
does not increase the overall theoretical complexity of the algorithm which is
the same as for the sequential version.

Remark 3. Note that the parameter L, in addition to the process selection
method, also determines the number of formal concepts computed by each pro-
cess. If L = 1, most of the formal concepts (formal concepts descendant to a
formal concept generated by a single attribute) are computed by one or two
processes. With increasing L, formal concepts are distributed to processes more
equally. On the other hand, however, with increasing L more formal concepts are
computed sequentially and less in parallel. From our experimentation it seems
a good trade-off value is already L = 2, where almost all formal concepts (for
n � L) are computed in parallel and are distributed to processes nearly opti-
mally. This will be further discussed in Section 6.

Remark 4. There have been several approaches to parallel algorithms in FCA.
For instance, [7] proposes a parallelization of Ganter’s algorithm by decomposing
the set of all concepts into non-overlapping subsets which are computed simul-
taneously. Another parallelization of Ganter’s algorithm is presented in [2]. The
basic idea in [2] is that the lexicographically ordered power set 2Y is split into
p intervals of the same length (p indicates a number of processes). Then, each
of the p intervals is executed by an independent process using a serial version of
Ganter’s algorithm. A different approach is shown, e.g., in [11] where the algo-
rithm is based on dividing the input data into disjoin fragments which are then
computed by independent processes. A detailed comparison of the algorithms in
terms of their efficiency and scalability is beyond the scope of this paper and
will be a subject of future investigation.

6 Experimental Evaluation

We have run several experiments to compare the algorithm with other algorithms
for computing formal concepts. In the experiments, we have used Ganter’s [8],
Lindig’s [14] and Berry’s [4] algorithms and were interested in the performance of
the algorithms measured by the running time. Furthermore, we have run several
experiments to compare algorithm performances in dependence on number of

Parallel Recursive Algorithm for FCA 79



dataset mushroom tic-tac-toe Debian tags anonymous web
size 8124× 119 958× 29 14315× 475 32710× 295

density 19 % 34 % < 1 % 1 %

our (1 CPU) 6.543 0.092 12.746 65.221
our (2 CPUs) 3.541 0.047 7.710 33.364
our (4 CPUs) 2.343 0.035 4.545 18.520
our (8 CPUs) 1.393 0.029 3.043 11.466

Ganter’s 834.409 2.158 1720.827 10039.733
Lindig’s 5271.988 14.530 2639.670 13422.643
Berry’s 934.507 5.783 1531.944 3615.078

Fig. 1. Performance for selected datasets (seconds)

used CPUs. For the sake of comparison, we have implemented all the algorithms
in ANSI C. The experiments were done on otherwise idle 64-bit x86 64 hardware
with 8 independent processors (dual processor workstation with Quad-core Intel
Xeon Processor E5345, 2.33 GHz, 12 GB RAM).

Note that even the serial version of our algorithm significantly outperforms
the most commonly used algorithms for FCA. A detailed comparison can be
found in [16]. In this section, we focus primarily on the scalability of our algo-
rithm, i.e., we focus on the speed improvement with growing number of hardware
processors.

Our first experiment compares our algorithm with various FCA algorithms
using several data tables from the UCI Machine Learning Repository [1], UCI
Knowledge Discovery in Databases Archive [10], and our dataset describing pack-
ages in the Debian GNU/Linux [6]. The results, along with the information on
size and density (percentage of 1s) of used data sets, are depicted in Figure 1.
First four rows contain computation times measured in seconds in case of our
algorithm which has been run on 1 (sequential version), 2, 4, and 8 hardware
processors. From all the graphs and tables we can see that our algorithm (sig-
nificantly) outperforms all the other algorithms.

We now focus on the scalability of the algorithm, i.e., ability to decrease
running time using multiple CPUs (or more precisely CPU cores). We have
used selected data sets and various randomly generated data tables. Fig. 2 (left)
contains results for selected datasets while Fig. 2 (right) contains results for ran-
domly generated tables with 10000 objects and 5 % density of 1’s. By a relative
speedup which is shown on y-axes in the graphs, we mean the theoretical speedup
given by number of hardware processors (e.g., if we have 4 processors, the execu-
tion can be 4 times faster). Therefore, the relative speedup is a ratio of running
time using a single CPU (the sequential version of the algorithm) and running
time using multiple CPU cores. Note that the theoretical maximum of speedup
is equal to the number of used CPUs but real speedup is always smaller due to
certain overhead caused by managing of multiple threads of computation. Never-
theless, from the point of view of the speedup, we can see from the experiments

80 Petr Krajca, Jan Outrata, Vilem Vychodil



2

4

6

8

1 2 3 4 5 6 7 8

R
el

at
iv

e
sp

ee
du

p

CPUs

0

2

4

6

8

1 2 3 4 5 6 7 8

R
el

at
iv

e
sp

ee
du

p

CPUs

Fig. 2. Relative speedup dependent on various data tables (solid line—mushrooms,
dashed line—tic-tac-toe, dotted line—Debian tags, dot-and-dashed line—annonymous
web) and used CPU cores (on the left); relative speedup dependent on number of
attributes (solid line—50 attributes, dashed line—100 attributes, dotted line—150 at-
tributes, dot-and-dashed line—200 attributes) and used CPU cores measured using
randomly generated contexts with 10000 objects and 5 % density (on the right).

0

2

4

6

8

1 2 3 4 5 6 7 8

R
el

at
iv

e
sp

ee
du

p

CPUs

0

4

8

12

16

1 2 3 4 5 6 7 8

T
im

e
(s

ec
on

ds
)

L

Fig. 3. Relative speedup dependent on density of 1’s (solid line—5 %, dashed line—
10 %, dotted line—20 %) and used CPU cores (on the left); running time dependent
on the argument L (the solid line is for the Debian tags data table and 4 CPUs used,
the dashed line is for the Debian tags data table and 8 CPUs used, the dotted lines
is for the mushrooms data table and 4 CPUs used and dot-and-dashed lines is for the
mushrooms data table and 8 CPUs used) (on the right).

that with growing number of attributes, the real speedup of the algorithm is
near its theoretical limits.

In next experiment, that is depicted in Fig. 3 (left), we were focusing on the
impact of density of 1’s. That is, we have generated data tables with various
densities and observed the impact on the scalability. We have used data tables
of size 100 × 10000. Finally, Fig. 3 (right) illustrates the influence of parameter
L on various data tables and amounts of CPU cores. The experiments indicate
that good choice is L ∈ {2, 3}, see Remark 3.

7 Conclusions

We have introduced a parallel algorithm for computing formal concepts in object-
attribute data tables. The parallel algorithm is an extension of the serial algo-

Parallel Recursive Algorithm for FCA 81



rithm we have proposed in [16]. The algorithm consists of a procedure for com-
puting closures and a recursive procedure for computing formal concepts. The
main feature of the recursive procedure is that it simulates the sequential one up
to a point where the procedure forks into multiple processes and each process
computes a disjoint set of formal concepts. Due to our design of the algorithm,
there is no need for synchronization which significantly improves efficiency of the
algorithm. We have shown that the algorithm is scalable. With growing numbers
of CPUs, the speedup of the computation given by increasing number of CPUs
is near its theoretical limit. The future research will focus on further refinements
of the algorithm and comparison with other approaches.

References

1. Asuncion A., Newman D. UCI Machine Learning Repository. University of Cali-
fornia, Irvine, School of Information and Computer Sciences, 2007.

2. Baklouti F., Levy G.: A distributed version of the Ganter algorithm for general
Galois Lattices. In: Belohlavek R., Snasel V. (Eds.): Proc. CLA 2005, pp. 207–221.

3. Belohlavek R., Vychodil V. On boolean factor analysis with formal concept as
factors. Proceedings of SCIS & ISIS 2006, pp. 1054–1059, 2006. Tokyo, Japan:
Tokyo Institute of Technology.

4. Berry A., Bordat J.-P., Sigayret A. A local approach to concept generation. Annals
of Mathematics and Artificial Intelligence, 49(2007), 117–136.

5. Carpineto C., Romano G. Concept data analysis. Theory and applications. J.
Wiley, 2004.

6. DAMOL Dataset Repository (in preparation).
7. Fu H., Mephu Nguifo E.: A Parallel Algorithm to Generate Formal Concepts for

Large Data. ICFCA 2004, LNCS 2961, pp. 394–401.
8. Ganter B. Two basic algorithms in concept analysis. (Technical Report FB4-

Preprint No. 831). TH Darmstadt, 1984.
9. Ganter B., Wille R. Formal concept analysis. Mathematical foundations. Berlin:

Springer, 1999.
10. Hettich S., Bay S. D.: The UCI KDD Archive University of California, Irvine,

School of Information and Computer Sciences, 1999.
11. Kengue J. F. D., Valtchev P., Djamégni C. T.: A Parallel Algorithm for Lattice

Construction. ICFCA 2005, LNCS 3403, pp. 249–264.
12. Kuznetsov S.: Learning of Simple Conceptual Graphs from Positive and Negative

Examples. PKDD 1999, pp. 384–391.
13. Kuznetsov S., Obiedkov S. Comparing performance of algorithms for generating

concept lattices. J. Exp. Theor. Artif. Int., 14(2002), 189–216.
14. Lindig C. Fast concept analysis. Working with Conceptual Structures–

–Contributions to ICCS 2000, pp. 152–161, 2000. Aachen: Shaker Verlag.
15. Miettinen P., Mielikäinen T., Gionis A., Das G., Mannila H. The discrete basis

problem. PKDD, pp. 335–346, 2006. Springer.
16. Outrata J., Vychodil V. Fast algorithm for computing maximal rectangles from

object-attribute relational data (submitted).
17. Vychodil V.: A new algorithm for computing formal concepts. In: Trappl R. (Ed.):

Cybernetics and Systems 2008: Proc. 19th EMCSR, 2008, pp. 15–21.
18. Wille R. Restructuring lattice theory: an approach based on hierarchies of concepts.

Ordered Sets, pp. 445–470, 1982. Dordrecht-Boston.

82 Petr Krajca, Jan Outrata, Vilem Vychodil


