
Enterprise Architecture analysis using
Fault Trees and MODAF

Ulrik Franke, Pontus Johnson, Evelina Ericsson,
Waldo Rocha Flores, and Kun Zhu?

Industrial Information and Control Systems,
Royal Institute of Technology, Stockholm

{ulrikf, pj101, evelinae, waldorf, zhuk}@ics.kth.se

Abstract. Analysis of dependencies between information systems, busi-
ness processes, and strategic goals is an important part of the discipline
of Enterprise Architecture (EA). However, EA models typically provide
only visual and qualitative decision support. This paper shows how EA
frameworks for dependency analysis can be extended into the realm of
quantitative methods by the use of techniques from Fault Tree Anal-
ysis (FTA). Using MODAF, the UK Ministry of Defence Architecture
Framework as an example, we give a list of criteria for the extraction of
a metamodel for FTA use, and provide such a metamodel for MODAF.
Furthermore, we use this MODAF FTA metamodel to perform depen-
dency analysis on a sample MODAF model.

Keywords: Enterprise Architecture, Fault Tree Analysis, dependency
analysis, MODAF

1 Introduction

During the last decade, Enterprise Architecture (EA) has grown into an estab-
lished approach for management of information systems in organizations. EA is
model-based and does not only increase the general understanding of an orga-
nization’s business and information system landscape, but also aids in decision
making. Formal analysis approaches for EA [1], including sub-disciplines such as
maintainability [2] and interoperability [3], are a growing field.

MODAF, the Ministry of Defence Architecture Framework, is designed to
support the creation of an enterprise architecture for the British Ministry of
Defence. Dependency analysis, i.e. the connection of high level concepts such
as strategic capabilities (airlift, search and rescue, etc.) with the detailed and
precise concepts that constitute low level technical systems (particular vehicles,
radars, IT systems, etc.) has been identified as a key use of MODAF [4].

The present paper proposes an improvement and formalization of EA depen-
dency analysis by methods from Fault Tree Analysis (FTA). FTA is a combi-
natorial model of systems dependability, widely used for safety and reliability
? The authors gratefully acknowledge the useful comments provided upon the present

work by Mathias Ekstedt, Per Närman, Teodor Sommestad, and Johan Ullberg.

Proceedings of CAiSE Forum 2009 61



evaluations [5]. The method translates the failure behavior of a physical system
into events connected by arcs. A visual model portrays the relationships in an
accessible way, while a corresponding logical model enables quantitative evalu-
ation. More details on FTA can be found in [6]. This paper aims to extend the
EA analysis toolbox with the FTA method, enabling more powerful dependency
analysis. MODAF is used as a running example.

The remainder of this paper is structured as follows. Section 2 contrasts
the present paper with some related work. Section 3 is the locus of the main
contribution, describing how to map MODAF models into fault trees. Section
4 gives a practical example of the method. Section 5 discusses the contribution
and concludes the paper.

2 Related work

Model based generation of fault trees has been previously addressed. [7] describes
generation of dynamic fault trees from data flow models. In [8], fault trees are
extracted from UML system models. However, such fault tree derivation is often
time-consuming and error-prone due to complex component interactions. Thus,
[9] proposes more automation, viz. an algorithm for fault trees generation from
Little-JIL process definitions. The present contribution goes beyond the scope of
technical systems and processes directly supported by these systems, extending
FTA into the realm of Enterprise Architecture.

3 A metamodel for the use of FTA in MODAF

In this section, the possibility of mappings between MODAF models and fault
trees is discussed. Criteria for the use of FTA in MODAF are listed, and a
metamodel based on these criteria is then presented.

3.1 Selection criteria

While FTA is a formal, mathematically precise method, MODAF models span
wider fields (viz. all activities of the UK Ministry of Defence) and are as a
consequence less clear-cut. We therefore define a list of selection criteria for
identifying MODAF Meta Model (M3) objects appropriate for use in FTA.

Criterion 1 (Causal chain). M3 objects relevant to FTA must be part of a
causal chain connecting technical systems to higher level concepts on the way to
the strategic enterprise goals from the MODAF Strategic view.

Criterion 2 (Proper abstraction). M3 objects relevant to FTA must not
make the overall architecture unnecessarily detailed.

Criterion 3 (Relevance to failures). M3 objects relevant to FTA must have
at least one of the following properties (i) be the subject of failure (prospective
fault tree events) or (ii) be able to transfer failures (prospective fault tree arcs).

Proceedings of CAiSE Forum 2009 62



Criterion 4 (Concreteness). M3 objects relevant to FTA must be on the
level of concretion normal to FTA.

Criterion 5 (Binary fault states). M3 objects relevant to FTA must, when
instantiated as fault tree events, have the binary fault states non-failed and
failed.

3.2 Creating the metamodel

Using the M3 objects (entities and relations) thus selected, we build a metamodel
for the use of FTA in MODAF. This entails a final delimitation:

Criterion 6 (Connectedness). M3 objects relevant to FTA must not be soli-
taire with respect to the whole set of such M3 objects. For event objects, this
means that at least one arc object has to point to it. For arc objects, this means
that it has to connect two event objects (not necessarily distinct).

The metamodel created by application of criteria 1 through 6 is illustrated
in Fig. 1. Objects removed by criterion 6 are listed to the left in the figure.

Capability
Configuration

Fielded
Capability

Human
Resource

Physical
Architecture

Physical
Asset

Physical
DataModel

Platform 

Software 

ActivitySubject
Actual
Organisation

ActualPost

Information
Element

Information
Exchange
Message

Logical
Architecture

Material
Flow

Mission

NodeHas
Behaviour

NodeType

Operational
Activity

OperationalActivityFlow

Capability
Enduring
Task

Enterprise
Goal

Function

Controls*

ResourceUsage*

Activity

Composition
ActualOrganisation

Relationship 

CapabilityForNode*

Actual
Competence

CompetenceForRole*

EnergyFlow*,

Information

Exchange*,

Operational

Interaction

Specification

OperationalActivityAction*

Operational

Interaction

Specification, 

OperationNode

LifeLine

ActivityMapsToCapability

CapabilityDependency

Configuration

Deplyed, 

Configuration

NoLongerUsed

Controls*

ResourceUsage*

Controls

ResourceUsage

Controls*

ResourceUsage*

Controls*

ResourceUsage

Operational

Activity

Action*

StandardOperationalActivity

OperationalActivityAction*, 

ActivityComposition

Consumes,

Provides

ServiceFunctionTo

FunctionMapping

System

Controls*

ResourceUsage*

Resource

Usage

ResourceUsage

Resource

Interaction

DataElement

LogicalFlow*

Logical

Flow*

ServiceFunctionTo

FunctionMapping

Commands*

Controls*

ResourceUsage*

Service

St
ra

te
gi

c
O

p
er

at
io

n
al

Sy
st

em

ResourceUsage
Commands

ResourceUsage

Controls*ResourceUsage*

OperationalNodeLifeLine

ActivityTo

FunctionMappingCommands*

Controls*

ResourceUsage*

Fig. 1. A metamodel for the use of FTA in MODAF. The objects listed to the left are
the solitaires excluded by criterion 6. Note the singleton Service element.

3.3 From metamodel to fault tree

Given a MODAF model and the metamodel illustrated in Fig. 1, the following
algorithmic procedure allows the creation of a fault tree for dependency analysis.

Proceedings of CAiSE Forum 2009 63



Events Starting from an existing MODAF model, identify the entities that are
instantiations of entities found in the FTA metamodel (Fig. 1). We now have
an event set.

Arcs Similarly, identify the relations that are instantiations of relations found
in the FTA metamodel (Fig. 1). We now have an arc set.

Gates For each relation connecting two entities, take the causally descendant
entity and consider together the whole set of arcs connecting it to antecedent
entities. Partition this set into OR or AND gates. The degenerate parti-
tioning of the whole set into one single gate is allowed, as is partitionings
including singletons, i.e. gates corresponding to the identity relation. The
procedure is iterated until all arcs in the arc set have been mapped to gates.

Of course, this procedure cannot do away with the requirement of expertise
and acquaintance with the system modeled. It does, however, provide a template
and a coherent process for the generation of fault trees from MODAF models.

4 Dependency analysis of Search and Rescue capability

This section presents a practical example of how FTA formalism can be employed
for dependency analysis of an existing MODAF model. We use a Search and
Rescue (SAR) example created by the VEGA Group under contract to the UK
Ministry of Defence [10], illustrating a maritime search and rescue operation at
sea. The scenario involves a monitoring unit, a yacht in distress, a Command
and Control (C2) center, a helicopter, and a lifeboat.

Now, we employ the FTA usage method from the previous section. Figure 2
illustrates the process of going from the initial MODAF model (1. in the figure),
viz. a top to bottom dependency diagram from [10], via the FTA metamodel
(2.) developed in the previous section, to a full blown fault tree (3.).

The Maritime SAR capability is described by Search, Assistance, and Rescue
sub-capabilities, connected to the top event, i.e. failure of the maritime SAR ca-
pability, through an OR gate. OR gates are used for faults acting independently
of each others, AND gates are used for failures acting in concert. For brevity,
we have left the Assistance and Rescue capabilities undeveloped further down
the tree. Instead developing the Search capability into sub-events, we proceed
down through the Operations and System views until we reach basic events.

This example illustrates the process described in the previous section. The
fault tree generated, as depicted in Fig. 2, enables not only qualitative depen-
dency analysis, as does standard MODAF models, but also quantitative analysis.
If the fault distributions of the components whose failures constitute the basic
events are known, the impact of these distributions on the maritime SAR ca-
pability can be calculated. Decisions on procurement and maintenance of low
level technical systems can thus be optimized with regard to the actual capa-
bility they are to support, rather than an intermediate proxy. Not the least,
this allows rational prioritization when it comes to trade-offs between different
systems.

Proceedings of CAiSE Forum 2009 64



<<Capability>>

Aeronautical SAR

<<Capability>>

SAR

<<Capability>>

Search

<<CapabilityConfiguration>>

NIMROD MRA

<<Physical Asset>>

NIMROD Airframe

<<System>>

Sensor Suite

<<System>>

ESM System

<<SystemPort>>

Frequency Scanner

<<Function>>

Process Signals

<<Node>>

Search node

<<OperationalActivity>>

Find victim

<<OperationalActivity>>

Generate distress signal

<<Node>>

Person in distress

<<Function>>

Emit distress transmission

<<SystemPort>>

Transmitter

<<System>>

Distress beacon

<<PhysicalAsset>>

Yacht

<<CapabilityConfiguration>>

Yacht

<<CapabilityConfiguration>>

Person in distress

<<Capability>>

Distress Signal Monitoring

<<Capability>>

UK SAR Capability
has sub-capability

has sub-capability

has part

hosts

has sub-system

offers

provides

system connection

distress signal

provides

offers

hosts

has part

distress signal

realises realises

undertakes undertakes

needline

has sub-capability

contributes to

Top to Bottom Dependencies

This diagram shows an example of tracing 

dependencies from capability down to 

system port interconnections

<<Capability>>

Search fails

<<Capability>>

Assitance fails

<<Capability>>

Recovery fails

<<Op. Activity>>

Find Victim fails

<<Op. Activity>>

Monitor Victim

fails

<<Op. Activity>>

Track Victim fails

<<Op. Activity>>

Assist Victim 

fails

<<Cap. Config.>>

The Monitoring 

Unit fails

<<Op. Activity>>

Prepare to receive 

Victim fails

<<Op. Activity>>

Recover Victim 

fails

<<Op. Activity>>

Provide Medical 

Assistance fails

OR

OR OR OR

<<Op. Activity>>

Monitor for 

distress signal 

fails

<<Op. Activity>>

Generate distress 

signal fails

OR

<<Cap. Config.>>

Air Sea Rescue 

Helicopter fails

<<System>>

GPS Navigation 

Aid fails

<<Function>>

Transmit radio 

waves fails

<<Function>>

Receive radio 

waves fails

<<Function>>

Display waypoints 

fails

<<Function>>

Calculate course 

and position fails

<<Capability>>

Maritime SAR 

OR

<<Function>>

Receive GPS 

Broadcast fails

<<Function>>

Display course 

and position fails

AND

OR

<<Cap. Config>>

Command and 

Control Center 

fails 

<<Cap. Config>>

RNLI Lifeboat fails

<<Data element>>

Distress signal 

fails

<<Op. Activity>>

Plan SAR 

operation fails

<<Op. Activity>>

Control SAR 

assets fails

<<Op. Activity>>

Assign SAR 

assets to 

operation

<<Op. Activity>>

Monitor SAR 

assets

<<System>>

Voice radio fails

OR

<<Data element>>

Track info from 

monitoring unit 

fails

OR

St
ra

te
gi

c
O

p
er

at
io

n
al

Sy
st

em

OR

<<System>>

Communication 

System fails

Capability
Configuration

Fielded
Capability

Human
Resource

Physical
Architecture

Physical
Asset

Physical
DataModel

Platform 

Software 

ActivitySubject
Actual
Organisation

ActualPost

Information
Element

Information
Exchange
Message

Logical
Architecture

Material
Flow

Mission

NodeHas
Behaviour

NodeType

Operational
Activity

OperationalActivityFlow

Capability
Enduring
Task

Enterprise
Goal

Function

Controls*

ResourceUsage*

Activity

Composition
ActualOrganisation

Relationship 

CapabilityForNode*

Actual
Competence

CompetenceForRole*

EnergyFlow*,

Information

Exchange*,

Operational

Interaction

Specification

OperationalActivityAction*

Operational

Interaction

Specification, 

OperationNode

LifeLine

ActivityMapsToCapability

CapabilityDependency

Configuration

Deplyed, 

Configuration

NoLongerUsed

Controls*

ResourceUsage*

Controls

ResourceUsage

Controls*

ResourceUsage*

Controls*

ResourceUsage

Operational

Activity

Action*

StandardOperationalActivity

OperationalActivityAction*, 

ActivityComposition

Consumes,

Provides

ServiceFunctionTo

FunctionMapping

System

Controls*

ResourceUsage*

Resource

Usage

ResourceUsage

Resource

Interaction

DataElement

LogicalFlow*

Logical

Flow*

ServiceFunctionTo

FunctionMapping

Commands*

Controls*

ResourceUsage*

Service

St
ra

te
gi

c
O

p
er

at
io

n
al

Sy
st

em
s

ResourceUsage
Commands

ResourceUsage

Controls*ResourceUsage*

OperationalNodeLifeLine

ActivityTo

FunctionMappingCommands*

Controls*

ResourceUsage*

Capability
Configuration

Fielded
Capability

Human
Resource

Physical
Architecture

Physical
Asset

Physical
DataModel

Platform 

Software 

ActivitySubject
Actual
Organisation

ActualPost

Information
Element

Information
Exchange
Message

Logical
Architecture

Material
Flow

Mission

NodeHas
Behaviour

NodeType

Operational
Activity

OperationalActivityFlow

Capability
Enduring
Task

Enterprise
Goal

Function

Controls*

ResourceUsage*

Activity

Composition
ActualOrganisation

Relationship 

CapabilityForNode*

Actual
Competence

CompetenceForRole*

EnergyFlow*,

Information

Exchange*,

Operational

Interaction

Specification

OperationalActivityAction*

Operational

Interaction

Specification, 

OperationNode

LifeLine

ActivityMapsToCapability

CapabilityDependency

Configuration

Deplyed, 

Configuration

NoLongerUsed

Controls*

ResourceUsage*

Controls

ResourceUsage

Controls*

ResourceUsage*

Controls*

ResourceUsage

Operational

Activity

Action*

StandardOperationalActivity

OperationalActivityAction*, 

ActivityComposition

Consumes,

Provides

ServiceFunctionTo

FunctionMapping

System

Controls*

ResourceUsage*

Resource

Usage

ResourceUsage

Resource

Interaction

DataElement

LogicalFlow*

Logical

Flow*

ServiceFunctionTo

FunctionMapping

Commands*

Controls*

ResourceUsage*

Service

St
ra

te
gi

c
O

p
er

at
io

n
al

Sy
st

em
s

ResourceUsage
Commands

ResourceUsage

Controls*ResourceUsage*

OperationalNodeLifeLine

ActivityTo

FunctionMappingCommands*

Controls*

ResourceUsage*

2. Filtered 

through 

MODAF FTA 

metamodel

3. Created fault tree

1. Initial MODAF 

model

Fig. 2. The process of generating a fault tree interconnecting the System, Operational,
and Strategic viewpoints of MODAF. The initial MODAF model is taken from [10].

Proceedings of CAiSE Forum 2009 65



5 Discussion and conclusions

MODAF was developed to support the modeling needs of the UK Ministry of
Defence, while Fault Tree Analysis is a well-defined mathematical hazard analysis
technique. The present contribution attempts to bridge this gap in several ways.

First, there is a gap of abstraction: the MODAF Meta Model is a metamodel,
whereas FTA is generally performed on concrete instances – models – of technical
systems. This is bridged by the creation of a smaller metamodel aimed specif-
ically at FTA usage. Second, there is a gap of expressive power: FTA is much
less expressive as a language than is MODAF. This is bridged by the algorithmic
procedure for creating a fault tree out of an existing MODAF model.

The contribution of the present paper is three-fold: (i) The feasibility of ex-
panding Fault Tree Analysis to strategic level enterprise architecture objects,
usually considered too abstract for FTA, has been demonstrated. (ii) A meta-
model for FTA use in MODAF has been proposed. (iii) A method for generation
of fault trees, starting from the FTA metamodel in conjunction with an exist-
ing MODAF model, has been provided, thus allowing MODAF users to perform
dependency analysis using the FTA technique.

References

1. Johnson, P., Lagerström, R., Närman, P., Simonsson, M.: Enterprise architecture
analysis with extended influence diagrams. Information Systems Frontiers 9(2)
(May 2007)

2. Lagerström, R., Johnson, P.: Using architectural models to predict the maintain-
ability of enterprise systems. In: Proceedings of the 12th European Conference on
Software Maintenance and Reengineering. (April 2008)

3. Ullberg, J., Lagerström, R., Johnson, P.: A framework for service interoperability
analysis using enterprise architecture models. In: IEEE International Conference
on Services Computing. (July 2008)

4. Ministry of Defence: MOD Architecture Framework version 1.2.003. Technical
report, Ministry of Defence, UK (September 2008)

5. Ericson, C.: Fault tree analysis – a history. In: 17th International System Safety
Conference. (1999)

6. Codetta-Raiteri, D.: Extended Fault Trees Analysis supported by Stochastic Petri
Nets. PhD thesis, University of Torino, Torino, Italy (2005)

7. McKelvin, M., Pinello, C., Kanajan, S., Wysocki, J., Sangiovanni-Vincentelli, A.:
Model-based design of heterogeneous systems for fault tree analysis. In Rodney
J. Simmons, Ph. D., C., Gauthier, N.J., eds.: 24th International System Safety
Conference, System Safety Society (August 2006) 400–409

8. Pai, G.J., Dugan, J.B.: Automatic synthesis of dynamic fault trees from uml
system models. In: Proceedings of the 13th International Symposium on Software
Reliability Engineering (ISSRE’02). (2002)

9. Chen, B., Avrunin, G.S., Clarke, L.A., Osterweil, L.J.: Automatic fault tree deriva-
tion from little-jil process definitions. In: SPW/ProSim. (2006) 150–158

10. VEGA Group (contracted by UK MOD): Search and Rescue Example. Available
on http://www.modaf.org.uk/vExamples/163/search-and-rescue-example, ac-
cessed November 14, 2008 (Crown Copyright 2004-2008)

Proceedings of CAiSE Forum 2009 66


