
Feature-Oriented Model-Driven Software

Product Lines: The TENTE approach⋆

Lidia Fuentes, Carlos Nebrera, and Pablo Sánchez

Dpto. Lenguajes y Ciencias de la Computación
Universidad de Málaga, Málaga (Spain)
{lff,cnebrera,pablo}@lcc.uma.es

Abstract. In recent years, modern techniques for advanced separation
of concerns and Model-Driven Development (MDD) have provided new
means for improving the current methods of Software Product Line
(SPL) Engineering. Mechanisms such as family polymorphism and mixin

composition can be used to improve the separation and composition of
features of an SPL. Using MDD repetitive, laborious and time consum-
ing tasks of SPL processes can be automated. Nevertheless, there is a
general lack of SPL processes that integrate advanced mechanisms for
separation of concerns with MDD techniques. This paper presents an in-
novative process, called TENTE, which combines both technologies. The
result is a model-driven process that maintains the separation of features
both at the architectural design and implementation stages, improving
separation of variants; at the same time repetitive, laborious and time
consuming tasks are automated.

1 Introduction

A Software Product Line(SPL) [1] aims to create the infrastructure for the rapid
production of software systems for a specific market segment. These software sys-
tems share a subset of common features, but variations are also present. Software
Product Line Engineering involves two new issues as compared to engineering
of single software-based systems: variability design and product derivation.

Variability design is concerned with incorporating variation mechanisms into
the software products, which enable the construction of an infrastructure rep-
resenting a complete range or family of products. Such an infrastructure will
include both the commonalities and variations of the family of produts. Prod-

uct Derivation is the process of constructing specific software products, after
a specific configuration (i.e. a valid set of alternatives and variants) has been
selected.

Modern software decomposition techniques [2], such as family polymorphism

and mixin composition, provides new mechanisms for the separation and com-
position of concerns. These mechanisms can be applied to variability design,

⋆ This work has been supported by Spanish MCYT Project TIN2008-01942 and the
EC STREP Project AMPLE IST-033710.

Proceedings of CAiSE Forum 2009 67

improving the separation and composition of variable features in an SPL [3].
Model-Driven Development offers mechanisms for automating repetitive and
time consuming tasks of the SPL development lifecycle, such as product deriva-

tion processes [4].

Currently there is no process for architectural design and implementation
that: (1) uses advanced techniques for separating variable features at the ar-
chitectural design and implementation stages; (2) uses model-driven techniques
for automating repetitive, laborious and time-consuming tasks; and (3) generates
automatically models of specific products for each development stage. This latter
issue is helpful for reengineering specific products according to user requirements
not originally covered by an SPL.

This paper presents as main contribution a feature-oriented model-driven
process, named TENTE1, for SPL architectural design and implementation.
This process integrates relevant advances, from an SPL point of view, for sepa-
ration of concerns and MDD technologies. Advanced mechanisms for separation
of concerns enable the encapsulation of variants in separate units. This separa-
tion simplifies variant management and composition, thereby facilitating prod-
uct derivation. Separation of variants is kept both at the architectural design
and implementation levels. Moreover, MDD techniques help to automate part
of this process, such as the generation of the implementation skeletons or the
product derivation process, avoiding the need for repetitive and tedious tasks
to be performed manually. For each specific product derived from the SPL, a
software architecture and an implementation, specific for that product, are ob-
tained. Moreover, this process does not require any knowledge of model-driven
techniques

After this introduction, this paper is structured as follows: Section 2 describes
the different steps that comprise our approach. Section 3 discusses the benefits
it provides, and concludes with comments on related and future work.

2 The TENTE approach

This section provides a general overview of TENTE. The process is comprised
of five steps, as depicted in Figure 1. It covers the architectural design and
implementation software development stages, both at the domain and applica-
tion engineering levels. Software architectural models are expressed in UML 2.0.
The implementation language selected is CaesarJ [2], a language with special
features, such as virtual classes and mixin composition, for Feature-Oriented
Programming (FOP).

The first three steps correspond to the Domain Engineering level. They serve
to create the infrastructure from which specific products will be derived. The
last two steps correspond to the Application Engineering level and they serve to

1 TENTE is the Spanish name for Lego. We have selected this name because we view
an SPL as a Lego game: it is about constructing specific products from prebuilt
blocks.

Proceedings of CAiSE Forum 2009 68

Architectural Design Implementation
ArchitectureArchitecture

ArchitectureArchitecture

cclass{
//TODO

}

cclass{
intx;

}

cclassF1 & F2 {
feature1 F1;
}

2 3

5

1
VML

Domain Engineering

Application Eng.

4

Architectural Design Implementation
ArchitectureArchitecture

ArchitectureArchitecture

cclass{
//TODO

}

cclass{
//TODO

}

cclass{
intx;

}

cclass{
intx;

}

cclassF1 & F2 {
feature1 F1;
}

cclassF1 & F2 {
feature1 F1;
}

2 3

5

1
VML

Domain Engineering

Application Eng.

4

Fig. 1. The TENTE approach

create specific products inside an SPL. The whole process is as described in the
following subsections.

2.1 Domain Engineering

Step 1: Architectural Design

First of all, an architectural model for the SPL is constructed (Figure 1, label
1). This architectural model is comprised of three elements: (1) a cardinality-
based feature model; (2) a UML 2.0 model; and (3) a VML (Variability Modelling

Language) specification.

The cardinality-based feature model [5] specifies which parts of the architec-
ture are variable and why they are variable. This represents problem space or
variability specification.

The UML 2.0 model, which we have named reference architecture, contains
the architectural design of both the commonalities and the variabilities of a com-
plete family of products. Coarse-grained variants are separated in different UML
packages, which are then combined by means of the UML merge operator, sim-
ilarly to Laguna et al [6]. Each package represents an architectural increment,
which adds new components, interfaces and so forth to an existing architecture,
extending it with new functionalities. Fine-grained variants are supported using
traditional techniques, such as the same interface being implemented by dif-
ferent components. For modelling the software architecture, component, class,
composite structure, deployment and sequence diagrams are used. At domain
engineering level, component types for constructing specific products are spec-
ified. At application engineering level, instances of these component types are
assembled for configuring specific products.

Figure 2 shows an example of feature and software architectural models for
a Smart Home case study, provided by Siemens in the context of the AMPLE
project2.

2 http://www.ample-project.net

Proceedings of CAiSE Forum 2009 69

SmartHomecs []

<<component>>
House

gtw : Gateway actuators : LightCtrl [0..*]

request

Architectureclass []

InitialModel

<<component>>
CentralGUI
request

<<component>>
Gateway

services IServices

INotify

HeaterMng

<<component>>
FahrenheitHtrCtrl
request

<<component>>
CelsiusHtrCrtl
request

<<component>>
Gateway

actuators
IHeater

LightMng

<<component>>
Gateway

actuators

<<component>>
LightCtrl

request

ILightController

SmartEnergy
Mng

WindowMng

<<merge>>

<<merge>><<merge>>

<<merge>>

<<merge>>

SmartEnergyMngLightMng HeaterMng

[1..*]

Smart Home

Room

Celsius Farenheit

WindowMng

Light
[1..*]

a

b
c

Fig. 2. Architectural design at domain engineering level

 00 VariationPoint HeaterMng {
 01 Kind Alternative;
 02 Variant Celsius{
 03 SELECT: connect(Gateway,CelsiusHtrCtrl) through interface(IHeater);
 04 UNSELECT: remove(CelsiusHtrCtrl);
 05 }
 06 Variant Fahrenheit{
 07 SELECT: connect(Gateway,FahrenheitHtrCtrl) through interface(IHeater);
 08 UNSELECT: remove(FahrenheitHtrCtrl);
 09 }
 10 }
 11 VariationPoint LightMng {
 12 Kind Optional;
 13 SELECT: merge(LightMng) into (InitialModel);
 14 UNSELECT: remove(LightMng);
 15 }

Fig. 3. VML specification for the Smart Home case study

The link between the feature model and the reference architecture is estab-
lished using VML (Variability Modelling Language) [7] (see Figure 3), an inno-
vative language for connecting variability specification (i.e problem space) with
variability realisation (i.e. solution space). A VML specification also contains
all the information required for automatically deriving the architectural model
of a specific product from the reference architecture. For each variant, special
primitives specify which actions must be carried out if a variant is selected or
deselected. Figure 3 shows an excerpt of a VML specification for the example of
Figure 2.

Step 2: Transformation of architectural models into implementation

Using a code generator, part of the implementation is automatically gener-
ated from the reference architecture (Figure 1, label 2). More specifically, the
skeleton of components and the logic for connecting them are generated. The
part corresponding to the behaviour of each method is left empty for the com-
pletion at the implementation level. Separation of variants achieved at modelling

Proceedings of CAiSE Forum 2009 70

level is preserved at the implementation level using CaesarJ family classes and
mixin composition [2].

Step 3: Domain engineering implementation

Each component skeleton previously generated is completed with its corre-
sponding business logic. As a result, a set of components implementing the family
of products is obtained. We only need to appropriately instantiate and connect
these components in order to obtain a specific product. This is addressed at the
application engineering level. This step completes the domain engineering level.

2.2 Application Engineering level

At the application engineering level, a specific product is configured by selecting
those features that must be included in that product and subsequently instanti-
ating and connecting components according to that selection of features.

Step 4: Derivation of a specific architectural model

The first step in our process is the creation of a configuration of the feature
model, i.e. a valid selection of variants to be included in a specific product. Using
this configuration, the architectural model of the desired product is automati-
cally derived from the reference architecture, by executing the VML specifica-
tion. A VML specification is compiled into a set of model transformations that
actually implement the product derivation process [7]. The main contribution
of VML is that the software architect does not need to have any expertise in
model transformation techniques, since the transformations are automatically
generated by the VML compiler.

Step 5: Derivation of a specific implementation

The software architectural model obtained in the previous step is automat-
ically transformed into a complete implementation in CaesarJ, using a code
generator. This code generator basically creates the component instances which
are required for assembling a specific product. These component instances are
also appropriately initialised and connected by the code generator. As a result,
the complete implementation of a specific product is obtained.

3 Conclusions and Future Work

This work has presented TENTE, a model-driven process for SPL architectural
design and implementation. As compared to other approaches, TENTE provides:

1. Separation of coarse-grained variants both at the architectural and at the
implementation levels, using UML packages combined by means of merge

Proceedings of CAiSE Forum 2009 71

operators and CaesarJ family classes, respectively. The separation of vari-
ants is therefore kept at the implementation level, unlike other model-driven
approaches [8]. CaesarJ provides a stronger type system that enables feature
instantiation and its polymorphic use. It also facilitates feature dependency
management, compared to other feature-oriented approaches, such as La-
guna et al [6] or Trujillo et al [4].

2. Several parts of the process are automated by means of model transforma-
tions. The application engineering level and product derivation processes are
fully automated. At the domain engineering level, 30%-70% of the implemen-
tation code is automatically generated.

3. The generation of software architectural models at the application engineer-
ing level allows the software architecture of a specific product to be adapted
according to new user requirements. Other approaches, such as Trujillo et
al [4], only consider the creation of artefacts for specific products at the im-
plementation level. Thus, the benefits of using models at different abstraction
levels are lost at the application engineering level.

As future work, we have planned to add behavioural diagrams, such as UML
2.0 state machines for describing component protocols, to the the software ar-
chitecture description. This will allow a larger amount of code to be directly
derived from models, increasing the level of abstraction at which software sys-
tems are developed. We will also integrate the process presented in this paper
with methodologies for SPL requirements engineering, in order to cover all the
stages of the software lifecycle.

References

1. Pohl, K. et al: Software Product Line Engineering: Foundations, Principles and
Techniques. Springer (2005)

2. Aracic, I. et al: An Overview of CaesarJ. In: Transactions on Aspect-Oriented
Software Development I. (2006) 135–173

3. Mezini, M., Ostermann, K.: Variability Management with Feature-Oriented Pro-
gramming and Aspects. In: 12th Int. Symp. on Foundations of Software Engineering
(FSE). (2004) 127–136

4. Trujillo, S. et al: Feature Oriented Model Driven Development: A Case Study for
Portlets. In: 29th Int. Conference on Software Engineering (ICSE). (2007) 44–53

5. Czarnecki, K. et al: Staged Configuration through Specialization and Multilevel
Configuration of Feature Models. Software Process: Improvement and Practice 10

(2005) 143–169
6. Laguna. M. A. et al: Seamless Development of Software Product Lines. In: 6th

Int. Conference on Generative Programming and Component Engineering (GPCE).
(2007) 85–94

7. Sánchez, P. eh al.: Engineering Languages for Specifying Product-derivation Pro-
cesses in Software Product Lines. In: 1st Int. Conference on Software Language
Engineering (SLE). (2008)

8. Voelter, M., Groher, I.: Product Line Implementation using Aspect-Oriented and
Model-Driven Software Development. In: 11th Int. Software Product Line Confer-
ence (SPLC). (2007) 233–242

Proceedings of CAiSE Forum 2009 72

